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The early symptoms of lung adenocarcinoma patients are inapparent, and the clinical
diagnosis of lung adenocarcinoma is primarily through X-ray examination and pathological
section examination, whereas the discovery of biomarkers points out another direction for
the diagnosis of lung adenocarcinoma with the development of bioinformatics technology.
However, it is not accurate and trustworthy to diagnose lung adenocarcinoma due to
omics data with high-dimension and low-sample size (HDLSS) features or biomarkers
produced by utilizing only single omics data. To address the above problems, the feature
selection methods of biological analysis are used to reduce the dimension of gene
expression data (GSE19188) and DNA methylation data (GSE139032, GSE49996). In
addition, the Cartesian product method is used to expand the sample set and integrate
gene expression data and DNAmethylation data. The classification is built by using a deep
neural network and is evaluated on K-fold cross validation. Moreover, gene ontology
analysis and literature retrieving are used to analyze the biological relevance of selected
genes, TCGA database is used for survival analysis of these potential genes through
Kaplan-Meier estimates to discover the detailed molecular mechanism of lung
adenocarcinoma. Survival analysis shows that COL5A2 and SERPINB5 are significant
for identifying lung adenocarcinoma and are considered biomarkers of lung
adenocarcinoma.
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INTRODUCTION

Lung adenocarcinoma (LUAD) is one of the malignant tumors threatening human health and life,
accounting for 40–50% of the total number of lung cancers (Ma et al., 2020). The occurrence of
LUAD is inextricably linked with dietary habits, physical conditions, and environment. Studies have
shown that the 5-years survival rate of patients with LUAD does not exceed 17% (Barrett et al., 2015;
Chieh et al., 2016; Yang et al., 2016). At present, the most commonly used treatment methods for
LUAD patients are radiotherapy and chemotherapy (Sun et al., 2011). The early symptoms of
patients with LUAD are inconspicuous so they cannot be treated in time and may bring great pain to
patients.
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In recent years, the rapid development of modern
bioinformatics technology can easily collect high-throughput
omics data of various cancers, providing a new direction for
cancer diagnosis. It is of great significance to understand the
changes in cancer at the molecular level and find out biomarkers
through omics data (Zhou et al., 2010; Chen et al., 2014).With the
development of machine learning, artificial intelligence
technology and assisted diagnosis can be applied to the
research field of oncotherapy.

At the moment, many researchers have studied the
pathogenesis of various cancers (Zhang et al., 2021) based on
omics data. Using single omics data to find cancer biomarkers is
not authoritative enough while multi-omics data can more
comprehensively analyze the characteristics of the entire
genomics (Park et al., 2020). However, the combination of
different omics data requires mutual relationships to establish
reliable and effective contact. Therefore, little research related to
LUAD has been proposed by using multi-omics data.
Furthermore, in machine learning, sparse samples with high
dimensions usually cause larger errors. It is very important to
select a subset of genes that distinguish phenotypes from high-
throughput omics data. Studies have shown that effective feature
selection can identify a subset of genes with high interpretation
ability for the diagnosis of cancer (Rathore et al., 2014).

In this paper, we develop a model based on a deep neural
network (DNN) by which one can predict LUAD using gene
expression and DNA methylation data. At present, researchers
have used multi-omics data sets to predict Alzheimer’s disease
and confirmed the feasibility of this method (Park et al., 2020).
However, the most challenging task is how to deal with high-
dimensional and low-sample-size (HDLSS) data when the LUAD
predictionmodel is constructed based on two different omics data
sets. Because the biological characteristics of different omics data
are different, common feature selection algorithms can not be
used to reduce features. Therefore, we propose a biometric feature
selection method to reduce the features and retain their biological
significance. At the same time, we also compare other feature
selection methods and machine learning algorithms. The
experimental results show that the model proposed in this
paper could obtain the best prediction performance. In
addition, we also explore the relationship between potential
genes and LUAD through gene ontology analysis, literature
review, survival analysis, and find that COL5A2 、 SERPINB5
are the biomarkers of LUAD.

RELATED WORK

With the development of sequencing technology, the public
genome database is becoming more and more complete.
Through the analysis of data, genes play an important
auxiliary role in the mechanism and prediction of cancer. The
dimension of cancer gene data is much higher than the number of
samples. The main work to deal with this problem is to reduce the
dimension.

Feature transformation is a method to extract the features in
the original space by somemapping transformation, such as PCA,

PLS, etc. Using the new combined data to learn the classification
model has achieved good classification results, but the biological
significance is not clear. Feature selection is to evaluate the
original genes to a certain extent and take out the features
with good judgment ability to form a feature subset. The
selected features have good explanatory power. Therefore,
feature selection is a very effective method in high-
dimensional data such as gene expression.

Liyingxin (Li et al., 2005) put forward the evaluation standard
of “classified information index”. By removing irrelevant and
redundant features to further narrow the selection range, five
features are selected by SVM-RFE method, and high accurate
recognition is achieved on the experimental dataset. Shipp (Shipp
et al., 2002) used the signal-to-noise ratio method to select 30
features for classification of DLBCL data set (58 diffuse large
B-cell lymphomas, 19 follicular lymphomas, 7,129 genes), and the
correct recognition rate reached 91%. However, most of the above
methods are based on some classification and evaluation criteria
to judge the characteristics and select the genes with high scores.
Because genes have similar expressions, they have similar
prediction abilities in classification evaluation. If two of them
are selected at the same time, the classification accuracy will not
be improved, and it will also bring some redundancy problems.
Park et al. (2020) proposed a biomarker prediction model to
predict Alzheimer’s disease, which integrates multi-omics data.
Experimental results have showed that their method has higher
accuracy than using single data.

MATERIALS AND METHODS

In this section, our work is to introduce the specific process of
predicting LUAD and identifying biomarkers. As shown in
Figure 1, the process mainly includes three parts: data
preprocessing, feature selection, data combination, and
prediction.

Data Collection and Preprocessing
In this study, we download the microarray dataset of LUAD from
the Comprehensive Gene Expression Omnibus of the National
Center for Biotechnology Information (Edgar et al., 2002).
Comparing microarray dataset with Next Generation
Sequencing (NGS) dataset, we find that the sample size of
LUAD dataset with NGS sequencing method in GEO database
is very small, and the experiment will be very difficult due to high
data dimensions and few samples (Mosele et al., 2020). Therefore,
we analyze LUAD using the microarray dataset used by most
researchers (Yan et al., 2012; Zhou et al., 2016). We collect two
types of omics data, i.e., gene expression data and DNA
methylation data. The Gene expression data can be obtained
according to the following steps: 1) Enter the GEO database
homepage https://www.ncbi.nlm.nih.gov/geo/, enter the keyword
“lung adenocarcinoma” and click search. 2) Select “Expression
profiling by array” in the “Study type” option, “Homo sapiens” in
the “Top Organisms”. DNA methylation data is collected by the
following standards: 1) Complete step one of gene expression
data. 2) Select “Methylation profiling by array” in the “Study
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type” option, and “Homo sapiens” in the “Top Organisms”. 3) To
expand the sample size, two DNA methylation data sets with
sufficient sample sizes and the same platform are selected.
According to the above criteria, gene expression data
GSE19188 (Hou et al., 2010), DNA methylation data
GSE139032 (Enfield et al., 2019), and GSE49996 (LuLu et al.,
2015; Lenka et al., 2017) are obtained. In GSE4999, there are 41
normal samples and 39 tumor samples after the outliers were
removed. Table 1 shows the detailed information of the
benchmark dataset.

The data processing can be divided into three steps in this
work. Firstly, the probes in the CEL file of gene expression data
and DNAmethylation data are transformed into genes according
to the platform annotation file. Whenmultiple probes correspond
to the same gene, the average value is taken and the gene with a
null value is deleted. Secondly, The R package “Affy” has been
used to correct and standardize the data (Gautier et al., 2004).
Different from the gene expression data, DNA methylation data
need to convert Beta value to M value after standardization,
because M value is more suitable for statistical testing to
determine the methylation ratio of each CpG sites (Du et al.,
2010). The specific conversion is shown in Formula 1, where
Beta is determined by calculating the intensity ratio between
methylated and unmethylated alleles. It is a continuous variable

between 0 and 1. When Beta≤ 0.2 is complete unmethylation,
Beta≥ 0.6 is complete methylation, and 0.2≤Beta≤ 0.6 is partial
methylation. Finally, the pre-processed data is divided into the
training set and test set by the five-fold cross validation.

M � log2( Beta

1 − Beta
) (1)

Feature Selection Method
The gene expression data and DNAmethylation data are the basis
for constructing the prediction model of LUAD. These data sets
have HDLSS characteristics. If the datasets with HDLSS
characteristics are directly used to build the prediction model,
there will be severe overfitting and high variance of gradient,
which is the main challenge of machine learning. In order to solve
this problem, we use the biometric selection method to reduce
features and reduce the risk of overfitting. Identifying
differentially expressed gene (DEG) is a typical method to
process gene expression data, and the selected genes have clear
biological interpretation (Porcu et al., 2020). Selecting only
disease-related characteristic genes from all features can not
only avoid the disaster of dimensionality but also effectively
improve the classification effect. More importantly,
differentially expressed genes can be used to study the
mechanism of disease or as clinical biomarkers for early
diagnosis. In DNA methylation data, DNA methylation can
control the expression of genes near CpG sites, we mainly
reduce the characteristics and retain the biological significance
of the data set by identifying differential methylation position
(DMP). FC (fold change) and t-test are used to calculate the
differences in transcription levels between healthy and diseased
individuals, so as to identify DEG or DMP which may be disease-
related factors.

FIGURE 1 | Workflow of lung adenocarcinoma prediction and biomarker recognition.

TABLE 1 | Benchmark dataset.

Dataset Gene expression DNA methylation

GEO ID GSE19188 GSE139032 GSE49996
Normal samples 65 77 41
LUAD samples 91 77 39
Features 23,489 24,025 24,025
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The principle of the FC algorithm is to calculate themultiple of
the average expression level of genes in two types of samples. If
the value reaches the preset threshold, it will be determined that
the genes are differentially genes. The principle of t-test is to
calculate a t-statistic for each gene to measure the difference in
gene expression between the two types of samples, and then
calculate the significance p-value according to the t-distribution
to measure the significance of the difference. In addition, to
prevent some genes from being misjudged as differential genes,
we also calculate the false discovery rate (FDR) through the
significance analysis of the microarrays algorithm to control
the error rate of multiple tests and reduce the false-positive
rate of results.

So far, many researchers have applied the method of
identifying DEG and DMP to process gene expression data
and DNA methylation data and identify cancer biomarkers
more accurately (Li et al., 2019; Motalebzadeh and Eskandari,
2021). Faced with the complex gene relationship, Yang et al.
argued that MI can effectively filter out pathogenic genes and
provide a new way for drug repositioning (Yang and Hao, 2019).
Dolezal et al. proposed a t-SNE model for dimensionality
reduction, which can reliably distinguish all normal tissues
and tumor tissues based on the characteristic RPT expression
pattern (Dolezal et al., 2018). MI and t-SNE methods can reduce
feature discovery of pathogenic genes, but cannot reflect
biological processes, so they are not suitable for dimensionality
reduction of multi-omics datasets.

The identification of DEG and DMP is achieved through the
“limma” package of the R software (Ritchie et al., 2015;
Maksimovic et al., 2016). For gene expression data to identify
DEGs, the threshold value shall satisfy |logFC|>2, p-value<0.05,
and FDR<0.01. In DNAmethylation data, the same way is used to
identify DMPs, and the threshold should meet | logFC | > 2.5,
p-value < 0.05 and FDR <0.01. Genes are differentially expressed,
hypermethylation and hypomethylation in different samples
occurred. This gene may have a potential relationship with
LUAD. As a result, it is reasonable to believe that the overlap
between DEG and DMP has a potential relationship with LUAD,
so we take the intersection of DEG and DMP (Peng et al., 2017).

Data Combination and Operation Engine
In this paper, we take the integrated data as the input layer of the
prediction model, so data combination is a key link. As shown in
Figure 1, after feature selection, all possible gene expression data,
and DNA methylation data of LUAD samples and normal
samples are combined into a new data set by using the
Cartesian product. Specifically, the new dataset was generated
by combining data of gene expression and DNA methylation for
normal and lung adenocarcinoma samples, respectively. New
lung adenocarcinoma samples were obtained by combining
lung adenocarcinoma samples with gene expression data and
lung adenocarcinoma samples with DNA methylation data. For
example, there are 65 normal samples and 91 LUAD samples for
gene expression data, 118 normal samples and 116 LUAD
samples for DNA methylation data. In the same way, the new
data set has 7670(� 65 × 118) normal samples and
10556(� 91 × 116) LUAD samples. After the Cartesian

product, the new data set not only expands the number of
samples but also reduces the features, which overcome the
HDLSS nature of omics data.

Compared with typical machine learning algorithms such as
random forest (RF), K-Nearest Neighbor (KNN), Naïve Bayesian
(NB), DNN model together with conventional machine learning
algorithms have also been used to predict various biomedical
phenotypes (Singh et al., 2021). At present, more researchers
further improve the DNN model through a feature selection
algorithm tomake it shows very excellent prediction performance
(Chen et al., 2019). As shown in the third part, i.e. Data
combination & Prediction, of Figure 1, the structure of DNN
is composed of input layer, hidden layer and output layer, and the
layers are fully connected. The classification quality of DNN
model is affected by its parameters, so it is very important to select
appropriate super parameters. At present, there are many ways to
optimize the hyperparameters of the network. We chose the
Bayesian optimization algorithm, which will build a
probability model by calculating the past evaluation results of
the objective function to find the value that minimizes the
objective function (Wu et al., 2019). Compared with grid
search or random search, Bayesian optimization has higher
parameter adjustment efficiency. This research uses 5–10
hidden layers, 250–350 nodes per layer, a learning rate of
0.01–0.2, and a dropout rate of 0.5–0.9 to find the optimal
hyperparameter combination. In the DNN model, the loss
function is used to predict the deviation between the output
values and the actual values. It measures the performance of the
algorithm in a single training sample. Cross entropy is a common
cost function, which measured the average of all sample errors on
the entire training set. The DNNmodel is implemented using the
API of Google TensorFlow. The accuracy, F1 Score, and the area
under the receiver operating characteristics (AUROC) are used to
evaluate the classification results of the DNN model. The
definitions of these evaluation indicators are as follows:

Accuracy � TP + TN

TP + FP + TN + FN
(2)

F1 Score � 2TP
2TP + FP + FN

(3)

RESULTS

Data Quality Check and Differential Gene
Identification
To verify the rationality of the data, we do principal component
analysis (PCA) and Pearson correlation analysis, which
respectively show the distribution of the data and the
correlation between the samples to judge whether the data is
feasible. In the PCA diagram, a point represents a sample. The
farther the distance between two points, the greater the difference
between the two samples. Figures 2A–C are the PCA diagrams of
GSE19188, GSE139032, and GSE49996 datasets respectively. In
the figure, normal samples and tumor samples gather in different
regions and are far away. These results show that there are
obvious differences between LUAD samples and normal
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samples, and the data distribution is good. Pearson correlation
coefficient is used to express the correlation of samples. The value
is between - 1–1. When the value is closer to 0, the correlation is
lower, and the value is closer to - 1 or 1, the correlation is higher.
As shown in Figures 2D–F are Pearson correlation analysis
diagrams of samples in the data of gene expression data and
DNA methylation data. The correlation coefficients between
samples in the diagram are unequal, but this does not mean
that there is a causal relationship between samples, and there are
few samples with correlation coefficients of 1 or -1, which
indicates that there is no repeatability between samples. From
the results of PCA and Pearson correlation analysis, it can be seen
that the selection of data is meaningful.

A volcano figure can help us intuitively identify genes with
large changes and statistical significance. As shown in Figures
3A,B, the volcanic plot is drawn according to gene expression
data and DNA methylation data respectively. Each point in the
map represents a detected gene, the red point represents the up-
regulated gene, the green point represents the down-regulated
gene, and the gray point represents the genes with no significant
difference. In Figure 3A, the outside of the two black vertical lines
are genes with |logFC| > 2, and the upper side of the black
horizontal line are genes with a p-value less than 0.05. From the
vertical axis, the farther away from the horizontal axis, the smaller
the p-value, and the more significant the gene difference. As can
be seen from the figure, the gene expression data includes 88 up-
regulated genes and 118 down-regulated genes, which were the
focus of our attention. In Figure 3B, the outside of the two black
vertical lines is CpGs with |logFC| > 2.5. It can be seen from the
figure that there are 209 CpGs differentially expressed in DNA
methylation data, including 10 up-regulated CpGs and
199 down-regulated CpGs. These CpGs are reliable and more

suitable for later identification of whether they are markers
because DNA methylation can control the expression of genes
near CpGs, thus affecting embryonic development and
tumorigenesis.

Experimental Design
In this paper, we propose the following three hypotheses: The
accuracy of predicting LUAD using multi-omics datasets is
higher than that using a single omics dataset; In the prediction
of LUAD, the feature selection method using biometrics (DEG +
DMP) is better than the ordinary dimensionality reduction
algorithm; The performance of using DNN classifier to predict
LUAD is better than that of the traditional classifier.

We divide the experiment into three sections to test the
aforementioned hypothesis. I) Compare the accuracy of the
prediction model by inputting different types of datasets. The
DNN prediction model’s input dataset is separated into three
types: gene expression, DNAmethylation, and integrated dataset.
II): Using MI, t-SNE, and biometric feature selection method to
reduce the dimension of data. It is worth noting that the data
should be reduced to the same dimension while utilizing different
dimensionality reduction methods. III): When predicting LUAD,
the performance of the traditional classifier (RF、KNN、NB) is
compared with the DNN model. We used the dimension
reduction algorithm provided by Scikit-learn package and the
traditional machine learning algorithm.

The input layer of the DNN classifier in this article is the
integrated gene expression data and DNA methylation data.
Because it is dealing with binary classification problems, the
output layer consisted of a node. It can be seen from the
result of Bayesian parameter determination that the hidden
layer is composed of eight layers, ReLU is introduced as the

FIGURE 2 | PCA for all samples in the (A)GSE19188 (B)GSE139032 and (C)GSE49996 dataset indicated two different groups. Pearson correlationmatrix among
all samples in (D) GSE19188 (E) GSE139032 and (F) GSE49996.
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activation function, and each layer is composed of 300 nodes and
a bias node. When training the model, adds one dropout to each
layer, and the dropout rate is 0.85. DNN is compared with three
classifiers of random forest (RF) (Cutler et al., 2001), K-Nearest
Neighbor (KNN) (Hassanat et al., 2014), and naïve Bayesian (NB)
(John, 1995). The specific experimental parameters are shown in
Table 2.

Comparison Between Single Omics Data
Set and Multi-Omics Data Set
A total of nine combinations are offered to evaluate the effects
of different feature extraction methods on prediction results:
MI-gene expression, t-SNE-gene expression, DEG-gene
expression; MI-DNA methylation, t-SNE-DNA methylation,
DMP-DNA methylation; MI-integrate multi-omics data,

t-SNE-integrate multi-omics data, DEG + DMP- integrate
multi-omics data.

To avoid overfitting on the training set, when using single
omics data set as the input dataset, we do five-fold cross validation
of gene expression data and DNAmethylation data. For each fold,
the number of DEGs and DMPs identified from the training set is
different. Therefore, when performingMI and t-SNE on each fold
gene expression and DNA methylation dataset, we reduce the
dimension to the same number of features as those obtained by
DEG or DMP methods (as shown in Table 3). Because the
training set of each folding input is different, the number of
genes identified each time will be different. On average, the DEGs
and DMPs decreased to 53 and 120.4 respectively.

When amulti-omics dataset is used as an input dataset, the same as
the process of using single omics data, MI and t-SNE algorithms are
used to extract the same dimensionality as the feature algorithm
proposed in this research, and the average value of the simplified
dimensionality is 173.4. Traditional classifiers such as RF, NB, and
KNN are selected for prediction. Table 4 shows the performance
comparison of different prediction algorithms. It can be seen that the
results of the feature selection method used in this paper are better
than using MI or t-SNE in different data sets. For example, when the
gene expression data after DEG feature selection is used as the input
data set of the KNN prediction model, the accuracy of predicting
LUAD is 0.9435, which is 0.411 higher than that of t-SNE and 0.0142
higher than that of MI. When the DNA methylation data after DMP

FIGURE 3 | (A) Volcano map of DEGs in gene expression data. (B) Volcano map of DMPs in DNA methylation data.

TABLE 2 | Parameter setting.

Methods Parameter setting

DNN learning rate = 0.02, dropout = 0.85
RF criterion = ’entropy’, n_estimators = 100, n_jobs = -1, max_depth = 6
KNN n_neighbors = 10
NB default parameters

TABLE 3 | Dimensions of different feature extraction algorithms in each fold data.

5-Fold CV Num of genes
(MI t-SNE DEG)

Num of CpGs
(MI t-SNE DMP)

Num of genes and
CpGs (MI t-SNE
DEG + DMP

K = =1 47 109 156
K = =2 52 120 172
K = =3 55 121 176
K = =4 57 131 188
K = =5 54 121 175
Avg 53 120.4 173.4
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feature selection is used as the input data set of the NB prediction
model, the accuracy of predicting LUAD is 0.9435, which is much
higher than that using MI and t-SNE feature selection methods. In
particular, the results of using multi-omics data to predict LUAD are
higher than using gene expression data or DNA methylation data.

The Impact of Different Classifiers on
Performance
To achieve the optimal performance of the DNN model, the
Bayesian optimization algorithm is used to determine the optimal
hyperparameters of the DNN model. Before model training,
Bayesian optimization is performed on the integrated data set

to obtain a parameter combination with the highest training
accuracy. Finally, the average value of each parameter in the five-
fold is applied to our model, and the optimal hyperparameters are
shown in Table 2.

Table 5 shows the accuracies and the values of the AUROC
of the DNN model with different feature selection methods.
Five-fold cross validation is also used to obtain the average
values of accuracy and AUROC. It can be seen from the table
that the average accuracy of the DNNmodel is 0.9903 when the
feature selection method for identifying differential genes is
used. To compare the performance of different classifiers more
intuitively. Figures 4–6 have shown the average accuracy,
average F1 Score, and AUROC of five-fold cross validation

TABLE 4 | The Accuracy and AUROC results of different prediction algorithms.

Gene expression Methylation expression Gene expression and DNA methylation

MI t-SNE DEG MI t-SNE DMP MI t-SNE DEG + DMP

RF ACC 0.8387 0.5448 0.9435 0.5044 0.5766 0.9465 0.5000 0.5726 0.9659
AUROC 0.8653 0.5489 0.9407 0.5053 0.5889 0.9377 0.5000 0.6209 0.9694

KNN ACC 0.9293 0.5325 0.9435 0.5641 0.5171 0.9571 0.6132 0.4974 0.9778
AUROC 0.9290 0.4516 0.9469 0.5667 0.5559 0.9459 0.6065 0.5171 0.9780

NB ACC 0.6714 0.5065 0.9354 0.5044 0.6196 0.9659 0.5000 0.6099 0.9750
AUROC 0.6264 0.4542 0.9317 0.5000 0.6192 0.9579 0.5000 0.5964 0.9652

TABLE 5 | 5-fold performance comparison of different feature selection algorithms in the deep learning-based prediction model.

Mi t-SNE The proposed model

Cost Accuracy AUROC Cost Accuracy AUROC Cost Accuracy AUROC

1 1.9900 0.6156 0.4309 0.6508 0.7143 0.5000 0.0004 0.9999 0.9998
2 3.3951 0.6230 0.5000 0.6574 0.6230 0.5000 0.0171 0.9959 0.9967
3 6.7629 0.4298 0.5000 0.8742 0.4551 0.5077 0.1822 0.9849 0.9808
4 1.4862 0.5076 0.5028 0.9059 0.4702 0.4677 0.1213 0.9764 0.9772
5 3.2534 0.6534 0.5000 0.5965 0.6754 0.6193 0.0454 0.9945 0.9958
Average 3.3775 0.5659 0.4867 0.7370 0.5876 0.5189 0.0732 0.9903 0.9916

The average Cost, Accuracy and AUROC of DEG+DMP feature selection algorithm are used in the prediction model based on deep learning.

FIGURE 4 | Average accuracy of all comparisons and the proposed model.
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respectively. In the figure, X-axis presents the dimension
reduction or feature selection approaches for single-omics
and multi-omics datasets. Each color bar represents

different classifiers, especially the red bars that indicate the
performance of the proposed DNN model. Figure 4
demonstrates that the method based on deep

FIGURE 5 | Average AUROC of all comparisons and the proposed mode.

FIGURE 6 | Average F1-score of all comparisons and the proposed mode.

TABLE 6 | Selected genes from gene expression and DNA methylation and comparison with LUAD database.

Each Ffold K = 1 K = 2 K = 3 K = 4 K = 5

Selected
genes

ABCA3 AIM2 CA3
CDKN2A COL1A1
COL5A2 CYYR1 FOXF1
GREM1 HLF MAGEA6
PCSK1 PROK2 SCNN1B
SERPINB5 SLC7A11
SOSTDC1 SOX17 SOX7
STXBP6 TWIST1

ABCA3 AGTR1 AIM2
AZGP1 CA3 COL1A1
CLIC3 COL5A2 CYYR1
FOXF1 FOXF2 GDF10
GREM1 HLF MAGEA6
MAL MUC1 PROK2
S100A2 SERPINB5 SLIT3
SOSTDC1 SPARCL1
STXBP6 TRHDE TWIST1

ABCA3 C1orf116 COL1A1
COL5A2 COX7A1 CYYR1
FOXF1 GREM1
HIST1H2BH HK3 HLF
MAGEA6 MAL MUC1
S100A2 SCNN1B
SERPINB5 SLC7A11
SOSTDC1 SOX7 SPARCL1
STXBP6 TWIST1 ZBED2

ABCA3 AGTR1
C1orf116CDKN2A COL1A1
COL5A2COX7A1 CYYR1
EFEMP1 FOXF1 GDF10 GREM1
HLF IL6 MAL MMP13 PKP1
SERPINB5 SLC7A11
SOSTDC1m SOX7 SPARCL1
STXBP6 TWIST1

ABCA3 AZGP1 C1orf116
COL1A1 COL5A2
COX7A1 CYYR1 EFEMP1
FOXF1 GREM1 HLF
MAGEA6 MMP13 PCSK1
PROK2 S100A2
SERPINB5 SLC7A11
SOX7 SPARCL1 STXBP6
TWIST1 ZBED2

Union of the
selected
genes across
5 fold

ABCA3 COL1A1 COL5A2
CYYR1 SLC7A11
GREM1HLF SERPINB5
SOX7 SPARCL1 STXBP6
TWIST1
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learning showed the best accuracy in the integrated omics data
set. Figure 5 shows the AUROC of the prediction model under
different classifiers. After changing the data set and feature
selection method at the same time, it shows that when the
integrated omics data is used as the input data set of the DNN
model, the AUROC is 0.9916, which is better than all
comparison methods. Figure 6 demonstrates the F1_score
of the prediction model under different feature selection
methods and data sets. In all comparisons, the proposed
DNN shows the highest F1_score, indicating that the
model is the most robust. Currently, Pan et al. established a
prediction model of LUAD with a support vector machine
algorithm to study LUAD. The model takes GSE19188 data as
the input data set, and the prediction accuracy was 0.97 (Pan
et al., 2019), and Liu Kou et al. Determined the most valuable
factors of LUAD metastasis through Kaplan-Meier survival
curve and multivariate logistic regression analysis and
constructed a metastasis prediction model. The average
accuracy of the prediction model was 0.86. (Liu et al.,
2019). In summary, these predictions are lower than the
results of this study.

DISCUSSION

Table 6 shows the overlapping genes that meet DEG and DMP at
the same time in each fold during five-fold cross-validati. We also
select the genes that appear in each fold, to avoid the error caused
by chance in crcross-validationFoninally, 12 key genes are
identified and considered as potential biomarkers of LUAD.
To prove whether these 12 genes are capable of recognizing
LUAD, the following gene analysis has been made.

The selected gene set is analyzed by using the DAVID
database. As shown in Table 7, gene ontology reported the
biological significance of genes. “GO:0050900 leukocyte
migration” affects the proliferation and migration of LUAD
A549 cells; “GO:0046982 protein heterodimerization activity”
is related to LUAD (Zhou et al., 2017) and is also a
similar biological activity in liver cancer (Wang et al., 2011)
and nasopharyngeal carcinoma. The results showed that the
activity of protein dimer interacted selectively and non-
covalently with different proteins to form heterodimer (Lan
et al., 2014); “GO:0001228 transcriptional activator
activity, RNA polymerase II transcription regulatory region
sequence-specific binding” is one of the important pathways

TABLE 7 | GO analysis of selected genes.

Category Term p-value Gene

GOTERM_BP_DIRECT GO:0030198~extracellular matrix organization 0.0001 COL1A1, FOXF2, FOXF1, COL5A2,
SERPINB5, JAM2

GOTERM_BP_DIRECT GO:0050900~leukocyte migration 0.0042 COL1A1, SLC7A11, COL5A2, JAM2
GOTERM_BP_DIRECT GO:0001558~regulation of cell growth 0.0194 SOCS2, FAM107A, AGTR1
GOTERM_MF_DIRECT GO:0001228~transcriptional activator activity, RNA polymerase II transcription

regulatory region sequence-specific binding
0.0287 SOX17, SERPINB5, FOXF1

GOTERM_MF_DIRECT GO:0046982~protein heterodimerization activity 0.0399 TWIST1, COL5A2, JAM2

FIGURE 7 | Overall survival analysis in LUAD based on the TCGA data as determined by Kaplan-Meier estimates. (A) COL5A2 and (B) SERPINB5 are significantly
affect the prognosis of LUAD in overall survival (p < 0.05).
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involved in LINC00648, and is related to lung cancer (Zhao
et al., 2020).

After literature retrieving, the gene ABCA3, studies have
shown that it is usually highly expressed in the damaged lung
(Stahlman et al., 2007), and may provide important clues for the
diagnosis of LUAD. THBS gene may play a double-edged sword
role in the development, the anti-angiogenic and oncogenic
function of LUAD. COL5A2 is one of the seven genes co-
expressed by TSHB2. When COL5A2 is highly expressed, the
survival rate of patients decreases (Weng et al., 2016). Compared
with normal lung tissue cells, the SERPINB5 gene is specifically
expressed at high levels in lung cancer cells and can be used as a
diagnostic marker of lung cancer (Yoon et al., 2011). COL1A1 is
considered a downstream product of cytoglobin, which is related
to tumor biology and contributes to the adaptive response to
oxidative stress and hypoxia/reoxygenation events, thereby
promoting lung tumor invasiveness, metastasis, and resistance
to treatment (Mendoza et al., 2015). Liu et al. proposed that
COL1A1 is a potential biomarker for the prognosis of LUAD (Liu
and Huang, 2020). Lung tumors rely on glucose, cystine, and
glutamine. SLC7A11 is a cystine/glutamate transporter, which
promotes tumor growth and development (Lin et al., 2020). Ji
et al. also proposed that SLC7A11 overexpression is a candidate
biomarker SLC7A11 for lung cancer (Ji et al., 2018). TWIST1 is
involved in embryogenesis and promotes malignant
transformation and LUAD progression through epithelial-
mesenchymal transition (Karine et al., 2012).

The Kaplan-Meier survival curve analysis of the 12
potential biomarkers identified in 492 LUAD patients
using the TCGA database shows that COL5A2 and
SERPINB5 are significantly correlated with the prognosis
of LUAD (Figure 7).

CONCLUSION

In this study, we use the DNN model to predict LUAD and
identify biomarkers based on integrated multi-omics data. By
comparing different feature selection methods and different

prediction models, the results show that the method of this
research is better. The advantage of the method is that it used
integrated multi-omics data; there is no blind dimensionality
reduction in feature selection, but biologically significant features
are selected. The results of biological correlation analysis and
literature verification also show that the selected genes can be
used as biomarkers of LUAD. Although we have done careful
bioinformatics analysis, there are still some limitations. In the
future, we can continue to explore the application of this method
to other similar omics data, and we will continue to improve our
method.
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