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Background: The chemokine signaling pathway plays an essential role in the

development, progression, and immune surveillance of lung squamous cell

carcinoma (LUSC). Our study aimed to systematically analyze chemokine

signaling-related genes (CSRGs) in LUSC patients with stage I–III disease and

develop a prediction model to predict the prognosis and therapeutic response.

Methods: A total of 610 LUSC patients with stage I–III disease from three

independent cohorts were included in our study. Least absolute shrinkage and

selection operator (LASSO) and stepwise multivariate Cox regression analyses

were used to develop a CSRG-related signature. GSVA and GSEA were

performed to identify potential biological pathways. The ESTIMATE

algorithm, ssGSEA method, and CIBERSORT analyses were applied to

explore the correlation between the CSRG signature and the tumor immune

microenvironment. The TCIA database and pRRophetic algorithm were utilized

to predict responses to immunochemotherapy and targeted therapy.

Results: A signature based on three CSRGs (CCL15, CXCL7, and VAV2) was

developed in the TCGA training set and validated in the TCGA testing set and

GEO external validation sets. A Kaplan–Meier survival analysis revealed that

patients in the high-risk group had significantly shorter survival than those in the

low-risk group. A nomogram combined with clinical parameters was

established for clinical OS prediction. The calibration and DCA curves

confirmed that the prognostic nomogram had good discrimination and

accuracy. An immune cell landscape analysis demonstrated that immune

score and immune-related functions were abundant in the high-risk

group. Interestingly, the proportion of CD8 T-cells was higher in the low-

risk group than in the high-risk group. Immunotherapy response prediction

indicated that patients in the high-risk group had a better response to CTLA-4

inhibitors. We also found that patients in the low-risk groupweremore sensitive

to first-line chemotherapeutic treatment and EGFR tyrosine kinase inhibitors. In
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addition, the expression of genes in the CSRG signature was validated by qRT‒

PCR in clinical tumor specimens.

Conclusion: In the present study, we developed a CSRG-related signature that

could predict the prognosis and sensitivity to immunochemotherapy and

targeted therapy in LUSC patients with stage I–III disease. Our study

provides an insight into the multifaceted role of the chemokine signaling

pathway in LUSC and may help clinicians implement optimal individualized

treatment for patients.

KEYWORDS
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Introduction

Lung squamous cell carcinoma (LUSC) is a common type of

non-small cell lung cancer (NSCLC) and accounts for

approximately 30% of all lung cancers (Nicholson et al.,

2022). Most tumors are located in the central part of the lung,

usually in the main bronchi, which join the trachea to the lung

(Yang et al., 2020). LUSC is associated with adverse clinical

outcomes compared to lung adenocarcinoma (LUAD) (Conti

and Gatt, 2018). Although striking progress has been made in the

past 10 years, including prevention, early detection, targeted

therapy, and immunotherapy, the clinical outcome of LUSC

remains unsatisfactory (Nasim et al., 2019). The 5-year

survival rate for patients with early-stage LUSC is

approximately 40%, and the survival rate decreases to just 5%

once the cancer is diagnosed in an advanced stage (An et al.,

2020). Patients diagnosed with stage I–III LUSC are considered

surgically resectable and treated with a combination of surgery or

perioperative therapy, including radiotherapy, chemotherapy,

and immunotherapy. Compared with surgery alone,

perioperative therapy could improve the prognosis for stage

I–III LUSC patients. However, not all patients benefit from

perioperative therapy. Currently, research efforts are underway

to improve the treatment of stage I–III LUSC using precision

predictive biomarkers and therapeutic targets. Therefore,

effective stratification and prediction of therapeutic response

and prognosis will help guide treatment strategies.

Chemokines are a subset of chemoattractant proteins that

can specifically induce cell polarization, migration, and immune

and inflammatory responses (Zlotnik and Yoshie, 2012). The

chemokine–receptor network currently consists of

approximately 47 chemokine ligands and 19 seven

transmembrane spanning signaling receptors (Zlotnik and

Yoshie, 2012). Chemokines are essential for recruitment and

activation of cellular migration and have a great impact on tumor

progression and metastasis (Cheng et al., 2016a). Recently,

chemokines have been increasingly recognized for their

pivotal role in regulating the migration and differentiation of

immune cells in the tumor microenvironment (TME)

(Nagarsheth et al., 2017). For example, Groom et al. reported

that CXCL9/CXCL10 and their receptors are significantly

associated with Th1-cell responses (Groom et al., 2012). Alicia

et al. found that the CCL3/CCL4/CCL5–CCR5 axis induces

T-cell antitumor responses by regulating CD8 T-cell activation

(González-Martín et al., 2011). However, chemokines also act on

tumor cells, modulating their stem-like cell properties,

invasiveness, and fibrogenesis (Ozga et al., 2021). These

studies suggest that chemokines can serve as prognostic

biomarkers and therapeutic targets for cancer. Ryuma et al.

reported that a 12-chemokine signature may serve as a

predictive indicator for tumor recurrence and host immune

status in colorectal cancer patients (Tokunaga et al., 2020).

Tao et al. found that a chemokine-based signature could be

used to predict the clinical outcome and immunotherapy

response in lung adenocarcinoma (Fan et al., 2021). However,

few studies have systematically analyzed the relationship between

the chemokine signaling pathway and its association with the

LUSC immune landscape, therapeutic efficacy, and prognosis.

Chemokine signaling pathways are being widely reported for

their chemotactic functions and recruitment of primed effector

T-cells into tumors (Rivas-Fuentes et al., 2015). Recently, few

studies have systematically analyzed the relationship between

chemokine signaling pathways and their association with the

immune landscape and prognosis of LUSC. Ma et al. reported

that CCL8 rs3138035 may be a candidate predictor for NSCLC

survival in Chinese patients (Ma et al., 2011). Artjoms et al. found

that statistically significant CXC chemokine concentration

changes were positively associated with poor prognosis in

NSCLC patients (Spaks, 2017). However, the role of

chemokine signaling pathways in the prognosis and

therapeutic response of LUSC remains largely unknown. In

this study, we sought to investigate the association of

chemokine signaling-related biomarker networks with the

prognosis of LUSC patients. We attempted to construct a

predictive model to predict survival and the response to

therapy in patients with early-stage LUSC, which could

provide meaningful clues for optimizing an effective treatment

for LUSC patients, especially for immunotherapy. Here, we
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explored the transcriptional profiles, clinical importance, and

corresponding pathways of chemokine signaling-related genes

(CSRGs) in stage I–III LUSC patients. We developed and

validated a prognostic CSRG signature based on three genes.

A prognostic nomogram was also constructed to predict the

individualized survival probability of LUSC patients. In addition,

we further analyzed the signature-related immune landscape and

evaluated the practicability of the signature in predicting

immunotherapy, chemotherapy, and target therapy sensitivity.

Materials and methods

Data collection and preprocessing

The RNA-seq expression data, tumor somatic mutations, and

corresponding clinical information of 483 LUSC patients with

stage I–III disease were downloaded from The Cancer Genome

Atlas (TCGA) database. Patients in the TCGA cohort were

randomly divided into the training set (n = 339) and the

internal testing set (n = 144) in a 7:3 ratio. The gene

expression profile from TCGA was normalized by the log2

(FPKM+1) formula and then processed by the “limma” R

package for differential expression analysis. Representative

Gene Expression Omnibus (GEO) datasets containing more

than 50 samples from LUSC patients with stage I–III disease

were retrieved from the NCBI, including RNA expression data

and clinical information. Two independent cohorts, GSE37745

(Botling et al., 2013) (n = 66) and GSE30219 (Rousseaux et al.,

2013) (n = 61), which were based on the GPL570-55999 Array

platform, were used as external validation sets. A total of

185 chemokine signaling-related genes (CSRGs) were obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (https://www.genome.jp/kegg) (Supplementary Table

S1). In addition, tumor stemness scores based on mRNA

(RNAss) and DNA methylation (DNAss) were downloaded

from the UCSC Xena database (https://xenabrowser.net/

datapages/).

Construction of the chemokine signaling-
related gene signature

A univariate Cox regression analysis was used to screen the

prognostic genes in the training set. Least absolute shrinkage and

selection operator (LASSO) regression analysis was utilized to

minimize the risk of overfitting and identify the most important

genes. A stepwise Cox regression model was then developed

using multivariate Cox analysis: risk score = coef 1 × expgene1 +

coef 2 × expgene2. . .. . .coef n × expgene n. All LUSC patients were

divided into a high-risk group and a low-risk group based on the

median risk score. The Kaplan–Meier method and the log-rank

test were used to analyze survival. A time-dependent receiver

operating characteristic (ROC) curve analysis was used to

evaluate the performance of the risk scores. Decision curve

analysis (DCA) was performed to verify the predictive value

of the nomogram compared to that of other independent factors

(Fitzgerald et al., 2015).

Functional enrichment analysis

Gene set variation analysis (GSVA) is a nonparametric,

unsupervised method based on a list of functional terms or

gene sets that allows pathway enrichment to be evaluated for

each sample. We used the “GSVA” R package to evaluate the

differences in functional pathways between the high-risk and

low-risk groups. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway gene set “c2. cp.kegg.v7.5.1. symbols” was

downloaded from the MSigDB database for the GSVA using

the “clusterProfiler” and “GSVA” R packages. An adjusted p <
0.05 was considered to indicate a statistically significant

difference in pathways between the groups (Hanzelmann

et al., 2013; Kanehisa et al., 2017).

Gene set enrichment analysis (GSEA) is a computational

method belonging to functional class scoring approaches that

identifies whether a preselected set of genes is differentially

expressed between the groups. In this study, GSEA was used

to investigate differential biological functions between the high-

risk and low-risk groups based on the gene set “c5. go.v7.5.1.

symbols.gmt.” Gene Ontology (GO) enrichment analysis,

including biological processes (BP), molecular functions (MF),

and cellular components (CC), was conducted using the

“clusterProfiler” and “org.Hs.e.g.db” R packages (Ashburner

et al., 2000).

Evaluation of immune cell infiltration in
the tumor microenvironment

“ESTIMATE” is a method for predicting tumor purity and

the fraction of infiltrating stromal/immune cells in tumor

samples using gene expression data. Its algorithm is based on

single-sample Gene Set Enrichment Analysis (ssGSEA). The

“ESTIMATE” algorithm was used to calculate the immune

score, stromal score, and tumor purity of each sample using

the “estimate” R package (Yoshihara et al., 2013).

ssGSEA is an extension of gene set enrichment analysis

(GSEA) that provides a separate enrichment score for each

sample and gene set. The ssGSEA score represents the degree

to which the genes in a specific gene set are coordinately

upregulated or downregulated within a sample. In this study,

we analyzed the expression of 29 immunity-related signatures

that represented different immune cell functions and pathways

using the ssGSEA algorithm in the “GSEAbase” and “GSVA” R

packages (Bindea et al., 2013).
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CIBERSORT is an analytical tool used to assess the

abundances of a particular cell type in a mixed cell population

based on gene expression profiles. The CIBERSORT algorithm in

the “CIBERSORT” R package was used to estimate the relative

abundances of 22 types of immune cells in each sample based on

the gene expression data of LUSC patients, and results with a p

value ≤0.05 were eligible for further analysis (Newman et al.,

2015; Chen et al., 2018).

Immunotherapy response prediction and
drug sensitivity analysis

The immunophenotype score (IPS) is a measure of the whole

immunogenicity of an individual solid tumor, with a higher score

representing a better response to immunotherapy (Hugo et al.,

2016). The IPS, which ranges from 0 to 10, was calculated

according to the expression of representative gene sets. The

IPSs of LUSC patients were acquired from The Cancer

Immunome Atlas (TCIA) (https://tcia.at/home) database,

which uses machine learning to build a scoring scheme for

the quantification termed IPS. The IPSs of CTLA-4 and PD-1

blockers were used to predict the immunotherapy efficacy of the

patient response to anti-CTLA-4 and anti-PD-1 antibodies.

The pRRophetic algorithm is a tool to predict the clinical

chemotherapeutic and target therapy sensitivity using tumor

gene expression data. We used the pRRophetic algorithm to

estimate the therapeutic compound response based on the half-

maximal inhibitory concentration (IC50) of each LUSC sample,

which was based on gene expression and drug sensitivity data

from cell lines in the Cancer Genome Project (CGP) (Geeleher

et al., 2014).

Clinical specimen collection and
quantitative real-time PCR analysis

A total of 10 pairs of matched LUSC cancer tissues and

adjacent normal tissues were collected from The Second

Affiliated Hospital of Fujian Medical University. This study

was approved by the Ethics Committee of The Second

Affiliated Hospital of Fujian Medical University.

For tissue total RNA isolation, 1 ml of TRIzol (Invitrogen,

United States) was added to 50–100 mg of tissue, and the total

RNA samples were extracted following the manufacturer’s

protocol. The RNA was then reverse-transcribed using a

cDNA Synthesis Kit (TaKaRa, Japan). Real-time PCR was

performed on the RT‒PCR System using SYBR Premix Ex

Taq (TaKaRa). The relative CCL15 and PPBP mRNA

expression levels were normalized to those of GAPDH. The

relative expression was calculated with the 2−ΔΔCT method.

The PCR primers were synthesized by Sangon Biotech

(Shanghai, China) and are listed in Supplementary Table S2.

Results

Development of a prognostic model
based on chemokine signaling-related
genes in stage I–III lung squamous cell
carcinoma patients

The detailed design of this study is illustrated in

Supplementary Figure S1. The list of R packages used in this

study is shown in Supplementary Table S3.

Patients in the TCGA cohort were randomly divided into the

training set (n = 339) and the internal testing set (n = 144) in a 7:

3 ratio. The clinical information did not significantly differ

between the two sets (Table 1). A total of 25 upregulated and

11 downregulated differentially expressed CSRGs (|log2-fold

change| >1, FDR< 0.05) were identified between tumor and

normal tissues based on TCGA training cohorts

(Supplementary Figure S2A). As screened by univariate Cox

regression, 12 CSRGs were statistically significantly associated

with the overall survival (OS) of LUSC patients (Figure 1A).

Among these genes, 11 were risk factors, and only one was a

protective factor in LUSC. A LASSO regression analysis was

utilized to minimize the risk of overfitting (Supplementary Figure

S2B). Subsequently, a prognostic signature consisting of three

CSRGs was developed via a stepwise multivariate Cox regression

analysis. According to the regression coefficients and expression

levels of the three CSRGs, the risk score of each sample was

calculated as follows: risk score = (0.2618 × mRNA level of

CCL15) + (0.1277 × mRNA level of CXCL7(PPBP)) +

(0.1813 × mRNA level of VAV2). Based on the optimal

cutoff value of the risk score, patients with stage I–III LUSC

were divided into high-risk and low-risk groups. Principal

component analysis (PCA) and t-distributed stochastic

neighbor embedding (tSNE) based on the expression levels of

CSRGs showed a significant distribution difference between the

high-risk and low-risk groups (Figure 1B). As the risk score

increased, the patients in the high-risk group had a higher

probability of death than those in the low-risk group

(Figure 1C). A Kaplan–Meier survival analysis revealed that

patients in the high-risk group had significantly shorter OS

than those in the low-risk group (Figure 1D). The time-

dependent ROC curve showed that the AUC values for the 3-

and 5-year OS were 0.62 and 0.61, respectively (Figure 1E). These

results supported the relatively good sensitivity and accuracy of

our prognostic signature.

Internal and external validation of the
chemokine signaling-related gene
prognostic signature

To verify the predictive power of our prognostic signature,

the testing set and the GSE37745 and GSE30219 datasets served
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as the validation cohorts. Using the same calculation formula of

the risk score, patients with stage I–III LUSC were assigned into

high-risk and low-risk groups according to the median value of

the risk score from the training set. As expected, the distributions

of risk scores, survival status, and CSRG expression were

consistent with these results in the training set

(Supplementary Figure S3A). The verification results

demonstrated that patients in the low-risk group exhibited a

better prognosis than those in the high-risk group (Figure 2A). In

the internal testing set, the AUCs of the risk signature for

predicting the 1-, 3-, and 5-year OS were 0.558, 0.613, and

0.635, respectively. For the external validation datasets, the

AUC values in the GSE37745 and GSE30219 datasets

exceeded 0.6 (Figure 2B). The time-dependent ROC curve

involving various clinical characteristics and risk scores for 3-

year survival demonstrated that the CSRG signature had better

predictive efficiency than other clinical factors (Figure 2C).

Furthermore, we applied univariate and multivariate Cox

regression analyses to examine the independent prognostic

value of this signature for LUSC in TCGA and validation

cohorts. Univariate (Supplementary Figure S3B) and

multivariate (Figure 2D) Cox regression models demonstrated

that this signature could serve as an independent predictor for

LUSC patients in TCGA and validation cohorts. Furthermore, we

compared the performance of the present signature with those of

the other previously reported gene signatures in LUSC. The RMS

curve showed that the performance of the present signature was

similar to that of the other four signatures (Supplementary Figure

S3C) (Huang et al., 2021; Li et al., 2021; Li et al., 2022; Zhai et al.,

2022). These results suggest that the CSRG signature can serve as

a candidate prognostic biomarker for survival in patients with

stage I–III LUSC.

Establishment of a nomogram for
predicting the prognosis of lung
squamous cell carcinoma patients with
stage I–III

To further extend the clinical applicability of the prognostic

signature, we constructed a prognostic nomogram combined

with clinical stage, T stage, and risk score to predict the 1-, 3-,

and 5-year OS of LUSC patients in the TCGA cohort (Figure 3A).

The calibration curves of this prognostic nomogram showed that

TABLE 1 Clinicopathological characteristics of LUSC patients from TCGA and GEO cohorts.

Characteristics TCGA training set (n = 339) TCGA testing set (n = 144) GSE37745 (n = 66) GSE30219 (n = 61)

TNM stage

Stage I 178 (52.51%) 64 (44.44%) 40 (60.6%) —

Stage II 111 (32.74%) 47 (32.64%) 15 (22.73%) —

Stage III 50 (14.75%) 33 (22.92%) 11 (16.67%) —

Pathologic N

N0 221 (65.19%) 89 (61.81%) — —

N1 89 (26.25%) 35 (24.31%) — —

N2 21 (6.19%) 18 (12.5%) — —

N3 4 (1.18%) 1 (0.69%) — —

Nx 4 (1.18%) 1 (0.69%) — —

Pathologic T

T1 84 (24.78%) 30 (20.83%) — 49 (80.32%)

T2 195 (57.52%) 86 (59.72%) — 6 (9.84%)

T3 46 (13.57%) 22 (15.28%) — 4 (6.56%)

T4 14 (4.13%) 6 (4.17%) — 2 (3.28%)

Age

≤65 127 (37.47%) 60 (41.67%) 29 (43.94%) 36 (59.02%)

>65 212 (62.53%) 84 (58.33%) 37 (56.06%) 25 (40.98%)

Gender

Female 86 (25.37%) 41 (28.47%) 20 (30.3%) 5 (8.2%)

Male 253 (74.63%) 103 (71.53%) 46 (69.7%) 56 (91.8%)

Smoking history

No 48 (14.16%) 25 (17.36%) — —

Yes 291 (85.84%) 119 (82.64%) — —
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our nomogram had the ability to accurately predict the actual 1-,

3-, and 5-year survival rates (Figure 3B). In addition, decision

curve analysis (DCA) was used to compare the net benefits of

different factors, including none, all, risk score, and nomogram.

DCA curves also demonstrated that the prognostic nomogram

had better predictive capability than the TNM staging system

(Figure 3C). These results indicated that the prognostic

nomogram has good discrimination and accuracy and can be

applied to assess the prognosis of LUSC patients with stage I–III

disease.

FIGURE 1
Construction of a prognosticmodel for stage I–III LUSC patients according to three CSRGs. (A) Identifying 12 prognostic CSRGs using univariate
Cox regression analysis. (B) Principal component analysis (PCA) based on the expression levels of three CSRGs in the TCGA training set. (C)
Distribution of risk scores, survival status, and three CSRG expression panels in the training set. (D) Kaplan–Meier survival analysis of OS between the
high-risk and low-risk groups. (E) Time-dependent ROC for 1-, 3-, and 5-year OS predictions for the CSRG prognostic signature in the
training set.
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FIGURE 2
Validation of the prognostic signature in TCGA internal testing and GEO external datasets. (A) Kaplan–Meier survival analysis of overall survival
between the high- and low-risk groups in the validation datasets. (B) Time-dependent ROC for 1-, 3-, and 5-year OS predictions for the prognostic
signature in validation datasets. (C) Time-dependent ROC curves for clinical characteristics and risk score for 3-year OS of LUSC in TCGA set and
GEO datasets. (D) Multivariate Cox regression analyses of the risk score in the total TCGA cohort and GSE37745 and GSE30219 external
validation cohorts.
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FIGURE 3
Prognostic nomogram was constructed by combining clinical stage, T stage, and risk score in the TCGA cohort. (A) Prognostic nomogram for
predicting the 1-, 3-, and 5-year survival rates of LUSC patients. (B) Corresponding calibration curve for 1-, 3-, and 5-year OS prediction. (C) DCA
curve for the prediction of 3-year and 5-year overall survival.
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Clinical correlation and functional
evaluation of the chemokine signaling-
related gene signature

To further investigate the prognostic effect of this model in

clinical practice, we evaluated the association between the

prognostic signature and different clinical subgroups in the

TCGA cohort. A Kaplan–Meier survival analysis

demonstrated that patients with early-stage disease in the low-

risk group, including stage I–II, T1-2, and N0 pathologic stage

disease, had a better prognosis (Figure 4A). Moreover, the

prognosis of high-risk patients based on smoking status, age,

and gender was poorer than that of low-risk patients (Figure 4B).

We further analyzed the associations between the risk score and

these clinicopathological parameters, but the risk score was not

significantly associated with clinicopathological characteristics

(Figure 4C).

To explore the potential biological functions of the CSRG

signature, GSVA enrichment analysis and GSEA were applied to

identify the hub signaling pathways between the high-risk and low-

FIGURE 4
Stratified Kaplan–Meier survival analysis of different clinical subgroups in the TCGA cohort. (A)Clinical I-II stage, T1-2, and N0 pathologic stage.
(B) Smoking status, age, and sex. (C) Heatmap illustrating the associations between the risk score and clinicopathological characteristics.
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risk groups. GSVA showed that the high-risk groupwas enriched in

ECM–receptor interaction, the Nod-like receptor (NLR) signaling

pathway, and the cytokine–cytokine receptor interaction pathway,

whereas pentose and glucuronate interconversion, metabolism of

xenobiotics cytochromes P450, and drug metabolism cytochromes

P450 were enriched in the low-risk group (Figure 5A). The GSEA

results indicated that the high-risk group was enriched in stimuli

involved in sensory perception, olfactory receptor activation, and

the sensory perception of chemical stimuli (Figure 5B).

Correlation between the chemokine
signaling-related gene signature and the
tumor immune microenvironment

An increasing number of studies have reported that the

chemokine signaling pathway plays crucial roles in the tumor

microenvironment by mediating various processes (Bule et al.,

2021). To further explore the correlation between the CSRG

signature and the TME, ESTIMATE algorithm, ssGSEA

FIGURE 5
Functional and biological pathway analysis of the CSRG prognostic signature. (A) Visualization of pathway enrichment analysis by GSVA
between the high-risk and low-risk groups. (B) GSEA of biological pathways between the high-risk and low-risk groups.
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method, and CIBERSORT analyses were performed to

evaluate differences in the immune landscape between the

high-risk and low-risk groups in TCGA cohort. The

ESTIMATE analysis demonstrated that the immune score

and stromal score were increased, while tumor purity was

decreased in the high-risk group (Figure 6A). ssGSEA was

applied to estimate immune-related functions, and we found

that the high-risk group was significantly enriched in several

pathways related to the immune response, including type I

IFN responses, cytolytic activity, and inflammation

promotion (Figure 6B). A correlation analysis showed that

the risk score was positively associated with most immune-

related pathways (Figure 6C).

Subsequently, CIBERSORT was performed to analyze the

proportions of 22 immune-infiltrating cells in the tumor

microenvironment. Our results showed that the abundance

of CD8 T-cells, plasma cells, and eosinophils was elevated in

the low-risk group (Figure 7A), which was negatively

associated with the risk score, whereas M0 macrophages

and regulatory T-cells were positively correlated with the

risk score (Figure 7B). In addition, we found that patients

with higher proportions of CD8 T-cells had a better

prognosis for OS (Figure 7C). Finally, we examined the

correlation between the three genes in the signature and

infiltrating immune cells to better understand the molecular

mechanism. We found that PPBP (CXCL7) was negatively

associated with CD8 T-cells, whereas CCL15 was positively

correlated with Treg cells (Figure 7D). Taken together, the

abovementioned results all revealed the close relationship

between the CSRG signature and tumor immunity in LUSC.

FIGURE 6
Comparison of immune activity between the high-risk and low-risk groups. (A) Comparison of immune score, stromal score, and tumor purity
between the low- and high-risk groups. (B) Comparison of the enrichment scores of 13 immune-related pathways between the low- and high-risk
groups. (C) Correlation of the risk score and immune-related pathways. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 7
Characteristics of immune infiltrating cells in the high-risk and low-risk groups. (A) Differences in the abundance of immune-infiltrating cells
between the high-risk and low-risk groups. (B)Correlation analysis between immune-infiltrating cells and the risk score. (C) Kaplan–Meier analysis of
prognosis according to the proportions of CD8 T-cells. (D) Correlation analysis of immune cells and three genes in the CSRG signature. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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Association between the chemokine
signaling-related gene signature and
immunotherapeutic sensitivity in lung
squamous cell carcinoma

The CSRG signature closely correlated with immune

activity in the tumor microenvironment, which can affect

the response of patients to immunotherapy. Therefore, we

investigated the association between the CSRG signature and

immunotherapeutic sensitivity in LUSC patients. First, we

evaluated the expression of immune checkpoint genes,

including PD-1, PD-L1, CTLA4, LAG-3, TIM-3, TIGIT,

HVEM, and CD47, between the two groups. We found

that the expression of coinhibitory immune checkpoint

genes in the high-risk group was higher than that in the

low-risk group, except for PD-L1 (Figure 8A). We further

examined the correlation between the risk score and TMB,

which commonly serves as an immunotherapy biomarker.

However, the risk score and TMB did not correlate

(Figure 8B). Finally, we used the IPS score to compare the

efficacy of immunotherapy for patients in the high-risk and

low-risk groups. The IPS of the CTLA-4 inhibitor in the

high-risk group was higher than that in the low-risk group,

which indicated that patients in the high-risk group had a

better response to the CTLA-4 inhibitor, whereas the IPS for

the PD-1 inhibitor did not differ between the groups

(Figure 8C).

Chemokine signaling-related gene
signature correlated with sensitivity to
chemotherapy and targeted therapy

We next evaluated the practicability of the signature in

predicting the response to chemotherapy and targeted

therapy for LUSC patients. Based on the pRRophetic

algorithm, our results revealed that three common

chemotherapeutic drugs for LUSC (cisplatin, etoposide,

and vinorelbine) had higher IC50 values in high-risk

patients, indicating that low-risk patients were more

FIGURE 8
Characteristics of immune infiltrating cells in the high-risk and low-risk groups. (A) Box plots showing the relationship between the risk score
and the expression level of coinhibitory immune checkpoint genes in the TCGA cohort. (B) TMB did not differ between the high-risk and low-risk
groups. (C) Violin diagram showing the IPSs for CTLA-4 and PD-1 inhibitors for the two groups. *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Genetics frontiersin.org13

Lai et al. 10.3389/fgene.2022.921837

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.921837


sensitive to these three drugs (Figure 9A). We also found that

the IC50 values of several EGFR inhibitors (gefitinib,

erlotinib, and afatinib) were increased in the high-risk

group compared to the low-risk group (Figure 9B).

Chemokine signaling pathways reportedly play

multifaceted roles in tumor biology, including regulating

tumor stemness, which is associated with chemotherapy

response (Nagarsheth et al., 2017). We further explored

the correlation between the risk score and tumor stemness

in TCGA cohort. We observed that the risk score was

negatively associated with RNAss and DNAss in LUSC

(Figure 9C). These results suggested that the CSRG

signature can be used as a potential predictor of chemical

sensitivity for LUSC patients.

FIGURE 9
Association of risk score with chemotherapy and target therapy sensitivity in LUSC. (A) IC50 values of three chemotherapeutic drugs, cisplatin,
etoposide, and vinorelbine, were calculated based on the pRRophetic algorithm. (B) IC50 values of three EGFR inhibitors, gefitinib, erlotinib, and
afatinib, were calculated based on the pRRophetic algorithm. (C) Correlation between the risk score and cancer stemness scores of RNAss and
DNAss.
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Validation of the expression of core genes
in the chemokine signaling-related gene
signature

To further verify the results of the bioinformatic analysis, the

expression levels of CCL15 and PPBP were validated by qRT‒

PCR in clinical tumor specimens. We observed that the

expression levels of CCL15 and PPBP were downregulated in

tumor tissues compared with the adjacent normal tissues

(Figures 10A,B). These results were consistent with those of

our bioinformatics analysis, which suggested that our

signature was a reliable prognostic model for LUSC patients.

Discussion

Over the past 10 years, significant progress has been made in

the diagnosis and treatment of lung cancer, especially in

immunotherapy and targeted therapy (Jabbour et al., 2022;

Reck et al., 2022). Unfortunately, compared with LUAC,

targeted treatments for LUSC patients remain unsuccessful

(Chang et al., 2021). Moreover, immunotherapeutic

approaches have revolutionized the treatment of advanced

LUSC (Gettinger et al., 2021; Mielgo-Rubio et al., 2021), and

chemotherapy combinations have become the first-line

treatment for advanced LUSC (Karachaliou et al., 2018). To

further improve the prognosis and therapeutic strategies for

LUSC, an in-depth understanding of the mechanisms

underlying immune evasion is critical for accurate

identification of predictive biomarkers for patient stratification

and development of effective therapies in LUSC patients.

Considering that the chemokine signaling pathway plays a

critical role in the initiation of the tumor immune response of

LUSC, the development of a predictive signature based on

chemokine signaling-related genes will be meaningful for

therapeutic decision-making.

Recently, a growing body of evidence has shown that

chemokines also play an important role in various tumor-

related processes (Korbecki et al., 2020). Studies have reported

that several chemokines, such as CCL2, CCL5, CCL4, CXCL19,

and CXCL12, are associated with the progression, metastasis, and

prognosis of lung cancer (Wagner et al., 2009; Itakura et al., 2013;

Cheng et al., 2016b). In our current study, the expression levels of

CCL15 and CXCL7 (PPBP) were decreased in cancer tissues

compared with the adjacent normal tissues. Bodelon et al.

reported that the serum chemokine CCL15 correlated with

poor prognosis in early-stage lung cancer (Bodelon et al.,

2013). Qiang et al. proved that the plasma level of

CXCL7 was increased in LUSC patients compared to controls

(Du et al., 2018). Our results were inconsistent with those of the

aforementioned previous studies, which indicated that serum

chemokines and tissue chemokines may play different roles in

tumors. We hypothesize that the microenvironment plays a

critical role in influencing gene function. Consequently, the

effect of a specific gene may differ between normal and tumor

tissues, and this difference may be especially important for

chemokines. Furthermore, alternative proteins encoded by the

same gene may have widely divergent functions depending on

the microenvironment. However, few studies have examined the

potential association between CXCL7 and CCL15 and the

corresponding prognosis of LUSC patients. The pathogenic

mechanisms of these chemokines in LUSC remain unclear

and require further investigation.

Increasing evidence suggests that the chemokine signaling

pathway can reshape the tumor immune microenvironment via

the chemotactic migration of infiltrating immune cells and

regulation of angiogenesis (Sokol and Luster, 2015; Nagarsheth

et al., 2017). In this study, we compared immune cell infiltration

FIGURE 10
Verification of the expression of CCL15 and PPBP in LUSC tissues. (A) qRT‒PCR analysis of the relative mRNA levels of CCL15 in tumor tissues
compared with adjacent normal tissues. (B) qRT‒PCR analysis of the relative mRNA levels of PPBP in tumor tissues compared with adjacent normal
tissues. *p < 0.05, **p < 0.01, and ***p < 0.001.
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between the high-risk and low-risk groups and observed that the

high-risk group displayed a higher immune infiltration density,

including tumor-infiltrating immune cells and immune-related

genes. Furthermore, the antigen-presenting ability and T-cell

activation were elevated in the high-risk group. These results

proved the immune activity characteristics of the chemokine

signaling pathway in LUSC. However, the abundance of

CD8 T-cells was increased in the low-risk group, whereas Treg

cell abundance was decreased in this group. These findings could

partly explain why patients in the low-risk group had a better

prognosis. The PD-L1, TMB, and MSI statuses are widely used as

immunotherapy biomarkers to identify patients who may respond

to immunotherapy (Chan et al., 2019; Luchini et al., 2019). Our

results showed that the expression levels of TMB and PD-L1 did

not significantly differ between the two groups, whereas the

expression of CTLA4 was increased in the high-risk

group. Interestingly, consistent with the immune cell infiltration

analysis, patients in the high-risk group had a higher IPS for

CTLA-4 inhibitors, indicating increased sensitivity to CTLA-4

inhibitors. These results suggested that our CSRG signature

could reflect the tumor immune infiltration status and could

also predict the response of LUSC patients to anti-CTLA4 therapy.

Despite significant progress in immunotherapy, cisplatin-

based chemotherapy remains the standard treatment option for

LUSC patients (Chaft et al., 2021). In this study, we observed that

low-risk patients presented higher sensitivity to cisplatin,

etoposide, and vinorelbine, which are widely used as first-line

treatments for LUSC patients. Tumor stemness is widely known

to potentially induce resistance to chemotherapy, which could

explain why the low-risk group was more sensitive to

chemotherapy (Liu et al., 2021; Pan et al., 2021). In addition,

we also found that patients in the low-risk group were more

sensitive to first- and second-generation EGFR tyrosine kinase

inhibitors. Moreover, the lack of an effective therapeutic target

correlated with poor survival in LUSC. Clinicians could use the

CSRG signature as a tool to predict sensitivity to chemotherapy

and targeted therapy before treatment and avoid overtreatment

or side effects in nonresponder patients.

However, this study was also subjected to several inevitable

limitations that should be addressed. First, all the cohorts in our

study were downloaded from public databases, and the results

need to be verified by large-scale clinical studies. Second, the

molecular mechanisms of these genes in this signature should be

further validated in future experiments.

Conclusion

Taken together, our study investigated the role of chemokine

signaling-related genes in LUSC patients with stage I–III disease.

We developed and validated a CSRG-related signature for the

prognosis of LUSC patients. A prognostic nomogram combining

clinical stage, T stage, and risk score was established for clinical

OS prediction. More importantly, the signature could serve as a

prediction tool for clinicians to predict sensitivity to immuno-

chemotherapy and target therapy. Our study provides insight

into the multifaceted role of the chemokine signaling pathway in

LUSC and may help clinicians implement optimal individualized

treatment for patients.
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