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The rapid growth in genomic selection data provides unprecedented

opportunities to discover and utilize complex genetic effects for improving

phenotypes, but the methodology is lacking. Epistasis effects are interaction

effects, and haplotype effects may contain local high-order epistasis effects.

Multifactorial methods with SNP, haplotype, and epistasis effects up to the

third-order are developed to investigate the contributions of global low-order

and local high-order epistasis effects to the phenotypic variance and the

accuracy of genomic prediction of quantitative traits. These methods

include genomic best linear unbiased prediction (GBLUP) with associated

reliability for individuals with and without phenotypic observations, including

a computationally efficient GBLUPmethod for large validation populations, and

genomic restricted maximum estimation (GREML) of the variance and

associated heritability using a combination of EM-REML and AI-REML

iterative algorithms. These methods were developed for two models, Model-

I with 10 effect types and Model-II with 13 effect types, including intra- and

inter-chromosome pairwise epistasis effects that replace the pairwise epistasis

effects of Model-I. GREML heritability estimate and GBLUP effect estimate for

each effect of an effect type are derived, except for third-order epistasis effects.

The multifactorial models evaluate each effect type based on the phenotypic

values adjusted for the remaining effect types and can use more effect types

than separate models of SNP, haplotype, and epistasis effects, providing a

methodology capability to evaluate the contributions of complex genetic

effects to the phenotypic variance and prediction accuracy and to discover

and utilize complex genetic effects for improving the phenotypes of

quantitative traits.
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Introduction

Genomic estimation of variance components and associated

heritabilities and genomic prediction for quantitative traits using

single nucleotide polymorphism (SNP) markers and mixed

models have become a widely used approach for genetic

improvement in livestock and crop species. The rapid growth

in genomic selection data provides unprecedented opportunities

to discover and utilize complex genetic mechanisms, but

methodology and computing tools are lacking for

investigating complex genetic mechanisms using the approach

of genomic estimation and prediction. The integration of global

low-order epistasis effects and local high-order epistasis effects

contained in haplotypes for genomic estimation and prediction is

a step forward for the discovery and application of complex

genetic mechanisms to improve the phenotypes of quantitative

traits.

The theory of genetic partition of two-locus genotypic values

defines four types of epistasis values: additive × additive (A×A),

additive × dominance (A×D), dominance × additive (D×A), and

dominance × dominance (D×D) epistasis values (Cockerham,

1954; Kempthorne, 1954). The Cockerham method defines each

epistasis coefficient as the product of the coefficients of the two

interacting effects that each can be an additive or dominance

effect (Cockerham, 1954). This definition of epistasis coefficient

is the basis for defining epistasis model matrices in terms of the

model matrices of additive and dominance effects. Cockerham

also defines a pedigree epistasis relationship as the product

between the pedigree additive and dominance relationships

(Cockerham, 1954), and this definition is the theoretical basis

for Henderson’s approach to express epistasis relationship

matrices as the Hadamard products of the additive and

dominance relationship matrices (Henderson, 1985).

Henderson’s Hadamard products for epistasis relationship

matrices were suggested for genomic prediction using epistasis

effects by replacing the pedigree additive and dominance

relationship matrices with the genomic additive and

dominance relationship matrices calculated from SNP markers

(Su et al., 2012; Muñoz et al., 2014; Vitezica et al., 2017). This

genomic version of Henderson’s Hadamard products avoids the

use of large epistasis model matrices that can be difficult or

impossible to compute but contains intra-locus epistasis effects

that are not present in the epistasis model (Martini et al., 2020).

For this reason, the genomic version of Henderson’s Hadamard

products could be described as approximate genomic epistasis

relationship matrices (AGERM). Formulations have been

developed to obtain the exact genomic epistasis relationship

matrices (EGERM) that remove the intra-locus epistasis

effects in AGERM by modifying Henderson’s Hadamard

products without creating the epistasis model matrices (Jiang

and Reif, 2015; Martini et al., 2016; Jiang and Reif, 2020; Martini

et al., 2020). The difference between AGERM and EGERM tends

to diminish as the number of SNPs increases (Jiang and Reif,

2020). Henderson’s Hadamard products and hence AGERM are

applicable to any order of epistasis effects, and EGERM also has a

general formula for any order of epistasis effects (Jiang and Reif,

2020). However, limited tests showed that fourth-order global

epistasis contributed virtually nothing to the phenotypic variance

but generated considerable computing difficulty (Liang et al.,

2021), raising questions about the value of global epistasis effects

beyond the third-order. Methods of genomic estimation and

prediction of global epistasis effects up to the third-order should

have wide-range applications, given that the number of reported

epistasis effects lags far behind the number of single-point effects

(Carlborg and Haley, 2004; Phillips, 2008; Ritchie and Van Steen,

2018) even though epistasis effects are important genetic effects

(Cordell, 2002; Segre et al., 2005; Mackay, 2014). In contrast to

the computing difficulty and uncertain impact of global high-

order epistasis effects beyond the third-order, local high-order

epistasis effects in haplotypes with potentially many SNPs were

responsible for the increased accuracy of predicting phenotypic

values of certain traits (Liang et al., 2020; Bian et al., 2021). The

integration of haplotype and epistasis effects provides an

approach to investigate the contributions of global low-order

epistasis effects and local high-order epistasis effects to the

phenotypic variance and the accuracy of genomic prediction

under the same model.

An epistasis GWAS in Holstein cattle showed that intra- and

inter-chromosome epistasis effects affected different traits

differently, for example, the daughter pregnancy rate was

mostly affected by inter-chromosome epistasis effects, whereas

milk production traits were mostly affected by intra-

chromosome epistasis effects (Prakapenka et al., 2021), and

genomic heritability estimates of intra- and inter-chromosome

heritabilities for the daughter pregnancy rate using methods in

this article showed that inter-chromosome A×A heritability was

much higher than the intra-chromosome A×A heritability (Liang

et al., 2022). Therefore, dividing pairwise epistasis effects into

intra- and inter-chromosome epistasis effects allows the

investigation of the contributions of intra- and inter-

chromosome pairwise epistasis effects to the phenotypic

variance and prediction accuracy.

The purpose of the multifactorial model in this article is to

integrate haplotype effects and epistasis effects up to the third-

order for genomic estimation of variance components and

associated heritabilities, as well as genomic prediction of

genetic and phenotypic values of quantitative traits, to

provide a general and flexible methodology framework for

genomic prediction and estimation using complex genetic

mechanisms and to provide methodology details of the

EPIHAP computer package that implements the integration

of haplotype and epistasis effects (Liang et al., 2021, 2022).

The methodology in this article will facilitate the discovery

and utilization of global low-order and local high-order

epistasis effects relevant to the phenotypic variances and

prediction accuracies of quantitative traits, and obtain new
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knowledge of complex genetic mechanisms underlying

quantitative traits.

Materials and methods

Quantitative genetics model with single
nucleotide polymorphism, haplotype, and
epistasis effects and values

The mixed model with single-SNP additive and dominance

effects, haplotype additive effects, and pairwise SNP epistasis

effects in this article is based on the quantitative genetics (QG)

model resulting from the genetic partition of single-SNP

genotypic values (Da et al., 2014; Wang and Da, 2014),

haplotype genotypic values (Da, 2015), and pairwise genotypic

values (Cockerham, 1954). An advantage of this QG model is the

readily available quantitative genetics interpretations of SNP

additive and dominance effects, values, and variances;

haplotype additive effects, values, and variances; epistasis

effects, values, and variances; and the corresponding SNP,

haplotype, and epistasis heritability estimates. Two QG

models are developed: Model-I with 10 effect types, including

SNP additive and dominance effects, haplotype additive effects,

and epistasis effects up to the third-order; and Model-II with

13 effect types resulting from replacing the pairwise epistasis

effects of Model-I with intra- and inter-chromosome epistasis

effects. Detailed descriptions of the effects, values, model

matrices, the coding of the model matrices, as well as the

precise definition of each term in the two QG models, are

provided in Supplementary Text S1 and Supplementary Table

S1. With these precise definitions of genetic effects, values, and

model matrices in the QG models, a concise multifactorial QG

model covering both Model-I and Model-II can be established,

that is

g � μI +∑f

i�1 Wiτio � μI +∑f

i�1 ui (1)
ui � Wiτio (2)

where τio � genetic effects of the ith effect type from the original

QG model based on genetic partition, Wi � model matrix of τio,

ui � genetic values of the ith effect type from the original QG

model, and f = number of effect types. For Model-I, subscripts

i � 1, . . . , 10 represent SNP additive (A), SNP dominance (D),

haplotype additive, A×A, A×D, D×D, A×A×A, A×A×D,

A×D×D, and D×D×D effects sequentially. For Model-II,

subscripts i � 1, . . . , 13 represent SNP additive, SNP

dominance, haplotype additive, intra-chromosome A×A, intra-

chromosome A×D, intra-chromosome D×D, inter-chromosome

A×A, inter-chromosome A×D, inter-chromosome D×D,

A×A×A, A×A×D, A×D×D, and D×D×D effects sequentially.

The variance–covariance matrix of the genetic values of Eqs 1

and 2 is

G � var(∑f

i�1 Wiτio) � ∑f

i�1 Var(ui) � ∑f

i�1 Gi � ∑f

i�1 σ
2
ioWiW

′
i (3)

Var(τio) � σ2ioI (4)
Gi � Var(ui) � WiVar(τio)W′

i � σ2ioWiW
′
i (5)

where σ2io � Var(τijo) genetic variance of the ith effect type

under the original QG model is common to all individuals (all

j values). It is of note thatWiWi′ is not a genomic relationship

matrix but is the primary information for calculating each

genomic relationship matrix. The structure of the Gmatrix of

Eqn. 3 assumes independence between the genetic values of

different effect types. However, the GBLUP values of different

effect types using the G matrix of Eqn. 3 could be correlated.

Under the Hardy–Weinberg equilibrium (HWE) and LE

assumptions, additive, dominance, and epistasis effects are

independent of each other (Cockerham, 1954; Kempthorne,

1954). For genome-wide SNPs, the LE assumption generally

does not hold for closely linked loci, and nonzero

Hardy–Weinberg disequilibrium (HWD) may exist

numerically. These and other unknown factors in real data

may result in the existence of correlations between different

effect types. Haplotype additive values are correlated with

SNP additive effects because a haplotype additive value is the

sum of all SNP additive values and an epistasis value within

the haplotype block plus a potential haplotype loss (Da et al.,

2016). In two recent haplotype studies for genomic

prediction, the integration of SNP and haplotype effects

increased the prediction accuracy for four of the seven

traits in the human study (Liang et al., 2020) and for three

of the eight traits in the swine study (Bian et al., 2021),

showing that SNP and haplotype additive values

compensated each other for prediction accuracy and that

the correlation between SNP and haplotype additive values

were incomplete for those traits. The correlation between

haplotype and epistasis values can be complex. The

correlation should be nonexistent if the A×A values are

inter-chromosome A×A values or intra-chromosome A×A

values involving distal SNPs not covered by the haplotypes,

but the correlation could be strong if the A×A values are

intra-chromosome A×A values involving proximal SNPs

covered by the haplotypes.

The reparametrized and equivalent
quantitative genetics model for genomic
estimation and prediction

Genomic relationship matrices are used for genomic

estimation and prediction, and the use of genomic

relationship matrices results in a reparametrized and

equivalent model of the original QG model for genetic values,

to be referred to as the RE-QG model, where “reparametrized”

refers to the reparameterization of the genetic effects, model
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matrix, and genetic variance of each effect type; and “equivalent”

refers to the requirement of the same first and second moments

for the original QG model (Eqs 1–5) and the RE-QGmodel. This

RE-QG model of genetic values can be expressed as

g � μI +∑f

i�1 Tiτi � μI +∑f

i�1 ui (6)
G � var(∑f

i�1ui) � ∑f

i�1 Gi � ∑f

i�1σ
2
i TiT

′
i � ∑f

i�1σ
2
i Si

� ∑f

i�1σ
2
ioWiW

′
i (7)

where

τi �
��
ki

√
τio � genetic ef fects of the ith ef fect type (8)

Ti � Wi/ ��
ki

√ � modelmatrix of τi (9)
σ2i � Var(τij) � tr (Gi)/n � ∑n

j�1G
jj
i /n � kiσ2io (10)

= variance of the genetic effects of the ith effect type

common to all individuals

= average variance of all individuals for the genetic

values of the ith effect type

ui � Tiτi � Wiτio � genetic values of the ith ef fect type

(11)
Gi � Var(ui) � σ2i TiT

′
i � σ2i Si � σ2ioWiW

′
i (12)

= variance–covariance matrix of the genetic values of

the ith effect type

Si � TiT
′
i � WiW

′
i/ki

� genomic relationshipmatrix of the ith ef fect type

(13)
ki � tr(WiW

′
i)/n

� average of the diagonal elements of WiW
′
i . (14)

Equations 8–10 are the reparametrization of the genetic

effects, model matrices, and genetic variances of the original

QG model, whereas Eqs 11 and 12 show the genetic values and

the variance–covariance matrix of the genetic values are the same

under the RE-QG and QG models. In Eq.10, Gjj
i = the genetic

variance of the jth individual for the ith effect type = the jth

diagonal element of the Gi matrix defined by Eq. 12. The ki
formula of Eq. 14 as the average of the diagonal elements of

WiW′
i was originally proposed for genomic additive relationships

(Hayes and Goddard, 2010) and was used for genomic

dominance relationships (Da et al., 2014; Wang and Da,

2014), haplotype additive genomic relationships (Da, 2015),

and pairwise epistasis genomic relationships (Vitezica et al.,

2017). The need for this RE-QG model is due to the use of

the genomic relationship matrices (e.g., Eq. 13) because the QG

model does not contain genomic relationship matrices (Eq. 3).

Detailed notations of the QGmodel of Eqs 1–5 in reference to the

RE-QG model described by Eqs 6–14 are summarized in

Supplementary Table S1.

The formula of the genomic relationship matrix (Si of Eq. 13)

is based on the model matrix of each effect type and can be

difficult or impossible to compute if epistasis model matrices are

used. This computing difficulty of epistasis model matrices is

removed by calculating Si based on the model matrices of SNP

additive and dominance effects without creating the epistasis

model matrices using either AGERM or EGERM. AGERM refers

to the genomic version of Henderson’s Hadamard products

between pedigree additive and dominance relationship

matrices (Henderson, 1985), with the pedigree additive and

dominance relationship matrices replaced by the genomic

additive and dominance relationship matrices (Su et al., 2012;

Muñoz et al., 2014; Vitezica et al., 2017). AGERM contains intra-

locus epistasis that should not exist (Martini et al., 2020), and

EGERM removes intra-locus epistasis from AGERM based on

products between genomic additive and dominance relationship

matrices (Jiang and Reif, 2020; Martini et al., 2020).

The QG and RE-QG models have the same prediction

accuracy due to the equivalence between these two models.

The genetic values (ui, Eqs 2, 11) and the variance–covariance

matrix of the genetic values (Gi, Equations 5 and 12) under the

QG and RE-QG models are identical, although ui and Gi have

different expressions under the QG and RE-QG models.

Consequently, the QG model without using genomic

relationship matrices and the RE-QG model using genomic

relationship matrices have identical accuracy of genomic

prediction. The choice of the ki formula for defining the

genomic relationship matrix does not affect the accuracy of

genomic prediction but affects the interpretation and

application of the genetic variance and genomic relationships

for each effect type. Since the interpretation of each genetic

variance is a focus, whereas the interpretation of the genomic

relationships is not a focus in this study, the interpretation of the

genetic variance and associated heritability is the consideration in

choosing the ki formula of Eq.14.

The RE-QG model using genomic relationships (Equations

6–14) has two major advantages over the QG model without

using genomic relationship matrices (Equations 1–5), although

the two models have the same prediction accuracy. First, the use

of genomic relationships, originally proposed for genomic

additive relationships (VanRaden, 2008), provides a genomic

version of the traditional theory and methods of best linear

unbiased prediction (BLUP) that uses pedigree relationships, and

this genomic version can utilize a wealth of BLUP-based theory,

methods, and computing strategies. Second, the genetic variance

of the genetic effects of each effect type under the RE-QG model

can be used for estimating genomic heritability, whereas the

genetic variance of the genetic effects under the QG model

cannot be used for estimating genomic heritability. With the

ki value defined by Eq. 14, the variance of the genetic effects of the

ith effect type, σ2i � kiσ2io (Eq.10), has the unique interpretation as

the average variance of the genotypic values of all individuals and

is a common variance to all individuals. Moreover, σ2i � kiσ2io is
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unaffected by the number of levels for each effect type, unless the

number of levels such as the number of SNPs is too small to

provide sufficient coverage of the genome (Da et al., 2014; Tan

et al., 2017; Liang et al., 2020). In contrast, the QGmodel does not

have a method to estimate genetic variance components for

calculating genomic heritabilities because σ2io is an inverse

function of the number of effect levels. As the number of

effect levels such as the number of SNPs increases or

decreases, the value of each element in WiW′
i changes in the

same direction and the σ2io estimate changes in the opposite

direction, that is, as the number of effect levels increases or

decreases, σ2io decreases or increases. Consequently, the σ2io
estimate does not have a unique interpretation and cannot be

used for estimating genomic heritability (Da et al., 2014).

Moreover, the variance of the genetic value of an individual

(σ2io(WiW′
i)jj) cannot be used for calculating genomic heritability

because of the individual specificity of the (WiW′
i)jj values, as

shown as follows.

The exact relationship between the genetic variance for the ith

effect type of the jth individual under the RE-QG model and the

QG model can be described based on the Gi matrix defined by

Eq. 12:

Gjj
i � Var(uij) � σ2i (Si)jj � σ2io(WiW

′
i)jj (15)

where Gjj
i � the jth diagonal element of the Gi matrix defined by

Eq.12 = the genetic variance of the jth individual for the

genotypic value of the ith effect type, and uij = the jth

element of ui defined by Eq.11. Equation 15 shows that

different individuals do not have a common variance of the

genetic values (Gjj
i ) unless all diagonal elements of Si or WiW′

i

are identical, which could not happen with genome-wide SNP

data in the absence of identical twins because genome-wide

SNPs have a high degree of individual specificity. Consequently,

Gjj
i is not a common variance to all individuals and cannot be

used for calculating the genomic heritability of the ith effect

type. In contrast, σ2i of Eq.10 under the RE-QG model as the

average variance of the genotypic values of all individuals is

common to all individuals and can be used for calculating the

heritability of each effect type. For the example of Model-I, the

exact genetic interpretation of Gjj
i is G

jj
i � σ2aj � the variance of

the genomic additive (breeding) value of the jth individual for

i � 1, Gjj
i � σ2dj � the variance of the genomic dominance value

of the jth individual for i � 2, Gjj
i � σ2ahj � the variance of the

genomic haplotype additive value of the jth individual for i � 3,

Gjj
i � σ2aaj � the variance of the A×A value of the jth individual

for i � 4, Gjj
i � σ2adj � the variance of the A×D value of the jth

individual for i � 5, Gjj
i � σ2ddj � the variance of the D×D value

of the jth individual for i � 6, Gjj
i � σ2aaaj � the variance of the

A×A×A value of the jth individual for i � 7, Gjj
i � σ2aadj � the

variance of the A×A×D value of the jth individual for i � 8, Gjj
i �

σ2addj � the variance of the A×D×D value of the jth individual for

i � 9, and Gjj
i � σ2dddj � the variance of the D×D×D value of the

jth individual for i � 10. These genetic interpretations, along

with those for intra- and inter-chromosome pairwise epistasis

effects of Model-II under the QG and RE-QG models, are

summarized in Supplementary Table S1.

Results and discussion

The multifactorial model of phenotypic
values

Based on the RE-QG model of Eqs 6–14, the multifactorial

model for phenotypic values is

y � Xb + Zg + e � Xb + Z∑f

i�1Tiτi + e

� Xb + Z∑f

i�1ui + e
(16)

V � ZGZ′ + σ2eIN � Z(∑f

i�1Gi)Z′ + σ2eIN

� Z(∑f

i�1σ
2
i TiT

′
i)Z′ + σ2eIN � Z(∑f

i�1σ
2
i Si)Z′ + σ2eIN

(17)

where y = N×1 column vector of phenotypic observations, Z =

N × n incidence matrix allocating phenotypic observations to

each individual = identity matrix for one observation per

individual (N = n), N = number of observations, n = number

of individuals, b � c × l column vector of fixed effects such as

heard-year-season in dairy cattle, c = number of fixed effects,

X � N × c model matrix, b,e = N × 1 column vector of

random residuals, σ2e = residual variance, and G � ∑f
i�1Gi

(Eq. 7). The phenotypic values (y) are assumed to follow a

normal distribution with mean Xb and variance–covariance

matrix of V. The methods described below for genomic

estimation and prediction are based on the conditional

expectation (CE) method, which is more efficient

computationally than the methods based on mixed-model

equations (MME) when the number of genetic effects is

greater than the number of individuals (Da et al., 2014;

Da, 2015).

For Model-I with 10 effect types, the genomic epistasis

relationship matrices can be calculated using either EGERM

or AGERM. However, EGERM or AGERM did not consider

intra- and inter-chromosome genomic epistasis relationship

matrices that are required by Model-II with 13 effect types.

This research derives intra- and inter-chromosome genomic

epistasis relationship matrices for both EGERM and

AGERM.

Intra- and inter-chromosome genomic
epistasis relationship matrices

The main derivation of the intra- and inter-chromosome

genomic epistasis relationship matrices is the partition of the

numerator of a genomic epistasis relationship matrix into
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intra- and inter-chromosome numerators. The first step is to

derive the intra-chromosome numerator, and the second step

is to derive the inter-chromosome numerator as the difference

between the whole-genome numerator and the intra-

chromosome numerator. The last step is to divide the

intra-chromosome numerator by the average of the

diagonal elements of the intra-chromosome numerator and

to divide the inter-chromosome numerator by the average of

the diagonal elements of the inter-chromosome numerator.

Using this procedure, intra- and inter-chromosome epistasis

relationship matrices were derived for both EGERM and

AGERM (Supplementary Text S1).

Genomic best linear unbiased prediction
and reliability

Based on the multifactorial genetic model of Eqs 16 and 17,

the GBLUP of the genetic values of the ith effect type (ûi) and the

best linear unbiased estimator (BLUE) or generalized least

squares (GLS) estimator of fixed effect (b̂) are

ûi � σ2i SiZ′V−1(y − Xb̂) � σ2i SiZ′Py, i � 1, ..., f (18)
b̂ � (X′V−1X)−1X′V−1y (19)

where P � V−1 − V−1X(X′V−1X)−X′V−1. The GBLUP of total

genetic values of the n individuals is the summation of all types of

genetic values:

ĝ � ∑f

i�1ûi. (20)

Reliability of GBLUP is the squared correlation between

the GBLUP of a type of genetic value and the unobservable

true genetic value being predicted by the GBLUP. The

expected accuracy of predicting the genetic values by the

GBLUP is the square root of reliability or the correlation

between the GBLUP of a type of genetic effect and the

unobservable true genetic effects being predicted by the

GBLUP. In the absence of validation studies for observed

prediction accuracy, reliability or the expected prediction

accuracy is the measure of prediction accuracy of the

GBLUP. The reliability of the GBLUP of the total genetic

value (Eq. 2) of the jth individual is

R2
gj � [G(Z′PZ)G]jj/Gjj (21)

where G � ∑f
i�1Gi � ∑f

i�1σ2i TiT′
i � ∑f

i�1σ2i Si (Eq. 7),

Gjj � ∑f
i�1G

jj
i � ∑f

i�1σ2i S
jj
i , and subscript or superscript jj

denotes the jth diagonal element. The reliability formula for

any or a combination of genetic values can be readily derived

from Eq. 21, for example, the reliability of û3 (GBLUP of

haplotype additive values) is obtained from Eq. 21 by deleting

all terms except G3(Z′PZ)G3 in the numerator and σ23S
jj
3 in the

denominator, with changes in the V and Pmatrices accordingly.

Calculation of genomic best linear
unbiased prediction and reliability for
individuals with and without phenotypic
observations separately

Two strategies are available for calculating GBLUP and

the reliability of Eqs 20 and 21. Strategy-1 is a one-step

strategy that includes all individuals with and without

phenotypic observations in the same system of equations

so that GBLUP and reliability are calculated simultaneously

for all individuals. This strategy essentially augments the

mixed model for individuals with phenotypic observations

with a set of null equations consisting of “0”s but uses each

genomic relationship matrix for all individuals, and these null

equations and the use of the relationship matrix for all

individuals do not affect the GBLUP, reliability, and

heritability of individuals with phenotypic observations.

The advantage of this one-step strategy is the simplicity of

data preparation. For example, for a k-fold cross validation

study, the phenotypic input file only needs to have k columns

of the trait observations, with one column for each validation

where the phenotypic observations for the validation

individuals are set as “missing,” and the X and Z model

matrices for the “missing” observations are set to zero. With

this strategy, the genotypic data need to be processed only

once. As the number of traits increases for validation studies,

this one-step strategy becomes more appealing due to the

savings in data preparation work. This strategy has been

implemented in our computing tools of GVCBLUP (Wang

et al., 2014), GVCHAP (Prakapenka et al., 2020), and

EPIHAP (Liang et al., 2021, 2022). However, when the

number of validation individuals or individuals without

phenotypic values is large, each genomic relationship

matrix (Si matrix) is large, and the one-step strategy

becomes more difficult as the number of individuals

increases.

For large numbers of individuals without phenotypic

observations, calculating GBLUP for individuals with and

without phenotypic values separately is more efficient

computationally than calculating GBLUP for all individuals in

the same system of equations by applying Henderson’s BLUP for

animals without phenotypic observations (Henderson, 1977) to

GBLUP. Let n1 = number of individuals with phenotypic

observations, n0 = number of individuals without phenotypic

observations, n � n1 + n0, and let the Si matrix be partitioned as

Si � [ Si11 Si10
Si01 Si00

], i � 1, . . . , f (22)

where Si11 � n1 × n1 genomic relationship matrix of the genetic

values of the ith effect type for individuals with phenotypic

observations, Si01 � n0 × n1 � genomic relationship matrix of

the genetic values of the ith effect type between individuals
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without phenotypic observations and individuals with

phenotypic observations, Si10 � S′i01 � n1 × n0 � genomic

relationship matrix between individuals with phenotypic

observations and individuals without phenotypic observations,

and Si00 = n0 × n0 genomic relationship matrix of the genetic

values of the ith effect type for individuals without phenotypic

observations. In Eqs 16 and 17, y � y1, the Z matrix needs to be

changed to Z � [Z1 0 ], the ui vector partitioned as

ui � [ui1′ , ui0′ ]′, and the g vector partitioned as g � [g1′ , g0′]′,
where Z1 � N × n1 incidence matrix allocating phenotypic

observations to individuals with phenotypic observations, 0 �
N × n0 incidence matrix with elements “0” connecting

phenotypic observations to individuals without phenotypic

observations. With these changes and Eq. 22, the V matrix of

Eq. (17) can be re-written as

V � Z1(∑f

i�1Gi)Z1
′ + σ2eIN � Z1(∑f

i�1σ
2
i Si11)Z1

′ + σ2eIN (23)

and the GBLUP and reliability for individuals with and without

phenotypic observations can be calculated as

ûi1 � σ2i Si11Z1
′V−1(y1 − Xb̂) � σ2i Si11Z1

′Py1, i � 1, ..., f (24)
ĝ1� ∑f

i�1ûi1 (25)
R2
g1j � [G11(Z1

′PZ1
′)G11]jj/Gjj

11 (26)
ûi0 � σ2i Si01Z1

′V−1(y1 − Xb̂) � σ2i Si01Z1
′Py1, i � 1, ..., f (27)

� σ2i Si01S−1i11Si11Z1
′Py1 � Gi01G

−1
i11Gi11Z1

′Py1 � Gi01G
−1
i11ûi1

(28)
ĝ0 � ∑f

i�1ûi0 (29)
R2
g0j � [G01(Z1

′PZ1
′)G10]jj/Gjj

00 (30)

where ûi1 � n1 × 1 column vector of the GBLUP of the genetic

values of the ith effect type for individuals with phenotypic

observations, ĝ1 � n1 × 1 column vector of the GBLUP of the

total genetic values for individuals with phenotypic observations,

R2
g1j � reliability for the jthindividuals with phenotypic

observations, ûi0 � n0 × 1 column vector of the GBLUP of the

genetic values of the ith effect type for individuals without

phenotypic observations, ĝ0 � n0 × 1 column vector of the

GBLUP of the total genetic values for individuals without

phenotypic observations, R2
g0j � reliability for the jth

individuals without phenotypic observations,

G11 � ∑f
i�1Gi11 � ∑f

i�1σ2i Si11, G01 � ∑f
i�1Gi01 � ∑f

i�1σ2i Si01,
G10 � ∑f

i�1Gi10 � ∑f
i�1σ2i Si10, Gjj

11 � ∑f
i�1S

jj
i11σ2i , and Gjj

00 �∑f
i�1S

jj
i00σ2i .

Equations 27 and 28 yield identical results if S−1i11 exists.

However, when the number of individuals is greater than the

number of effect levels, such as the number of SNPs, S−1i11 in Eq.

28 does not exist, and Eq. 27 still can calculate the GBLUP.

The usefulness of Eq. 28 is that it shows the GBLUP of

individuals without phenotypic observations is the

regression of the genetic values of individuals without

phenotypic observations on the genetic values of

individuals with phenotypic observations. The advantage

of Eq. 27 is that it does not calculate S−1i11 and hence is

unaffected by the singularity of Si11. Therefore, Eq. 27 is

recommended for calculating GBLUP for individuals

without phenotypic observation when the number of such

individuals is large. The GBLUP calculations of Eqs 24, 27,

and 28 do not involve the genomic relationship matrix

among individuals without phenotypic observations Si00,

which is much larger than Si11 when n1 is much larger

than n0. The reliability calculation for individuals without

phenotypic observations (Eq. 30) only uses the diagonal

elements of Si00 and not the entire Si00.

Advantage of the integrated model over
separate models

The multifactorial model of Eqs 16 and 17 integrating

SNP, haplotype, and epistasis effects has the advantage of

using more effect types and assessing each effect type based on

the phenotypic values adjusted for all remaining effect types

over separate models for SNP, haplotype, and epistasis effects

that do not have a mechanism to adjust for effect types not in

the model, and each uses a smaller number of genetic effects in

the model.

This advantage of the multifactorial model assessing each

effect type based on the phenotypic values adjusted for all

remaining effect types can be shown using the MME version

of the GBLUP for the ith effect type:

ûi � (Z′
iZi + G−1

i )−1[Z′
iy − (Z′

iXb̂ +∑f

j�1
j ≠ i

Z′
iZjûj)]

� (Z′
iZi + G−1

i )−1Z′
i(y − Xb̂ −∑f

j�1
j ≠ i

Zjûj) � (Z′
iZi + G−1

i )−1Z′
iybu

*

(31)
b̂ � (X′X)−(X′y − X′∑f

i�1Ziûi)
� (X′X)−X′(y −∑f

i�1Ziûi) � (X′X)−X′y*u (32)

where ybu* � y − Xb̂ −∑f
j�1
j ≠ i

Zjûj = phenotypic observations

adjusted for the fixed effects and all random genetic values

except those of ûi, y*u � y − ∑f
i�1Ziûi = phenotypic

observations adjusted for all random genetic values, and

(X′X)− is a generalized inverse of X′X. Eq. 31 shows the

MME version of ûi uses the phenotypic values adjusted for the

GBLUP of all other effect types in the model. Since the MME

version of ûi (Eq. 31) and b̂ (Eq. 32) are identical to the CE

version of ûi (Eq. 18) and b̂ (Eq. 19), the CE version of ûi (Eq.

18) uses the phenotypic values adjusted for the GBLUP of all

other effect types in the model even though the CE version

does not do such adjustments explicitly.
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Genomic restricted maximum estimation
(GREML) of variances and heritabilities

The estimation of variance components uses GREML and

a combination of EM-REML and AI-REML algorithms of

iterative solutions. EM-REML is slow but converges, whereas

AI-REML is fast but fails for zero heritability estimates. In

our GVCBLUP, GVCHAP, and EPIHAP computing

packages that implement these two algorithms (Wang

et al., 2014; Prakapenka et al., 2020; Liang et al., 2021),

EM-REML is used automatically when AI-REML fails. The

EM-REML iterative algorithm for the multifactorial model

of Eqs 16 and 17 is

σ2(j+1)i � σ2(j)i yP(j)ZSiZ′P(j)y/tr(P(j)ZSiZ′), i � 1, . . . , f (33)

σ2(j+1)e � σ2(j)e yP(k)P(j)y/tr(P(j)) (34)

where j = iteration number. The AI-REML iterative algorithm is

an extension of the early formulations (Johnson and Thompson,

1995; Lee and van der Werf, 2006) to the multifactorial model of

Eqs 16 and 17:

θ(j+1) � θ(j) + (AI(j))−1Δ(j) (35)

where θ � (σ21, σ22, ..., σ2f , σ2f+1)′ = (f + 1) × 1 column vector of

variance–covariance components, σ2f+1 � σ2e = residual variance,

Δ � (Δ1,Δ2, ...,Δf ,Δf+1)′ = (f + 1) × 1 column vector of the

partial derivatives of the log residual likelihood function with

respect to each variance component, and j = iteration number. A

typical term in Δ (Δi) and a typical term in AI (AIik) are

Δi � −1
2
tr(P zV

zσ2i
) + 1

2
y′P zV

zσ2i
Py

� −1
2
tr(PZSiZ′) + 1

2
y′PZSiZ′Py, i � 1, ..., f + 1 (36)

AIik � 1
2
y′P zV

zσ2i
P
zV

zσ2k
Py

� 1
2
y′PZ′SiZ′PZSkZ′Py, i, k � 1, . . . , f + 1 (37)

where Sf+1 � IN. For the full Model-I or Model-II, some effect types

inevitably may have zero variances. In those cases, AI-REML

(Equations 35–37) fails and EM-REML (Equations 33 and 34) still

converges, although a slow convergence rate can be expected for the

full Model-I orModel-II. Once the effect types with zero variances are

removed from the model, AI-REML converges, and a fast

convergence rate can be expected. The estimate of the genomic

heritability for each type of genetic effects (h2i ) and the total

heritability of all types of genetic effects (H2) are

h2i � σ2i /σ2y i � 1, . . . , f (38)
H2 � ∑f

i�1h
2
i (39)

where σ2y � ∑f
i�1σ2i +σ2e � phenotypic variance.

The heritability estimates of Eq. 38 can be used for model

selection by removing effect types with heritability estimates

below a user-determined threshold value from the prediction

model. Since different traits may have different genetic

architectures, we hypothesize that some traits may involve

only a small number of the effect types, and some traits are

more complex and involve more effect types; global epistasis may

be more important than local high-order epistasis effects of

haplotypes for some traits, whereas the reverse may be true

for other traits, and some traits may be affected by both global

high-order and local high-order epistasis effects. The heritability

estimates from Eq. 37 provide an approach to evaluate these

hypotheses and identify effect types relevant to the phenotypic

variance, whereas the total heritability of Eq. 38 provides an

estimate of the total genetic contribution to the phenotypic

variance. In addition to the use of heritability estimates,

prediction accuracy based on GBLUP can be used for model

selection by requiring a threshold accuracy level for the effect

type to be included in the prediction model, for example, we

identified the A + A×A model to have the same accuracy of

predicting the phenotypic values of daughter pregnancy rate as

the full Model-I in U.S. Holstein cows (Liang et al., 2022).

Estimation of pairwise epistasis effect and
heritability

The heritability of an SNP, haplotype block, or pairwise

epistasis effect is the contribution of the genetic effect to the

phenotypic variance and is also the contribution to the

heritability of the effect type, and is estimated through the

GBLUP of the corresponding genetic effects. These heritability

estimates can be used to identify genome locations with large

contributions to the phenotypic variance. The estimation of

pairwise epistasis effects and heritability is the most

demanding computation because the pairwise epistasis model

matrices must be creased and are no longer avoidable. Estimating

the effects and heritabilities for third-order epistasis effects is

computationally unfeasible and is not considered. GBLUPs of

SNP, haplotype, and pairwise epistasis effects of Model-I

(Supplementary Table S1) are calculated as

τ̂i � σ2i T′
iZ′Py � T′

iS
−1
i ûi (40)

where τ̂i is the m × 1 column vector of SNP additive effects for

i � 1, or SNP dominance effects for i � 2; or b × 1 column vector

of haplotype additive effects for i � 3; or (m2 ) × 1 column vector

of A×A epistasis effects for i � 4, or 2(m2 ) × 1 column vector of

A×D epistasis effects for i � 5, or (m2 ) × 1 column vector of D×D

epistasis effects for i � 6. For i � 5; the order of A×D and D×A

effects is determined by the order of the model matrices of

those effects, that is, τ̂5 � (τ̂αδ ′, τ̂δα ′)′ if T5 � (Tαδ,Tδα), or τ̂5 �
(τ̂δα ′, τ̂αδ ′)′ if T5 � (Tδα,Tαδ). The heritability of the jth effect
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TABLE 1 Genomic heritability estimates of additive, dominance, and epistasis effects up to the third-order for five traits in a swine population.

Trait

T1 T2 T3 T4 T5

Effect Exact genomic epistasis relationship matrices (EGERM)

A 0.023 0.217 0.131 0.336 0.366

D 0.000 0.013 0.000 0.000 0.052

A×A 0.046 0.186 0.278 0.017 0.054

A×D 0.000 0.000 0.091 0.000 0.000

D×D 0.000 0.000 0.091 0.000 0.000

A×A×A 0.000 0.000 0.000 0.000 0.000

A×A×D 0.000 0.000 0.079 0.000 0.000

A×D×D 0.000 0.000 0.102 0.000 0.000

D×D×D 0.000 0.000 0.117 0.000 0.000

Total heritability 0.069 0.416 0.889 0.354 0.471

Effect Approximate genomic epistasis relationship matrices (AGERM)

A 0.022 0.215 0.139 0.329 0.360

D 0.000 0.013 0.000 0.000 0.051

A×A 0.043 0.176 0.280 0.016 0.050

A×D 0.000 0.000 0.091 0.000 0.000

D×D 0.000 0.000 0.090 0.000 0.000

A×A×A 0.000 0.000 0.000 0.000 0.000

A×A×D 0.000 0.000 0.075 0.000 0.000

A×D×D 0.000 0.000 0.095 0.000 0.000

D×D×D 0.000 0.000 0.109 0.000 0.000

Total heritability 0.065 0.404 0.879 0.346 0.461

TABLE 2 Observed prediction accuracy of epistasis models relative to the additive model for five traits in a swine population.

Trait

T1 T2 T3 T4 T5

Prediction accuracy of SNP model

A 0.066 0.495 0.326 0.468 0.493

A + D 0.056 0.495 0.326 0.468 0.496

Epistasis model A + AA A + D + AA A + AA + AD + DD+

AAD + ADD + DDD A + AA A + D + AA

EGERM

Prediction accuracy 0.063 0.498 0.336 0.468 0.497

Accuracy increase (%) −4.545 0.606 3.067 0.000 0.202

AGERM

Prediction accuracy 0.063 0.498 0.336 0.468 0.497

Accuracy increase (%) −4.545 0.606 3.067 0.000 0.202

“Prediction accuracy” is the observed prediction accuracy calculated as the correlation between the GBLUP of genotypic values and the phenotypic values in each validation population and

then averaged over all 10 validation populations. “Accuracy increase” is the percentage increase of the observed prediction accuracy of the epistasis model over the observed prediction

accuracy of the best SNPmodel, which was the additive model (A) for T1–T4 and the A + Dmodel for T5. A = additive effects, D = dominance effects, AA = A×A effects, AD = A×D effects,

DD = D×D effects, AAA = A×A×A effects, AAD = A×A×D effects, ADD = A×D×D dominance effects, and DDD = D×D×D dominance effects.
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of the ith effect type (ĥ
2

ij) is estimated as a faction of the

genomic heritability of the ith effect type (ĥ
2

i ):

ĥ
2

ij � (τ̂2ij/∑m

i�1τ̂
2
ij)ĥ2i � (τ̂2ij/τ̂′i τ̂i)ĥ2i � σ̂2ij/σ̂2y (41)

where τ̂ij � the jth effect of τ̂i, σ̂2i � estimated variance of the ith effect

type, σ̂2ij � estimated variance of the jth effect of the ith effect type,

and ĥ
2

i = genomic heritability of the ith effect type defined by

Equation (52). For proving Equation 57, σ̂2i and σ̂2ij can be

formulated based on themethod ofmixed-model equations (MME):

σ̂2i � τ̂i
′τ̂i/[mi−, tr(Cii)λi] � ∑mi

j�1τ
2
ij/[mi − tr(Cii)λi]

� ∑mi

j�1σ̂
2
ij (42)

σ̂2ij � τ̂
2

ij
/[mi − tr(Cii)λi] (43)

whereCii is the submatrix in the inverse or generalized inverse of the

coefficient matrix of the MME corresponding to the ith effect type,

mi = number of effects of the ith effect type, and λi � σ̂2e /σ̂2i . Dividing
Eq. 43 by σ̂2y and multiplying by σ̂2i /σ̂2i yield Eq. 41:

ĥ
2

ij � (σ̂2ij/σ̂2i )(σ̂2i /σ̂2y) � (σ̂2ij/σ̂2i )(σ̂2i /σ̂2y) � (τ̂2ij/∑m

i�1τ̂
2
ij)ĥ2i

� (τ̂2ij/τ̂′i τ̂i)ĥ2i � (σ̂2ij/σ̂2y).
It is readily seen that the sum of all heritability estimates of the

ith effect type is the genomic heritability of the ith effect type:

∑mi
i�1ĥ

2

ij � ĥ
2

i . It is of note that Eqs 42 and 43 using MME are

only for proving Eq. 41. The MME method is computationally

prohibitive for estimating genetic effects and their variances under

the multifactorial model, although the MME method yields results

identical to the CE method, which is computationally feasible for

genomic estimation and prediction under the multifactorial model.

Comparison between exact and
approximate genomic epistasis
relationship matrices

We evaluated the differences between AGERM and

EGERM in genomic heritability estimates and prediction

accuracies using a publicly available swine genomics data

set that had 3,534 animals from a single PIC nucleus pig line

with five anonymous traits and 52,842 genotyped and imputed

autosome SNPs after filtering by requiring minor allele frequency

(MAF) > 0.001 and proportion of missing SNP genotypes < 0.100

(Cleveland et al., 2012). The EGERM followed the method used by

Jiang and Reif (2020), and the AGERM methods are described in

Supplementary Text S1. The heritability results showed that

EGERM had slightly higher heritability estimates than AGERM

except for the A×A heritability of T3, where AGERM had a slightly

higher estimate than EGERM (0.280 vs. 0.278, Table 1). From

Table 1, effect type with nonzero heritability estimates was included

in the prediction model for evaluating the observed prediction

accuracy as the correlation between the GBLUP of genotypic

values and the phenotypic values in each validation population

and then averaged over all 10 validation populations. The results

showed that AGERM and EGERM had the same prediction

accuracy for this swine sample (Table 2). A disadvantage of

EGERM is the computing time for the construction of EGERM,

about 9.51 times as much time for pairwise relationship matrices,

8.29 as much time for third-order and 9.44 times as much time for

fourth-order as required for AGERM (Table 3). However,

computing time is not the deciding factor for choosing between

the exact and approximate methods because the multi-node

approach that calculates each genomic relationship matrix in

pieces and adds those pieces together can reduce the computing

time to an acceptable level whenmultiple threads/cores are available,

and the two-step strategy can be used so that each genomic

relationship is calculated only once for different traits and

validation populations (Prakapenka et al., 2020). Prediction

accuracy is the ultimate deciding factor in choosing between

different methods. We reported results of comparing AGERM

and EGERM using 60,671 SNPs and 22,022 first-lactation

Holstein cows with phenotypic observations of

daughter pregnancy rates, showing that AGERM and EGERM

had the same heritability estimates and prediction accuracy, but

EGERM required 21 times asmuch computing time as that required

by AGERM, which required 1.32 times as much time for the

genomic additive relationship matrix (Liang et al., 2022). The

combined results of the swine and Holstein samples indicated

that EGERM and AGERM had similar results and that the

computing difficulty of EGERM over AGERM increased rapidly

as the sample size increased. Given the computing difficulty of

TABLE 3 Computing time (in seconds) for the construction of exact and approximate genomic epistasis relationship matrices for a swine population
with 3,534 pigs and 52,843 SNPs using 20 threads of the Mangi supercomputer of the Minnesota Supercomputer Institute at the University of
Minnesota.

Genomic epistasis relationship
matrices

Pairwise Third-order Fourth-order

EGERM 666 796 1,256

AGERM 70 96 133

EGERM/AGERM 9.51 8.29 9.44

Frontiers in Genetics frontiersin.org10

Da et al. 10.3389/fgene.2022.922369

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.922369


EGERM and the negligible differences between EGERM

and AGERM in prediction accuracy, AGERM should be favored

for its mathematical simplicity and computing efficiency, at least for

samples with 50,000 SNPs or more.

Numerical demonstration

The methods of genomic epistasis relationship matrices

based on the additive and dominance model matrices,

GREML, GBLUP and reliability, and estimation of effect

heritability are demonstrated using an R program (DEMO.R)

and a small artificial sample for the convenience of reading the

numerical results (Supplementary Text S2 and R program).

Because of the artificial nature and the extremely small sample

size, this numerical demonstration does not have any genetic and

methodology implications and is for showing calculations of the

methods only. This R program is an extension of the R demo

program of GVCHAP that integrates SNP and haplotype effects

and has a computing pipeline for producing the input haplotype

data from the SNP data (Prakapenka et al., 2020).

Conclusion

The multifactorial methods with SNP, haplotype, and epistasis

effects up to the third-order provide an approach to investigate the

contributions of global low-order and local high-order epistasis

effects to the phenotypic variance and the accuracy of genomic

prediction. Genomic heritability of each effect type from GREML

and prediction accuracy from validation studies using GBLUP can

be used jointly to identify effect types contributing to the phenotypic

variance and the accuracy of genomic prediction, and the GBLUP

for the multifactorial model with selected effect type can be used for

genomic evaluation. With many capabilities, including the use of

intra- and inter-chromosome separately, the multifactorial methods

offer a significant methodology capability to investigate and utilize

complex genetic mechanisms for genomic prediction and for

understanding the complex genome–phenome relationships.
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