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Background: Ferroptosis is a newly discovered formof regulated cell deathwith

distinct properties and recognizing functions involved in physical conditions or

various diseases, including cancers. However, the relationship between gliomas

and ferroptosis-related lncRNAs (FRLs) remains unclear.

Methods:We collected a total of 1850 samples from The Cancer Genome Atlas

(TCGA) andGenotype Tissue Expression (GTEX) databases, including 698 tumor

and 1,152 normal samples. A list of ferroptosis-related genes was downloaded

from the Ferrdb website. Differentially expressed FRLs (DEFRLS) were analyzed

using the “limma” package in R software. Subsequently, prognosis-related FRLs

were obtained by univariate Cox analysis. Finally, a prognostic model based on

the 3 FRLs was constructed using Cox regression analysis with the least absolute

shrinkage and selection operator (LASSO) algorithm. The prognostic power of

the model was assessed using receiver operating characteristic (ROC) curve

analysis and Kaplan-Meier (K-M) survival curve analysis. In addition, we further

explored the relationship of the immune landscape and somatic mutations to

prognostic model characteristics. Finally, we validated the function of

LINC01426 in vitro.

Results: We successfully constructed a 3-FRLs signature and classified glioma

patients into high-risk and low-risk groups based on the risk score calculated

from this signature. Compared with traditional clinicopathological features

[age, sex, grade, isocitrate dehydrogenase (IDH) status], the prognostic

accuracy of this model is more stable and stronger. Additionally, the model

had stable predictive power for overall survival over a 5-year period. In addition,

we found significant differences between the two groups in cellular immunity,

the numbers ofmany immune cells, including NK cells, CD4+, CD8+ T-cells, and

macrophages, and the expression of many immune-related genes. Finally, the

two groups were also significantly different at the level of somatic mutations,

especially in glioma prognosis-related genes such as IDH1 and ATRX, with lower

mutation rates in the high-risk group leading to poorer prognosis. Finally, we
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found that the ferroptosis process of glioma cells was inhibited after knocking

down the expression of LINC01426.

Conclusion: The proposed 3-FRL signature is a promising biomarker for

predicting prognostic features in glioma patients.
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1 Introduction

Gliomas are themost common primarymalignant brain tumors

in adults, mainly in the brain and in glial tissue (Ostrom et al., 2013),

accounting for 81% of malignant brain tumors. Although relatively

rare relative to other cancers, they cause significant mortality and

morbidity (Ostrom et al., 2014). Glioblastoma (GBM) is the most

common and most clinically aggressive World Health Organization

(WHO) grade IV glioma, with the highest degree of malignancy, the

worst prognosis, and the lowest overall survival (OS) rate. The

median OS of GBM is approximately 8 months, and the 5-year

survival rate is 7.2% (Ostrom et al., 2020). Even with aggressive

multimodal therapy, the median survival is only 12–15 months

(Stupp et al., 2005). Glioma is also a highly heterogeneous tumor

(Nicholson and Fine 2021; van den Bent et al., 2009), whichmakes it

difficult to determine its prognostic effect and treatment response

when treating glioma. Therefore, finding a biomarker and possible

therapeutic target that can predict prognosis is crucial.

Ferroptosis is a novel cell death method first proposed in

2012 that is distinct from autophagy and apoptosis. Ferroptosis

can be triggered by depleting the amino acid cysteine in the cell or by

inhibiting the phospholipid hydroperoxidase glutathione peroxidase

4 (GPX4) (Dixon 2017). Ferroptosis is characterized by membrane

lipid peroxidation in cells, which eventually leads to the loss of

selective permeability of the plasma membrane and the occurrence

of oxidative stress (Mou et al., 2019), resulting in rupture of the outer

mitochondrial membrane, reduction or disappearance of the

mitochondrial cristae, and condensation of the mitochondrial

membrane, resulting in cell death (Xie et al., 2016). Recently,

ferroptosis has also been proven to be involved in cancer

immunotherapy. Due to its nonapoptotic nature, ferroptosis-

based cancer therapy is expected to remedy the shortcomings of

traditional therapiesmediated by the apoptotic pathway (Liang et al.,

2019). Therefore, screening ferroptosis-related genes (FRGs) based

on clinical samples is beneficial for the diagnosis of glioma and

provides possible therapeutic targets.

Long noncoding RNA (lncRNA) refers to a type of

noncoding RNA more than 200 nucleotides in length.

lncRNAs are involved in a wide range of cellular mechanisms,

from almost all aspects of gene expression to protein translation

and stability (Schmitz et al., 2016). Subsequent studies found that

lncRNAs are dysregulated in tumors (Srikantan et al., 2000; Ji

et al., 2003; Diederichs 2014). With the continuous in-depth

understanding of lncRNAs, researchers have successively

discovered the effect of lncRNAs on cancer, for example,

lncRNAs can change epigenetics in glioma (Pop et al., 2018).

Recent studies have found that lncRNAs can control the

occurrence and development of tumors by affecting the

process of ferroptosis. LINC00336 as a competing endogenous

RNA inhibits ferroptosis in lung cancer (Wang et al., 2019; Mao

et al., 2019), and the lncRNA GABPB1-AS1 regulates erastin-

induced ferroptosis through GABPB1 in HepG2 hepatocellular

carcinoma (Qi et al., 2019). Furthermore, there are 3 different

ferroptosis-related lncRNAs(FRL) signatures were observed to be

associated with glioma prognosis, containing 15 ferroptosis-

related lncRNAs, 14 ferroptosis-related lncRNAs and

9 ferroptosis-related lncRNAs, respectively (He et al., 2021;

Zheng et al., 2021; Shi et al., 2022). In machine learning

models, a consistent cutoff value for different datasets

enhances generalizability, and thereby increasing applicability

in real world. Unfortunately, the previous studies didn’t explore

the best cutoff value for different datasets, which might lead to

potential false positive results. Moreover, gene mutation has been

proved to be an important factor affecting the survival and

prognosis of glioma patients (Suzuki et al., 2015; Arita et al.,

2020). For example, IDH mutation status has been shown to be

closely related to the prognosis of glioma patients (Pirozzi and

Yan 2021). The previous studies have not explored this

aspect, too.

In this study, we obtained RNA-seq data from TCGA and

GTEx databases and finally obtained three differentially

expressed FRLs (DEFRLS) for constructing prognostic models.

Then, the reliability of the model was verified by survival analysis,

receiver operating characteristic (ROC) curve analysis and

independent prognostic analysis. In addition, the mechanism

of action of FRLs in glioma was further explored by gene set

enrichment analysis (GSEA), mutated gene analysis, immune

infiltration analysis and chemotherapeutic drug sensitivity

analysis. Finally, our results provide a good predictive model

and possible therapeutic targets for glioma patients.

2 Materials and methods

2.1 Data acquisition

A total of 1,850 samples from gliomas (GBM, LGG) in The

Cancer Genome Atlas (TCGA) website (https://portal.gdc.
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cancer.gov/) and Genotype-Tissue Expression (GTEx) website

(https://www.gtexportal.org) were collected, including

698 tumors and 1,152 normal samples. Then, the data were

log2-processed, and Ensembl IDs were converted to official gene

symbols. lncRNAs and protein-coding genes were screened by

the Genome Reference Consortium Human Build 38 (GRCh38).

2.2 Identification of ferroptosis-related
lncRNAs

The ferroptosis-related dataset (FerrDb) was obtained from

FerrDb (http://www.zhounan.org/ferrdb/index.html) website,

resulting in a total of 176 validated human FRGs.

Subsequently, Spearman correlation analysis (|R2| > 0.6 and p

value < 0.001) was performed according to the expression

profiles of FRGs and lncRNAs, and 433 FRLs were obtained.

2.3 Differential expression analysis

The limma package (Ritchie et al., 2015) was used to perform

differential analysis on the lncRNA expression matrix of LGG/

GBM and normal samples, and a total of 2056 differentially

expressed lncRNAs (DELs) were obtained. The criteria for

DElncRNAs were |log2 (fold change) | >1 and a false

discovery rate (FDR) < 0.05 (Tu et al., 2020).

2.4 Construction of ferroptosis-related
prognostic signature

A total of 433 FRLs intersected with 2056 DElncRNAs, and

52 lncRNAs were ultimately obtained. Then, univariate Cox

analysis was performed based on the “survival” R package to

define potential prognostic FRLs (p < 0.001), and a total of

35 prognosis-related lncRNAs were obtained. A total of

611 patients were randomly divided into training or validation

groups in a 1:1 ratio. Subsequently, these prognostic candidates

were included in least absolute shrinkage and selection operator

(LASSO)-Cox regression analysis. Finally, by choosing the

optimal penalty parameter λ associated with a minimum 10-

fold cross-validation to construct the prognostic FRLS, we

established a three-gene optimal prognostic model. The

ferroptosis-related prognostic risk score for each patient was

formulated as follows:

Risk score � ∑n

1
coefipxi

where xi and coefi represent the expression of each lncRNA and

its corresponding coefficient, respectively. Based on the median

risk score, we divided the training cohort patients into high-risk

and low-risk groups. Kaplan-Meier curves were generated using

the “survminer” R package with the log-rank test to compare OS

between the high- and low-risk groups. ROC curve analysis was

used to evaluate the prediction accuracy of FRLS by the R

package “timeROC.” To assess the model feasibility, all

validations were performed simultaneously in the training and

validation cohorts.

2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) (|log2 (fold change)| >
1 and FDR<0.05) between the high-risk and low-risk groups were
identified using the “edgeR” (Robinson et al., 2010) R package

and functionally annotated based on Gene Ontology (GO) and

with the “clusterProfiler” (Wu et al., 2021).

R package of Kyoto Encyclopedia of Genes and Genomes

(KEGG) (adjusted p value < 0.05).

2.6 Gene set enrichment analysis

To explore molecular and biological differences in high/low

risk groups, the KEGG and HALLMARK gene sets in the

Molecular Signature Database (https://www.gsea-msigdb.org/

GSEA/Msigdb) were obtained. Gene set enrichment analysis

(GSEA) between the two groups was performed by the

“ClusterProfiler” R package (p < 0.05 and FDR < 0.25)

(Subramanian et al., 2005). Subsequently, single-sample GSEA

(ssGSEA) was performed on several representative genomes by

the “GSVA” R package.

2.7 Assessment of immune cell infiltration
and immune microenvironment

Immune infiltration in glioma patients was assessed using the

ESTIMATE algorithm by the R package “estimate.” The

22 immune cell subsets obtained from the CIBERSORT portal

(http://CIBERSORT.stanford.edu/) were defined using

CIBERSORT’s LM22, and the differences in the infiltration of

22 immune cells were subsequently assessed using the

CIBERSORT algorithm. Finally, Pearson correlation analysis

was used to calculate the differences in the expression levels

of immune cell markers between the two groups of patients (Tan

et al., 2020).

2.7.1 Cell lines
Normal human astrocytes (HA 1800) and GBM cell lines

U251, LN229, KNS-89, and T98G were purchased from .Cell

lines were cultured in standard culture conditions (37°C, 95%

humidity, 5% CO2) in the culture in DMEM (Gibco BRL,

United States) medium containing 10% fetal bovine serum

(Gibco BRL, United States).
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2.7.2 Construct stable cell lines
The shRNA targeting LINC01426 (sh#1, sh#2) from Cao et al.

(2020).The sh#1, sh#2 and negative control (NC) viruses were

obtained from Tsingke Biotech (Tsingke, China). Subsequently,

U251 and KNS-89 were infected and selected after 48 h with

2 μg/ml puromycin (cat# A1113803, Thermo Fisher).

2.7.3 RNA extraction and quantitative real-time
polymerase chain reaction

Total RNAs were extracted from cells by (cat# AG21024,

Accurate Biology, China) following the manufacturer’s

instructions. 1,000 ng of total RNA was reverse transcribed

with (cat# 11139ES10, Yeasen). Gene expression was

quantified by Roche LightCycler 480 using SYBR Green

Master Mix (cat#Q711-02,Vazyme). GAPDH was regarded as

the reference gene. All primers are from Tsingke Biotech

(Tsingke, China), and the primer sequences are shown in List 1.

2.7.4 Cell counting kit-8 assay
The cells were detached with 0.25% trypsin, centrifuged, and

resuspended in complete culture medium at a density of 5 ×

104 cells/ml. Each well of the 96-well plates was administered

100 μl cell suspension. Subsequently, at 24, 48, 72, and 96 h, the

CCK8 kit was used for detection. After cultivating for 0, 24, 48,

and 72 h, 10 μl CCK-8 solution (cat#A311-01, Vazyme) was

added. Finally, the proliferation rate of the cells was detected

by absorbance at 450 nm. All of the CCK-8 assays were repeated

three times with the similar results and data represented with

mean ± SD.

2.7.5 Reactive oxygen species detection
The levels of intracellular ROS were detected using a reactive

oxygen species detection kit (cat# 50101ES01, Yeasen) following

the manufacturer’s instructions.Flow cytometer recording

fluorescence intensity.

2.7.6 Determination of malondialdehyde and
Fe2+ levels

MDA test kits (cell samples, E-BC-K028-M, Elabscience), are

used to determine levels of MDA. Detection of Fe2+ levels by

FerroOrange probe (F374, Dojindo).

2.8 Statistical analysis

R software (version 4.1.0) was used for all statistical analyses and

graphical visualizations. Spearman correlation analysis was used to

analyze the correlation between FRGs and FRLs. The proportion of

tumor-infiltrating immune cells between the high- and low-risk

groups was analyzed by theWlicox test. The chi-square test was used

to analyze the differences in clinical characteristics such as age and

sex between the two groups. Cox univariate regression analysis and

multivariate Cox regression analysis were used to define

independent prognostic factors for OS in the two groups. Time-

dependent ROC curve analysis was used to assess the predictive

accuracy of the OS prognostic models. Two-tailed p < 0.05 was

considered statistically significant.

3 Results

3.1 Identification of ferroptosis-related
differentially expressed LncRNAs in glioma
patients

The complete flow chart of the study is shown in Figure 1.We

collected a total of 1,850 samples, of which 698 tumor samples

(GBM, LGG) were from the TCGA database (https://portal.gdc.

cancer.gov/repository), and 1,152 normal samples were from the

TCGA and GTEx databases (https://www.gtexportal.org/home/

datasets). A total of 13,230 lncRNAs were identified.

Furthermore, based on the known ferroptosis-related dataset

Ferrdb (http://www.zhounan.org/ferrdb/), we obtained

176 ferroptosis-related genes (FRGs). The specific details of

these genes are recorded in Supplementary Table S1. To

obtain ferroptosis-related lncRNAs (FRL), Spearman

correlation analysis was conducted between lncRNAs in the

TCGA database. An FRL was identified if it was significantly

correlated with one or more FRGs (|R2| > 0.6 and p < 0.001). In

total, 433 FRLs were defined. We used a PCA map and bar plots

to show the distribution of those samples, as shown in

Supplementary Figures S1A,B. Then, we compared the

expression of lncRNAs in tumor and normal tissues from the

TCGA-GTEx database (log2| FC| > 1, FDR < 0.05) and identified

1,890 DELs, including 1,132 upregulated DELs and

758 downregulated DELs. We used volcano plots to show

these data in Supplementary Figure S1C. Finally, we identified

52 ferroptosis-related DELs (FRDELs) between FRLs and DELs

(Figure 2A).

3.2 Identification of prognostic
ferroptosis-related differentially
expressed lncRNAs

To further understand the prognostic potential of FRDELs,

after obtaining OS data for GBM and LGG in TCGA, we

predicted the prognostic potential of 52 FRDELs using

univariate Cox regression analysis. Finally, 35 prognostic

ferroptosis-related differentially expressed lncRNAs

(PFRDELs) were obtained (p < 0.001) (Figure 2B;

Supplementary Figure S1D). The coexpression relationship

between the 35 PFRDELs and 176 FRGs is shown in

Figure 2C. Thirteen PFRDELs were considered protective
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FIGURE 1
Study flowchart. 13,230 LncRNAs were obtained from TCGA and GTEx databases. 176 ferroptosis-related genes (FRGs) were obtained from the
FerrDb database. Then, 433 ferroptosis-related lncRNAs (FRLs) were identified according to Spearman correlation analysis. Next, univariate COX
analysis was applied to construct a 3-FRL signature. Finally, GSEA, KEGG, GO analysis, immune correlation analysis, somatic mutation analysis were
applied to determine the potential function of this feature.
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factors, and 22 were considered risk factors (the list of these

lncRNAs is shown in Supplementary Table S2).

3.3 Construction and validation of a
ferroptosis-related lncRNAs prognostic
model

To check the prognostic value of these DEFRLS.We collected

clinical data from TCGA-GBM/LGG and randomly divided

them into two groups: a training group and a validation

group. The clinical characteristics of those samples in the

above two groups are shown in Table 1.

These 35 PFRDELs in the training groupwere incorporated into

the least absolute shrinkage and selection operator (LASSO)

regression. As a result, 3 PFRDELs stood out for the

construction of the prognostic FRLS, including AL133415.1,

LINC01426 and AC009227.1. Then, based on the optimal

penalty parameters (λ) of the LASSO model, a prognostic risk

evaluation model for 3-FRLs was constructed. The cvfit and

FIGURE 2
Prognostic analysis of differentially expressed ferroptosis-related lncRNAs. (A) Differentially expressed FRLs obtained from differentially
expressed lncRNAs and FRLs by Venn diagram. (B) Forest plots showing the results of the Cox univariate regression analysis approximately
35 prognostic differentially expressed FRLs. (C) The correlation between 35 prognostic FRLs and 176 FRGs in the TCGA-LGG/GBMcohort. The colour
of each unit shows the degree of corelation. *p < 0.05, **p < 0.01, and ***p < 0.001.
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lambda curves are shown in Figures 3A,B. In this model, each

patient with GBM/LGG in the TCGAdatabase was calculated with a

risk score by summing the product of the expression level of each

selected ferroptosis-related lncRNA and the corresponding

coefficient. [Risk Score = AL133415.1*0.01732 +

LINC01426*0.15269 + AC009227*(−0.10944)].

To evaluate the independent predictive potential of this signature,

the OS-related factors were identified by univariate and multivariate

Cox regression analyses. The results of both univariate andmultivariate

Cox regression analyses indicated that the PFRDLS-based risk score

was always an independent prognostic factor for the OS rate of GBM/

LGG patients (Figures 3C,D). Predictive nomograms were then

constructed and the associated factors’ scores on the scales were

summed to calculate the likelihood of survival for these patients.

The 1-, 3- and 5-year OS rates could be predicted accurately when

compared with those of the ideal predictive model (Figures 3E,F). To

evaluate the prognostic value of this 3-FRLs model. Then, the samples

in the training group were stratified into the high-risk group and low-

risk groups using the median risk score as the cutoff value.

Subsequently, the risk score distribution and OS status distribution

of the above two samples were determined, and the results showed that

the distributions of the two samples were reasonable (Figure 4A).

Kaplan-Meier analysis of the samples showed that theOS rate ofGBM/

LGGpatients in the high-risk groupwasworse than that in the low-risk

group (Figure 4D). Then, an ROC curve was performed in the training

group and found that the prognostic accuracy of the 3-FRLsmodelwas

better than that of other clinicopathological characteristics. Since both

disease state and factor values change over time, a time-dependent

ROCcurvewas also performed in the training group. TheAUCs for 1-,

3-, and 5-year OS in the training group were 0.837, 0.837, and 0.790,

respectively (Figure 4G). We then constructed ROC curves for

comparison with other clinicopathological features (Figure 4J). To

determine whether the prognostic significance of FRLS persisted in

other groups, the validation group and overall group were validated in

heatmaps, distribution figures, Kaplan-Meier survival analysis and

time-dependent ROC analysis. The distribution of the above two

risk group samples in the validation group and the overall group is

shown in Figures 4B–L. Since molecular subtype and IDH state

contribute to the outcome and classification of glioma patients, it is

hard to exclude the bias of these factors. Therefore, we performed the

Kaplan-Meier analysis to verify whether the signature is functional in

both LGG andGBM/IDHwt and IDHmut patients. The results show

that the signature is functional in patients with LGG and IDHmut.

However, GBM and IDH wt patients did not have statistical

significance because of the large difference in sample size

(Supplementary Figures S2A–D).All results agree that the mortality

rate of the low-risk groups is lower than that of the high-risk groups,

and the FRLS prognosis can accurately and stably predict the survival

outcome of GBM/LGG patients.

3.4 Relationship between the 3-FRLs
signature and the clinicopathological
characteristics in glioma patients

In the TCGA-GBM/LGG cohort, two lncRNAs in our model

were considered risk lncRNAs and upregulated in the high-risk

group. Only AC009227.1 was considered a protective lncRNA

that was upregulated in the low-risk group (Figure 5A). Next, we

compared the differences in clinical characteristics between the

two risk subgroups in terms of age, sex, glioma grade, and IDH

status. We found that with the increase in glioma grade, the

expression of risk lncRNAs was upregulated, and the expression

of protective lncRNAs was downregulated, which ultimately led

to the improvement of the risk score. Similar results were

observed for age and IDH status, and the clinical features are

also compared in Figures 5B–D. Studies have shown that the

status of IDH has a significant relationship with the prognosis of

glioma (Yan et al., 2009). Taken together, these results suggest

that our 3-lncRNA signature has a significant potential to predict

the prognosis of glioma patients by assessing risk scores through

correlated gene expression levels.

3.5 Discovery of molecule function and
pathways by GESA, gene ontology and
kyoto encyclopedia of genes and
genomes analysis

We further performed GSEA to explore potential

differences in biological functions and signaling pathways

between different risk groups classified by the 3-FRL

signature. Many tumor metastasis pathways are enriched in

high-risk populations, such as epithelial-mesenchymal

TABLE 1 The clinical characteristics of glioma patients in the training
and validation group.

Clinical parameters Group p Value

Training Validation

Gender

Female 265 260 >0.05
Male 182 188

Age (years)

≤65 362 364 >0.05
>65 85 84

Grade

Stage II 120 123 >0.05
Stage III 132 131

Stage IV 195 194

IDH Status

Mutant 219 217 >0.05
Wild type 228 231
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FIGURE 3
Construction of a 3-FRL signature and the analysis of independent prognostic potential. (A,B) The least absolute shrinkage and selection
operator (LASSO) regression was performed with the minimum criteria. (C) Results of the univariate Cox regression analysis and multivariate Cox
regression analysis regarding OS of the 3-FRLs signature. (D) Nomogram of OS over time for glioma patients. (E) This calibration curve is used to
assess the accuracy of the nomogram model, and the dashed line represents the ideal nomogram. (F) The calibration curve for evaluating the
accuracy of the nomogram model. The dashed diagonal line in grey colour represents the ideal nomogram.
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FIGURE 4
Construction and validation of 3-FRLsmodels in training cohorts, validation and overall groups. (A–C) The distribution plots of the risk score and
survival status in training cohorts, validation and overall groups. (D–F) The Kaplan-Meier curves for survival status and survival time in the training,
validation and overall groups. (G–I) The receiver operating characteristic (ROC) curve analyses of the prognostic FRLS in predicting 1-, 3-, and 5-year
overall survival in training cohorts, validation and overall groups. (J–L) Risk scores and other prognostic features of the 3-FRLS model were
compared using AUC of ROC curves in the training cohort, validation and overall groups.
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transition (EMT). At the same time, many immune-related

pathways were also enriched in high-risk groups, such as

systemic lupus erythematosus, autoimmune thyroid disease,

graft versus host disease and allograft rejection (Figure 6A). In

addition, many signaling-related pathways were enriched in

the low-risk group, such as the calcium signaling pathway,

phosphatidylinositol signaling system, and hedgehog

signaling (Figure 6B). Interestingly, some pathways related

to metabolism and proliferation, such as angiogenesis-related

pathways, glutathione metabolism and drug metabolism

(amino sugar and nucleotide sugar metabolism), were also

enriched. The details of the GSEA results are listed in

Supplementary Table S3. To explore the biological

functions characterizing DEGs between different risk

groups. DEGs between the high-risk group and the low-risk

group were determined by the cutoff of log2|FC| > 1 and

FIGURE 5
Correlation analysis between the prognostic FRLS and clinicopathological characteristics in the TCGA cohort. (A) Heatmaps depict the
distribution of FRLS expression levels and clinicopathological features in high-risk and low-risk groups. (B–D) Different risk score levels in glioma
patients stratified by age, sex, grade, IDH mutation status. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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FDR < 0.05, and annotation GO enrichment analysis and

KEGG pathway analysis were then performed (p < 0.05). GO

analysis shows enrichment of biological process (BP),

molecular function (MF), and cell component (CC) in

Figure 6C. Expectedly, the GO analysis revealed a

significant enrichment of immune-related functions,

especially in relation to MHC protein complex binding,

immunological synapse and antigen processing and

presentation of peptide antigen. Similarly, the KEGG

analysis indicated the enrichment of metastasis-related

pathways, including cell adhesion molecules and

ECM−receptor interactions. In addition, many immune-

related pathways were significantly enriched, including

antigen processing and presentation, rheumatoid arthritis

and asthma (Figure 6D). The above two bioinformatics

analyses are similar to the GSEA results. In conclusion,

these results suggested that the risk score of the 3-FRLs

signature was associated mainly with tumor immunity,

tumor metastasis and biological metabolism in glioma.

3.6 Immune-related analysis of glioma
patients using the prognostic signature

To investigate the correlation of ferroptosis-related features

and antitumor immunity in glioma patients. We used the

CIBERSORT algorithm to identify the immune cell infiltration

landscape of all patients with GBM/LGG from the TCGA

database and calculated the proportion of each typical

immune cell (Figure 7A). We compared the differences in

immune cells in the low-risk group and high-risk group from

the stromal score (substrate cells in the tumor tissue), immune

score (immune cell infiltration in the tumor tissue) and estimate

score (the summation of stromal and immune scores from

FIGURE 6
Gene biological function and pathway enrichment analysis of prognostic signatures of FRLs in high-risk group and low-risk group. (A) GSEA
shows significant enrichment of immune-related and metastasis-related pathways in high-risk glioma patients. (B) GSEA shows significant
enrichment of cancer-related signaling pathways in low-risk glioma patients. (C)GO analysis revealed enrichment of many immune-related
processes and tumor metastasis-related processes. (D)KEGG analysis revealed that many immune-related processes and tumor metastasis-
related processes were enriched.
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FIGURE 7
The degree of immune infiltration in glioma patients. (A) Immune cell distribution in high-risk and low-risk groups in the 3-FRLs model. (B)
Stroma, immune, and ESTIMATE scores in the high-risk and lowrisk groups in glioma patients. (C) Boxplot of comparison of immune cells in high-risk
and low-risk groups. (D) Boxplots comparing immune checkpoint genes in high- risk and low-risk groups.
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individual cases and defined as tumor purity). The results showed

that the scores of the high-risk group were higher than those of

the low-risk group (p < 0.001) (Figure 7B). Meanwhile, there were

differences in the proportion of each immune cell between the

high-risk group and the low-risk group, including memory

B cells, naive B cells, resting dendritic cells, eosinophils,

activated mast cells, monocytes, neutrophils, activated NK

cells, resting NK cells, plasma cells, CD4 memory activated

T-cells, naïve CD4 T-cells, CD8 T-cells, gamma delta T-cells,

regulatory T-cells and M0, M1, and M2 macrophages

(Figure 7C). Meanwhile, we found statistically significant

differences in 42 checkpoint genes between the high- and low-

FIGURE 8
Somatic mutation analysis in high-risk and low-risk groups. (A,B)MAF-summary plots and oncoplots of somatic mutations in high-risk groups.
(C,D) MAF-summary plots and oncoplots of somatic mutations in low-risk groups.
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risk groups (Figure 7D). Among these genes, 39 genes, including

PDCD1 (PD-1), CD274 (PD-L1), CTLA4 and LAG3, were highly

expressed in the high-risk group, many of which are validated

effective immunotherapy targets. In addition, only CD200 had

lower expression than the low-risk group (Pardoll 2012;

Anderson et al., 2016; Postow et al., 2018; Li et al., 2019). In

conclusion, by comparing the relationship between risk scores

calculated from 3-FRLs signatures and immune infiltrating cells,

the results suggest that the risk level of glioma patients is related

to immune cell infiltration.

3.7 Cancer-related gene mutation in the
3-FRLs signature

Mutations arise from replication errors or from DNA

damage that is either repaired incorrectly or left unrepaired.

The transition from normal cells to tumor cells is often

accompanied by genetic mutations. The rates of different

mutational processes vary among tumors and cancer types

(Martincorena and Campbell 2015).Therefore, to further

analyze whether the gene mutation levels of the 3-FRLs

signature differed, we sorted out cancer-related gene

mutations between the high-risk and low-risk groups

separately (Figures 8A–D). Genes such as TP53 (34%),

IDH-1 (25%), EGFR (20%), PTEN (20%), TTN (19%), and

ATRX (18%) had the top six mutation frequencies in the

high-risk group. IDH-1 (94%), TP53 (51%), ATRX (43%),

CIC (29%), FUBP1 (12%), and NOTCH1 (8%) were the top

six genes with the highest mutation frequencies in the low-

risk group. In conclusion, IDH-1 (25% vs. 94%), TP53 (34%

vs. 51%), and ATRX (18% vs. 43%) had relatively lower

mutation rates in the high-risk group. However, mutations

in these genes have been shown to be more frequently found

in patients with low-grade gliomas, further demonstrating

the predictive power of the 3-FRLs signature for glioma

patients.

3.7.1 Validation of ferroptosis-related lncRNAs
expression and LINC01426 regulated erastin-
induced ferroptosis

PhyloCSF is a comparative genomics method to

distinguish protein coding and non-coding regions (Lin

et al., 2011). Therefore, we used PhyloCSF to determine

whether these FRLs have protein-coding ability. As shown

in Supplementary Figure S2E, LINC01426 with negative

scores was retained as potential noncoding RNAs (Wang

et al., 2020), AL133415.1 and AC009227.1 may have the

potential to encode short peptides. Thus, these FRLs do not

have the ability to encode complete proteins. We further

observed the expression levels of these FRLs in cell lines, as

shown in Figure 9A, compared with HA 1800, AL133415.1,

and LINC01426 were expressed at relatively higher levels in

glioma cell lines (including U251, LNS229, KNS- 89, and

T98G), but AC009227.1 exhibited the opposite trend. These

results further verified the correctness of the above

bioinformatics research (Supplementary Figure S1D).

Subsequently, we chose the LINC01426 with the highest

scoring coefficient to further analyze. We use the short

hairpin RNAs to achieve the stable knockdown of

LINC01426 in U251 and KNS-89 . The qRT-PCR results of

knockdown efficiency are shown in Figure 9B. As shown in

Figure 9C, the Cell Counting Kit-8 (CCK8) assay indicates

that the knockdown of LINC01426 significantly inhibited cell

proliferation in U251 and KNS-89 cells.In order to further

study the impact of LINC01426 on Ferroptosis, we use MDA

and FerroOrange assay kits to detect malondialdehyde (MDA)

and Fe2+ level. As shown in Figures 9D,E, after processing of

12 μM erastin (ferroptosis activator), compared with the

control group, the knockdown of LINC01426 have a

significant increase in the MDA and Fe2+ levels in

U251 and KNS89 cells. The occurrence of ferroptosis has a

close relationship with the accumulation of ROS (Li et al.,

2020). ROS levels were clearly observed after U251 and KNS-

89 cells were treated with 12 μM erastin. The erastin-induced

ROS level has a significant increase after the knockdown of

LINC01426 (Figure 9F). In conclusion, all results suggest that

LINC01426 can inhibit the occurrence of ferroptosis in

glioma.

4 Discussion

The reason for the high malignancy and drug resistance

observed in glioma has been found to be that these tumors can

effectively evade ferroptosis. Currently, many studies on

glioma have focused on the relationship between lncRNAs

and ferroptosis (Deng, et al., 2020; Huang et al., 2021a). The

identification of FRLs is essential for finding potential

therapeutic targets. However, the exploration of FRLs in

gliomas is still limited. Therefore, it is important to

construct a predictive model of ferroptosis-related

lncRNAs. In this study, we analyzed glioma tumor samples

and normal samples from TCGA and GTEx databases and

obtained DELs. Then, the 176 ferroptosis-related genes

obtained from the online FerrDb database were intersected,

and the differentially expressed FRLs were finally screened.

Subsequently, we obtained the clinical information and FRL

expression profile of each patient from the TCGA database.

The results identified 35 prognostic FRLs. Finally, we

established a risk assessment model based on 3 FRLs.

Compared to ROC curves of published literature (He

et al.2021; Shi et al. 2022), our signature has more

predictive ability of prognosis and contains fewer lncRNAs.

The lncRNA prognosis assessment kits that have been

commercialized at present are composed of only 3-

Frontiers in Genetics frontiersin.org14

Huang et al. 10.3389/fgene.2022.927142

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.927142


FIGURE 9
Validation of the expression level of the 3-FRLs in cell lines and ferroptosis regulation. (A) Expression analysis of 3-FRLs in four glioma cell lines
(U251, LN229, KNS-89, T98G) with HA1800 lines (normal astrocytes). (B) Relative expression level of LINC01426 after transfection with the
corresponding shRNA. (C)Cell proliferation levels of U251 and KNS-89 after knocking down LINC01426. (D,E) The ferroptosis process was evaluated
by detecting MDA and Fe2+ levels in the non-erastin-induced and erastin-induced groups. (F) The comparison of erastin-induced ROS in the
treatment and control groups.*p < 0.05, **p < 0.01, ***p < 0.001, and ns, No significance.
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5 lncRNAs (Patent No. CN201710998995.9; No.

CN201810764922.8). Therefore, our signature is more

clinically feasible and has potential for clinical translation.

Interestingly, in our constructed 3-ferroptosis-related

lncRNA signature, LINC01426 is an oncogene that has been

validated by many cancer researchers. LINC01426 promotes the

development of lung cancer (Dai et al., 2020; Han et al., 2020; Liu

et al., 2021; Zhu et al., 2022), clear cell renal cell carcinoma (Jiang

et al., 2021), and osteosarcoma (Zhang et al., 2021). Furthermore,

the role of LINC01426 in glioma has also received increasing

attention, including sponging miR-345-3p and upregulating

VAMP8 to promote glioblastoma (Cao et al. 2020).

Mechanistic investigation showed that LINC01426 exhibited

its tumor promoter role by modulating the PI3K/Akt

signaling pathway (Wang et al., 2018) and PI3K has been

shown to be targeted therapy for glioma (Cruceru et al.,

2013). However, how LINC01426 is involved in regulating

ferroptosis still needs further exploration. This study indicates

that the ferroptosis process of glioma cells was inhibited after

knocking down the expression of LINC01426, which fills the gap

in this field.

In addition, a novel prognostic 3-lncRNA model was

created. Compared with many other identified signatures,

this model contains only 3 lncRNAs. Clinically, the model

also has good predictive power for patient outcomes. We

divided glioma patients into a high-risk group and a low-

risk group based on their risk scores calculated by the formula

of this prognostic model. To further explore the mechanism

by which this signature regulates gliomas, we performed

GSEA. The results showed that cancer metastasis pathways,

such as epithelial-mesenchymal transition (EMT) and ECM-

receptor interaction, were highly ranked in the high-risk

group. Among these pathways, EMT can not only enhance

tumor invasiveness but also be associated with enhanced stem

cell properties and drug resistance (Aiello and Kang 2019).

Angiogenesis-related pathways and glutathione metabolism

are also enriched; angiogenesis (the formation of new blood

vessels) has been shown to be an integral part of cancer

development (Viallard and Larrivée 2017), and glutathione

is an important component against reactive oxygen species

(ROS), which are key substances in the ferroptosis process

(Liu et al., 2022). Interestingly, many immune-related

pathways were also enriched, including primary

immunodeficiency, IL6-JAK-STAT3 signaling and the IL2-

STAT5 pathway. Although the relationship between

ferroptosis and the immune microenvironment remains

controversial (Friedmann Angeli et al., 2019), it is

reasonable to hypothesize that there is a link between

ferroptosis and tumor immunity in glioma. Subsequently,

KEGG enrichment analysis and GO enrichment analysis

were also performed, including BP, MF and CC, and the

enrichment pathway results were similar to the GSEA

results. As we all know, the major barriers to effective

treatment of GBM are their high proliferation, progressive

spread, and invasiveness, but the underlying mechanisms for

controlling gliomas are still far from understood (Groothuis

2000).Taken together, we can infer from the above results that

the high-risk group suppressed the occurrence of ferroptosis

through immune- and metabolic-related pathways.

Previous studies have shown that ferroptosis is closely

related to tumor immunity (Xie et al. 2016; Tang et al., 2019),

but direct evidence of the connection between ferroptosis and

antitumor immunity was not available until Wang et al., 2019a

reported that CD8+ T cells induce ferroptosis in tumor cells in

vivo (Wang et al., 2019b, Green et al., 2019). In addition,

studies have shown that the increased intratumor production

of prostaglandin E2 (PGE2) facilitates tumor evasion of

immune surveillance (Kalinski 2012; Veglia et al., 2019). In

terms of immunotherapy, studies have shown that CD8+

T-cells are involved in radiotherapy-induced ferroptosis in

human fibrosarcoma cells and melanoma cells (Lang et al.,

2019). However, no study has reported a direct link between

ferroptosis and immune cell infiltration in glioma. Since

GSEA was enriched in many immune-related pathways, we

further calculated the proportions of different types of tumor-

infiltrating immune cells in gliomas. The high-risk group had

higher immune, stromal, and estimated scores, as calculated

by CIBERSORT from the TCGA database. Compared with the

low-risk group, the high-risk group had higher expression

levels of CD8+ T-cells and macrophages and lower expression

levels of monocytes or dendritic cells. High immune and

stromal scores and high macrophage infiltration are

associated with poor prognosis, which is consistent with

our results (Deng et al., 2020). Subsequently, we found that

among the immune checkpoints, forty genes, including

PDCD1 (PD-1), CD274 (PD-L1), CTLA4, and LAG3, were

highly expressed in the high-risk group. Therefore, these

patients might benefit from many immune checkpoint

blockades (Cristescu et al., 2018), which also provides a

possible modality for ferroptosis immunotherapy in the

future (Tang et al., 2020).

Next, we analyzed the cancer-related gene mutation status of

the two risk subgroups to further explore the relationship

between risk scores and cancer-related gene mutations. We

found that mutations in IDH-1, TP53 and ATRX were

significantly different between the two groups. Numerous

studies have shown that IDH1 mutations lead to better overall

survival in glioma patients and a better response to therapies

(Yan et al. 2009; Franceschi et al., 2021). Recently, an ATRX-

deficient genetically engineered glioma model demonstrated that

loss of ATRX reduces median survival and increases genetic

instability (Koschmann et al., 2016). Moreover, TP53 mutations

are frequent in low-grade gliomas and secondary glioblastomas

derived therefrom (Ohgaki and Kleihues 2005). These studies

have shown that mutations in certain key genes in glioma have a

greater impact on prognosis. In our 3-FRLs signature, the risk
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scores are also strongly associated with the mutation status of

these genes. Interestingly, lncRNA has recently been shown to be

required for maintaining genomic stability (Lee et al., 2016;

Munschauer et al., 2018).In addition, the lncRNA signatures

of genome instability can Predict Survival in Patients

(Huang,et al., 2021b; Xie, et al., 2016).The studies could be

corroborated with our results. Not only that, our signature

provides new genes for studying the relationship between

lncRNAs and gene mutation. In the future, we can use these

genes to explore the effect of the PUMILIO protein or the

topoisomerase complex, as researchers did with NORAD.
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