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Introduction

Plants have the capacity to enter a state of alert that enables them to respond rapidly

and robustly after exposure to stress (Aranega-Bou et al., 2014). This phenomenon is

known as priming and can be described as an induced state whereby plants are pre-

exposed to an inducing agent (elicitor), thus improving their perception and/or

amplification of defense response-inducing signals (Aranega-Bou et al., 2014;

Tugizimana et al., 2018). Hexanoic acid (Hx), a monocarboxylic acid, is a natural

priming agent with proven efficiency in a wide range of host plants and pathogens

(Llorens et al., 2016), including coffee pathogens. Coffee (Coffea spp.) is one of the most

important agricultural commodities in the world. Brazil is the largest producer and

exporter of Coffea arabica L. (Brazilian Coffee Exporters Council, 2021). The genus Coffea

comprises 124 species (Davis et al., 2011). The most planted one is C. arabica, the only

allotetraploid species in the genus. As many other plants, Coffea spp. are sensitive to a

diverse range of biotic and abiotic stress. It is known that priming leads to changes at the

transcriptional, physiological, metabolic and epigenetic levels (Baccelli et al., 2020). A

transcriptional reprogramming may occur after priming stimulation, affecting a huge

number of genes (Cervantes-Gámez et al., 2016; Baccelli et al., 2020). Within this context,

our aim was to investigate the effect per se of Hx application. We hypothesize if Hx

application could modulate genes related to defense response, in C. arabica, being a

potential eliciting agent to this crop. To test this, Hx was applied in the roots of two

Brazilian C. arabica cultivars: Catuaí Vermelho and Obatã. Cultivars were chosen based

on their distinct breeding histories and contrasting resistance to rust, the major disease in

Arabica coffee worldwide (Talhinhas et al., 2017). Catuaí Vermelho is susceptible to rust,

and is one of the most planted cultivars in Brazil, while Obatã is described as a moderately

resistant cultivar (Del Grossi et al., 2013). In the present work, transcriptomic analysis of

roots were performed, revealing different molecular responses. Based on FPKM ratio and
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statistical analyses, 1,545 differentially expressed genes (DEGs)

were found. Functional annotation of DEGs through Blast2GO

showed that primary, organic substance and cellular metabolic

processes were mainly affected by priming, in both cultivars.

Here, we present an RNA-seq dataset containing raw files and an

initial exploration of differentially expressed genes in two C.

arabica cultivars. Besides, these data could contribute to the

identification of key genes differentially expressed in response

to Hx.

Material and methods

Plant material

Plant material and experimental setup used in this work was

the same described in a previous publication from our group

(Budzinski et al., 2021).

Two commercial cultivars of C. arabica (five-month-old

plants) were used, Catuaí Vermelho IAC 144 and Obatã IAC

1669-20. Both cultivars are inbred lines of C. arabica (Maluf et al.,

2005); however, Catuaí is derived from a cross between Catuaí

Amarelo 476 ×Mundo Novo 374-19, while Obatã is derived from

interspecific crosses between (Villa Sarchi × Hybrid of Timor) ×

Catuaí Vermelho; clarifying that Villa Sarchi is a C. arabica

cultivar and Hybrid of Timor is a natural C. arabica x C.

canephora hybrid (Lashermes et al., 2000; Maluf et al., 2005).

These cultivars were chosen due to their contrasting response to

rust, with Obatã being the resistant one (Maluf et al., 2005;

Krohling et al., 2018). Plants were selected based on size

uniformity and were transferred to pots containing 3 L of

aerated nutrient solution (ANS), adapted from Clark, 1975)

by de Carvalho et al. (2013). The experiment was carried out

as described in Silva et al. (2020), under controlled temperature

(23 ± 2°C) and light/dark cycle (12h/12h, photosynthetically

active photon flux density of ~400 μmol m−2.s−1). The

following treatments were applied: (a) ANS (control); (b) ANS

+ hexanoic acid (Merck, final concentration 0.55 mM) for 48 h.

Three plants per pot were grown into six plastic pots in which

three pots received each treatment. The experiments were

repeated 3 times to obtain biological replicates. The potted

plants were grouped in “pools” (made of 9–18 plants), which

were considered a biological replicate. Three biological replicates

were used. We collected plant secondary roots within the 3rd

hour of the light period and stored at -80°C for further analyses.

Total RNA extraction and quality control

All steps from total RNA extraction until gene expression

analysis were the same as described in Budzinski et al. (2021).

Total RNA from root pools were isolated using the RNeasy

Plant kit (Qiagen, Hilden, North Rhine-Westphalia, Germany).

Total RNA samples were purified using the RNeasy Minielute

Cleanup kit (Qiagen, Hilden, North Rhine-Westphalia,

Germany). The purity of RNA was determined using a

NanoDrop ND-100 spectrophotometer (Thermo Scientific,

San Jose, CA, United States). RNA concentrations were

measured by a Qubit fluorometer (Thermo Fisher Scientific,

Wilmington, DE, United States).

Library preparation, and RNA-seq

Poly(A) RNA sequencing library was prepared following

Illumina’s TruSeq-stranded-mRNA sample preparation

protocol (Illumina Technologies, SanDiego, CA). Paired-end

sequencing (2 X 150 bp) was performed on Illumina’s

NovaSeq 6000 sequencing system at LC Sciences (Houston,

TX, United States). Data was deposited into the European

Nucleotide Archive (ENA), submission PRJEB52366.

RNAseq analysis and gene expression
analysis

All steps mentioned here are the same as described in

Budzinski et al. (2021). Adaptor contamination, low quality

bases and undetermined bases were removed by using

Cutadapt (Martin, 2011) and in house PERL scripts. Sequence

quality was verified using FastQC (Andrews, 2010). HISAT2

(Kim et al., 2015) was used to map reads to the Coffea arabica

genome (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/713/

225/GCF_003713225.1_Cara_1.0/).

StringTie (Pertea et al., 2015) was used to assemble the

mapped reads and to detect the expression level for mRNAs

by calculating FPKM. The differentially expressed genes

(DEGs) were selected with log2 (fold change) >1 or log2

(fold change) <-1 and with statistical significance (p

value <0.05) by R package edgeR (Robinson et al., 2010).

A second analysis was done on the differentially expressed

mRNAs and only the ones with FPKM (ratio) ≥ 2 or FPKM

(ratio) ≤ -2; coefficient of variation ≤30% and average

FPKM ≥5 were selected for further analyses. Genes found

specifically in one condition (control or plants exposed to Hx)

were also described as DEGs.

Sequence annotation and gene ontology (GO) enrichment

analysis of DEGs were performed using Blast2GO (Conesa et al.,

2005), at the BioBam (Götz et al., 2008) platform. Sequences were

annotated by blasting nucleotide sequences against the NCBI NR

database (BLASTX, evalue ≤1.10−5). The hypergeometric

distribution was used to test whether the GO function set was

significantly enriched (p < 0.05). Pathway mapping was done using

MapMan software (Thimm et al., 2004) with the Arabidopsis

thaliana mapping file (http://mapman.gabipd.org/). TAIR IDs

were retrieved from NCBI (https://www.ncbi.nlm.nih.gov).
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TABLE 1 Summary of sequencing data quality

Sample Raw data Valid data Valid data
gb (G)

Valid ratio
(reads)

Q30% GC content%

CC_root1 53,455,648 38,232,894 5.73 71.52 99.03 46

CC_root2 52,404,378 38,309,030 5.75 73.1 99.02 45.5

CC_root3 51,672,842 36,455,566 5.47 70.55 98.99 45

OC_root1 42,011,570 37,025,650 5.55 88.13 97.6 45

OC_root2 42,381,098 37,588,930 5.64 88.69 97.36 45

OC_root3 41,533,684 36,290,882 5.44 87.38 97.36 45.5

CHX_root1 44,422,470 32,902,840 4.94 74.07 97.41 51

CHX_root2 51,270,376 50,002,294 7.5 97.53 97.84 51

CHX_root3 46,166,432 40,680,326 6.1 88.12 98.59 52

OHX_root1 33,581,294 32,733,990 4.91 97.48 98.12 51

OHX_root2 41,411,214 35,239,206 5.29 85.1 98.57 51

OHX_root3 32,963,354 31,991,596 4.8 97.05 98.18 52

FIGURE 1
Gene ontology (GO) functional enrichment analysis of DEGs from C. arabica Catuaí and Obatã cultivars.
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Overall data annotation, differentially
expressed genes and gene ontology
analysis

Quality control and mapping information are available in

Table 1. About 67.12 Gb total clean bases were obtained by RNA-

seq after quality check, with an average of 5.6 Gb for each sample.

The lowest value of Q30 (percentage of bases with sequencing

error rate lower than 1+) was 97.36%. The GC content ranged

from 45 to 52%.

As a preliminary analysis to identify genes and functional

categories potentially modulated by Hx application, the first step

of our work was to identify the DEGs based on FPKM and

statistical analysis. Based on FPKM ratio and statistical analyses,

1,545 DEGs were found in total, 557 and 988 in Catuaí and

Obatã, respectively (Supplementary Table S1). From these,

157 DEGs were found in both cultivars, while 400 and

831 DEGs were specifically found in Catuaí and Obatã

cultivars, respectively (Supplementary Tables S2, S3). We

hypothesize that the discrepancy between the number of

specific DGEs, found in each cultivar, is related to differences

in rust resistance, reinforcing that molecular mechanisms of

defense are differentially recruited depending on cultivar

tolerance. Most of the DEGs have a role in plant defense,

indicating the modulation of this mechanism in roots by

priming. Blast2GO analysis showed that primary, organic

substance and cellular metabolic processes were mainly

affected by priming, followed by response to stress, small

molecule metabolic process and regulation of cellular process

(Figure 1, Supplementary Table S5). Pathway analysis of DEGs

using MapMan showed differences in the activity of cellular

metabolisms due to Hx (Supplementary Table S3). The dataset

presented here indicates that hexanoic acid modulates plant

defense mechanisms in C. arabica. Moreover, we are

providing useful data for further investigations on C. arabica

root responses to Hx.
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