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The uptick in SARS-CoV-2 infection has resulted in a worldwide COVID-19

pandemic, which has created troublesome health and economic problems. We

performed case–control meta-analyses in both African and European ethnicity

COVID-19 disease cases based on laboratory test and phenotypic criteria. The

cases had laboratory-confirmed SARS-CoV-2 infection. We uniquely

investigated COVID infection genetics in a pediatric population. Our cohort

has a large African ancestry component, also unique to our study. We tested for

genetic variant association in 498 cases vs. 1,533 controls of African ancestry

and 271 cases vs. 855 controls of European ancestry. We acknowledge that the

sample size is relatively small, owing to the low prevalence of COVID infection

among pediatric individuals. COVID-19 cases averaged 13 years of age. Pediatric

genetic studies enhance the ability to detect genetic associations with a limited

possible environment impact. Our findings support the notion that some

genetic variants, most notably at the SEMA6D, FMN1, ACTN1, PDS5B, NFIA,

ADGRL3, MMP27, TENM3, SPRY4, MNS1, and RSU1 loci, play a role in COVID-19

infection susceptibility. The pediatric cohort also shows nominal replication of

previously reported adult study results: CCR9, CXCR6, FYCO1, LZTFL1, TDGF1,

CCR1, CCR2, CCR3, CCR5, MAPT-AS1, and IFNAR2 gene variants. Reviewing the

biological roles of genes implicated here, NFIA looks to be the most interesting

as it binds to a palindromic sequence observed in both viral and cellular

promoters and in the adenovirus type 2 origin of replication.
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Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an

extraordinary threat to global public health. COVID-19 is caused by the infection of

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Wu andMcGoogan,

2020). SARS-COV-2 is not as virulent as severe acute respiratory syndrome (SARS), and a

large number of patients are asymptomatic or suffer only mild symptoms (Bai et al., 2020).

The first genome-wide association study (GWAS) of COVID-19 reported two genomic

loci associated with severe COVID-19, indicating a strong genetic influence on the
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severity of COVID-19 (Severe Covid et al., 2020). COVID-19

Host Genetics Initiative performed the largest GWAS in adults to

date including 49,562 patients from 46 studies across

19 countries (Initiative, 2020; Kousathanas et al., 2022). They

reported 13 genome-wide significant loci that are associated with

SARS-CoV-2 infection or severe manifestations of COVID-19.

To date, a number of GWASs on COVID-19 have been

reported (Initiative, 2020; Severe Covid et al., 2020; Hu et al.,

2021a; Kosmicki et al., 2021a; Pairo-Castineira et al., 2021a;

Shelton et al., 2021a; Dubé et al., 2021; Ma et al., 2021; Mousa

et al., 2021; Patrick et al., 2021; Peloso et al., 2021; Chamnanphon

et al., 2022; Horowitz et al., 2022; Kousathanas et al., 2022;

Roberts et al., 2022). The research subjects included European

(Initiative, 2020; Severe Covid et al., 2020; Hu et al., 2021a;

Kosmicki et al., 2021a; Pairo-Castineira et al., 2021a; Shelton

et al., 2021a; Dubé et al., 2021; Ma et al., 2021; Mousa et al., 2021;

Patrick et al., 2021; Peloso et al., 2021; Horowitz et al., 2022;

Kousathanas et al., 2022; Roberts et al., 2022), African (Kosmicki

et al., 2021a; Shelton et al., 2021a; Peloso et al., 2021; Horowitz

et al., 2022), East Asian (Mousa et al., 2021; Horowitz et al.,

2022), South Asian (Kosmicki et al., 2021a; Mousa et al., 2021;

Chamnanphon et al., 2022; Horowitz et al., 2022), and Latin

American (Shelton et al., 2021a; Horowitz et al., 2022)

populations. The reported studies were all performed on adult

populations. In contrast to adults, most of the children infected

with COVID-19 presented only mild or moderate symptoms (De

Souza et al., 2020), suggesting that different genetic mechanisms

from adults may exist. As observed in the GWAS on asthma, 20%

of susceptibility loci are pediatric-specific (Ferreira et al., 2019).

Due to the gene–environment interaction, some genetic factors

may affect sensitivity to environmental factors and vice versa

(D’amato et al., 2005). In addition, environmental exposures

change over years of life. To date, GWAS of COVID-19 has not

been conducted on pediatric populations.

Here, we developed sensitive phenotyping query methods

and matched suitable samples to genotyping data pre-QC and

post-QC (Table 1). Variants quality controlled with an allele

frequency >1%, SNP call rate genotype missingness <0.05,
Hardy–Weinberg equilibrium deviation p-value > 1e-6, and

imputation quality R2 > 0.3 were further assessed in African

and European studies. Despite many active studies, the genetics

impacting SARS-CoV-2 infection risk and progression severity

remains poorly understood. The SNP-based associations were

refined based on peaks of significance for contiguous SNPs and

linkage disequilibrium (LD) of top significant SNP regions.

Further work on larger cohorts is needed to better understand

which traits (disease, health, and neuropsychiatric phenotypes)

are genetically correlated and potentially causally associated with

the infection of SARS-CoV-2. Tremendous worldwide COVID-

19 genotype aggregation efforts have launched sample sizes of

49,562 patients with COVID-19 and 2 million controls (Niemi

et al., 2021). PLINK23 (Purcell et al., 2007) software was

leveraged for efficient quality filtering, statistical association,

and review of results.

Results

To limit the chance of spurious associations, implicated

disease phenotypes associated with SNPs in LD (r2 > 0.8)

with the top significant COVID-19 variants were reviewed.

The inclusion of pediatric cases and controls from both

European and African ancestries demonstrates the value of

including data from diverse populations for characterizing

genetic associations. Environmental, clinical, and social factors

contribute to exposure and severity of COVID-19 (Docherty

et al., 2020; Zhou et al., 2020) with host genetics also playing an

important role. Here, we show genome-wide association meta-

analysis results that consist of 498 pediatric cases vs.

1,533 controls of African ancestry and 271 pediatric cases vs.

855 controls of European ancestry (Tables 2, 3).

Details of genomic loci and observed significance are

provided in LocusZoom (Pruim et al., 2010) plots (Figures 1,

2). Replicating a previously reported study (Roberts et al., 2020),

a top significant locus in our results was within the

3p21.31 region associated with SARS-CoV-2 infection

susceptibility (Table 2). We referenced cis-protein QTLs (Sun

et al., 2018) to more deeply characterize the top significant loci.

We used the European and African reference panel from

TOPMed and the 1000 Genomes Project (Abecasis et al.,

2010) to show LD between genetic variants. Genetic variants

underlying COVID-19 susceptibility holds the potential to glean

models of disease biology for therapeutic development, to extend

new prevention and treatment options beyond the recent release

of vaccines. Some of the most significantly associated SNPs

(Table 2) overlap previously confirmed genetic associations as

TABLE 1 COVID-19 pediatric case–control cohorts analyzed.

Total queried
phenotype

Total
(pre-QC)

EUR
(pre-QC)

AFR
(pre-QC)

Total
(post-QC)

EUR
(post-QC)

AFR
(post-QC)

Case 994 841 286 555 769 271 498

Control 2965 2490 873 1617 2388 855 1533
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mentioned previously (David et al., 2020; Pairo-Castineira et al.,

2021b).

Discussion

Among the reported genes by the previous GWASs

(Initiative, 2020; Severe Covid et al., 2020; Hu et al., 2021a;

Kosmicki et al., 2021a; Pairo-Castineira et al., 2021a; Shelton

et al., 2021a; Dubé et al., 2021; Ma et al., 2021; Mousa et al., 2021;

Patrick et al., 2021; Peloso et al., 2021; Chamnanphon et al., 2022;

Horowitz et al., 2022; Kousathanas et al., 2022; Roberts et al.,

2022), interestingly, genes related to cytokine receptor activity

(GO:0004896) are significantly enriched (FDR-corrected p =

0.017) by gene-set enrichment analysis using the WebGestalt

(WEB-based Gene SeT AnaLysis Toolkit) web tool (Wang et al.,

TABLE 2 Replication of previous findings.

Chr:Start–end
(hg38/GRCh38)
(P < 0.05)

Gene Cohort Lead
SNP

P (E) OR Broad
cohort

Broad
lead
SNP

Broad P Broad
beta

3:45848457–45976785 CCR9, CXCR6, FYCO1, and
LZTFL1

EUR 3:45961470:
T:C

2.55–3 0.729 AFR + EUR
META

3:45848457:
C:T

4.25E-81 0.588

3:46610496–46610496 TDGF1 EUR 3:46610496:
A:G

5.02–3 3.006 EUR META 3:46610496:
A:G

4.99E-8 0.427

3:46108627–46374725 CCR1, CCR2, CCR3, and CCR5 EUR 3:46108627:
C:T

5.84–3 0.750 AFR + EUR
META

3:46231218:
A:C

3.47E-20 0.304

17:
45880713–45880713

MAPT-AS1 AFR 17:45880713:
C:T

5.92–3 1.331 AFR META 17:45880713:
C:T

2.68E-8 -0.127

21:
33238182–33238182

IFNAR2 EUR 21:33238182:
T:C

3.36–2 1.244 EUR META 21:33238182:
T:C

1.01E-11 0.128

TABLE 3 Novel findings of this study.

Chr:Start–end
(hg38/GRCh38)
(P < 5e-5)

Gene AFR_SNP EUR_SNP META_SNP AFR_P EUR_P META_P AFR
OR

EUR
OR

Meta
OR

15:47504866–47504920 SEMA6D 15:47504920:
T:TG

NA 15:47504866:C:G 9.80E-06 NA NA 2.300 NA NA

15:33036296–33036318 FMN1 15:33036296:
T:C

15:33036296:
T:C

15:33036296:T:C 3.17E-04 1.07E-02 1.04E-05 1.337 1.305 1.325

14:68910449–68910548 ACTN1 14:68910548:
A:G

14:68910449:
T:C

14:68910548:A:G 2.61E-01 1.09E-05 1.09E-02 1.169 5.140 1.389

13:32665329–32665331 PDS5B 13:32665331:
T:C

NA 13:32665329:A:C 1.19E-05 NA NA 2.349 NA NA

1:61414689–61414750 NFIA 1:61414689:
T:C

1:61414750:
A:G

1:61414689:T:C 1.80E-05 4.63E-01 1.24E-03 0.692 1.103 0.792

4:61421195–61421214 ADGRL3 4:61421195:
T:A

NA 4:61421195:T:A 2.14E-05 NA NA 2.783 NA NA

11:
102697419–102697493

MMP27 11:102697419:
G:A

11:102697419:
G:A

11:102697419:
G:A

1.90E-03 3.66E-03 2.23E-05 1.299 1.357 1.321

4:
182739578–182739648

TENM3 NA 4:182739648:
G:A

4:182739578:C:A NA 2.43E-05 NA NA 1.597 NA

5:
142320157–142320171

SPRY4 5:142320157:
T:C

NA 5:142320157:T:C 3.08E-05 NA NA 1.999 NA NA

15:56458970–56459025 MNS1 15:56458970:
A:G

15:56458970:
A:G

15:56458970:A:G 2.05E-03 5.58E-03 3.39E-05 0.739 0.736 0.738

10:16597265–16603587 RSU1 10:16597265:
G:A

NA 10:16597265:G:A 3.76E-05 NA NA 2.193 NA NA
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2013). The genes include C-C motif chemokine receptor 1

(CCR1), C-C motif chemokine receptor 3 (CCR3), C-C motif

chemokine receptor 9 (CCR9), C-X-C motif chemokine receptor

6 (CXCR6), interferon alpha and beta receptor subunit 2

(IFNAR2), interleukin 10 receptor subunit beta (IL10RB), LIF

receptor alpha (LIFR), and X-C motif chemokine receptor 1

(XCR1). As shown in Table 2, the genes related to cytokine

receptor activity, including CCR1, CCR3, CCR9, CXCR6, and

IFNAR2, are also identified in this study. Chemokine receptors

are G protein-coupled receptors and bind chemokines to mediate

FIGURE 1
Regional significance plot of the 3p21.31 region by LocusZoom (Pruim et al., 2010). The genesCCR9,CXCR6, FYCO1, and LZTFL1 are included in
this region. The peak of significance is from the SNP 3:45961470:T:C (rs1601867) at the intronic region of FYCO1.
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cell migration in immune surveillance and inflammation (Allen

et al., 2007). CCR1, CCR3, and CCR9 encode receptors of the C-C

family chemokines with two adjacent N-terminal cysteine

residues. There are 28 C-C chemokines and 10 C-C

chemokine receptors identified to date (White et al., 2013).

CCR1 and CCR3 bind to multiple CC chemokines with

critical roles in inflammation (Pakianathan et al., 1997). CCR9

encodes the receptor of C-Cmotif chemokine ligand 25 (CCL25),

with a role in the development of T cell in thymus (Vicari et al.,

1997). CXCR6 has a protein structure close to CCRs and binds to

the ligand CXCL16 of the CXC family chemokines with one

amino acid between the two N-terminal cysteine residues

FIGURE 2
Regional significance plot of the 13q13.1 region by LocusZoom (Pruim et al., 2010). The PDS5 cohesin-associated factor B gene (PDS5B) maps to
this region. The peak of significance by the meta-analysis is from the SNP 13:32665329:A:C (rs144965594) at the intronic region of PDS5B.
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(Day et al., 2009). CXCR6 may have important roles in T-cell

recruitment to the lung in COVID-19 infection, as suggested by

its high expression in the lung (Day et al., 2009). IFNAR2 encodes

subunit 2 of the interferon-α/β receptor (IFNAR) (Lutfalla et al.,

1995), mediating the roles of type 1 interferons α and β in innate

immune response to viral infections (Biron, 1998). In addition to

the roles of the cytokines in anti-viral immunity and

inflammation (Bartee and McFadden, 2013), these genes may

also be involved in cytokine storm in severe COVID-19 (Hu et al.,

2021b).

We show here 13 ethnicity-specific and/or meta-analysis

variants that pass the top rank and nominal significance

threshold (p < 5e-5). Several genome-wide association studies

investigating case and control samples with many SNP

genotypes, which have associated certain SNPs (David et al.,

2020; Roberts et al., 2020; Pairo-Castineira et al., 2021b; Shelton

et al., 2021b) to COVID-19, have indicated support for several

genomic loci associated with COVID-19 susceptibility and

severity; the strongest association related to severity is at the

3p21.31 locus (David et al., 2020; Roberts et al., 2020; Kosmicki

et al., 2021b; Pairo-Castineira et al., 2021b; Shelton et al., 2021b).

Two separate loci in the 3p21.31 region include genes prioritized

from different methods and signals.

A number of loci identified in this study have not been

reported in the previous GWASs on adults (Initiative, 2020;

Severe Covid et al., 2020) (Table 3). Interestingly, five of these

loci, i.e., ACTN1, PDS5B, SEMA6D, SPRY4, and TENM3, have

been reported of association with the genetic susceptibility of

asthma (Yucesoy et al., 2015; Almoguera et al., 2017; Demenais

et al., 2018; Olafsdottir et al., 2020). As reviewed by Adir et al.

(2021), asthma may impose important factors related to SARS-

CoV-2 infection and disease severity, for e.g., Th2-high

inflammation in asthma may reduce the risk of SARS-Cov-

2 infection and chronic use of systemic corticosteroids (ICS)

is associated with poor outcomes of COVID-19.

Further population sampling and genotyping of COVID-19

and related phenotypes is warranted to further characterize

susceptibility, severity, or mortality in the future, guided by

Centers for Disease Control enumeration of prior medical

conditions linked with COVID-19 severity (CDC, 2021) or

traits linked with risk of COVID-19 mortality by

OpenSAFELY (Williamson et al., 2020).

Limitations

This study has limitations. First, the controls were

determined based on the records from our EMR data

collected in October 2021. The controls might get infected at

a later time point. As COVID-19 is an infectious disease, this

limitation exits in all COVID GWASs. Second, the sample size is

relatively small. Future studies with a larger sample size may

identify genetic loci of COVID-19, especially associated with

pediatric populations. Third, this study was performed on a

unique pediatric cohort of COVID-19. However, we

acknowledge that follow-up analyses for the novel loci

described in this study are warranted.

Conclusion

Our analyses report 17 independent genome-wide nominal

significance SNPs with neighboring higher than expected p-value

SNPs (6 were replication of previous findings and 11 were novel

findings), defining COVID-19 loci with a threshold of p < 5 E-5

(unadjusted for multiple testing). A unique and challenging

aspect is variable progression of SARS-CoV-2 infection,

ranging from acute to severe clinical presentations of viral

pneumonia or acute respiratory distress syndrome (Buitrago-

Garcia et al., 2020). Additional cohorts and studies will be needed

to effectively leverage biological and clinical yield potential of

these genetic associations. We applied covariates including age,

sex, and the five first principal components to properly account

for these population characteristics in addition to the SNP

genotypes. For all 13 loci, we compared the lead variant

(strongest association p-value) and odds ratios (ORs) for the

risk allele across different ethnic groups. Four of the thirteen

genome-wide nominal significant loci showed similar trends in

SARS-CoV-2 infection (i.e., disease susceptibility). Host-specific

genetic variants identified here hold the potential to characterize

biological interaction and function, informing therapeutic

possibilities, and delineate causal link of risk factors in the

environment for SARS-CoV-2 infection and prognosis. These

findings indicate a multi-gene and multi-function mechanism to

be more fully characterized by future studies.

Methods

Subjects

All subjects were recruited using CHOP Institutional Review

Board-approved protocols. The SARS-CoV-2 infection-positive

group had laboratory-confirmed SARS-CoV-2 infection,

electronic health record ICD coding, or was self-reported by

a survey, along with the annotation whether symptoms of

severity were observed. The Diagnosis and Treatment

Protocol for Novel Coronavirus Pneumonia was used to

classify illness severity and hospitalization observations (Wei,

2020). Controls were populations based on data of negative

SARS-CoV-2 infection and negative COVID-19 status.

Genetic-ancestry-matched control individuals for the

COVID-19-positive cases were matched with population-

based cohorts based on nearest PCA distance. Control

individuals were infection-negative based on questionnaire/

electronic health record-based database queries.
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Genotyping

Samples were genotyped using the Illumina Infinium BeadChip

Global Screening Array (GSA). SNP genotypes and variant allele

naming were coordinated to human genome build hg38/

GRCh38 and referenced with respect to gnomAD 3.0 genomes

(Karczewski et al., 2020) by matching SNPs via variant matching by

testing strand flip and allele order switches. To gain additional

resolution of genotyping data for these samples, we performed

imputation on the TOPMed Imputation Server at https://

imputation.biodatacatalyst.nhlbi.nih.gov/.

African ancestry COVID case–control

A total of 367,556 genetic variants passed filters and quality

control and thus were tested for association to COVID-19-infected

phenotype individuals. A total of 2,172 individuals (1,017 males

and 1,155 females) were included. The total genotyping rate in

samples remaining after quality control was 0.997553. The number

of individuals who passed filters and QC was 2,031. Among the

remaining phenotypes, 498 were cases and 1,533 were controls.

European ancestry COVID case–control

A total of 486,109 variants were assessed that met filter and

QC standards. A total of 1,159 individuals (643 males and

516 females) were included. The total genotyping rate in the

remaining samples was 0.998073. Altogether, 486,109 variants

and 1,126 individuals passed filters and QC. Among the

remaining phenotypes, 271 were cases and 855 were controls.

African ancestry and European ancestry
COVID meta-analysis

Ameta-analysis including 14,336,851 variants was processed,

and 3,854,317 variants had non-NA p-values. Several known

clinical factors of the host track closely to disease severity such as

older age, being male, and larger body mass index (Docherty

et al., 2020), but these factors are not sufficient to model disease

severity variability. These findings support prioritizing candidate

genes along with future functional characterization to refine the

genes. Control samples were chosen based on principal

component analysis-driven genetic ancestry-matching samples

without known SARS-CoV-2 infection.

Data analysis

To prioritize candidate gene regions reported in this study,

we used both locus-based and similarity-based methods. We

report the raw p-values and odds ratios for each lead variant with

closely adjacent nominal significance variants along with the

nearest gene. In an effort to better characterize the biological

mechanism of observed variants at each locus, we prioritized

candidate genes and referenced knowledge from results from

related diseases and traits. The relevant stage of disease from

SARS-CoV-2 infection to progression and outcome was a factor

considered in the modeling of gene roles in associated loci.

We used PLINK2 (Chang et al., 2015) to apply sample and

SNP quality control thresholds, in association with an additive

effect model, applying the top five principal components as

covariates and conducting meta-analysis.

We conducted GWAS statistical analyses with the tool Scalable

and Accurate Implementation of GEneralized (SAIGE) mixed

model (Zhou et al., 2018) on all autosomes and chromosome

X. Our 17q21.31 replication top finding overlapping MAPT-AS1

(KANSL1 150 kb away) coincides with a deeply studied locus with

structural variants including a large megabase recurrent inversion

deviating from the reference H1 to the inverted H2 form that has

been selected positively in European ancestry persons (Stefansson

et al., 2005; Boettger et al., 2012). SAIGE features robust modeling

of sample relatedness and case–control count differences. The

genetic identity of a person influences viral infection susceptibility

and response.We sought to characterize the 13 nominal significant

loci for potential to fulfill roles in risk and progression following

infection. We used the Cochran’s Q measure (Cochran, 1954;

Evangelou and Ioannidis, 2013) using the two analyses effect sizes

vs. the meta-analysis effect size (weighted by inverse variance of

effect sizes) sum of squared differences.
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