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The coronavirus disease 2019 (COVID-19) caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading across the

world despite vast global vaccination efforts. Consequently, many studies

have looked for potential human host factors and immune mechanisms

associated with the disease. However, most studies have focused on

comparing COVID-19 patients to healthy controls, while fewer have

elucidated the specific host factors distinguishing COVID-19 from other

infections. To discover genes specifically related to COVID-19, we

reanalyzed transcriptome data from nine independent cohort studies,

covering multiple infections, including COVID-19, influenza, seasonal

coronaviruses, and bacterial pneumonia. The identified COVID-19-specific

signature consisted of 149 genes, involving many signals previously

associated with the disease, such as induction of a strong immunoglobulin

response and hemostasis, as well as dysregulation of cell cycle-related

processes. Additionally, potential new gene candidates related to COVID-19

were discovered. To facilitate exploration of the signature with respect to

disease severity, disease progression, and different cell types, we also offer

an online tool for easy visualization of the selected genes across multiple

datasets at both bulk and single-cell levels.
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Introduction

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has flared into a worldwide pandemic. Despite

ongoing massive vaccination efforts, the disease is still actively spreading in many parts of

the world. Although a large proportion of the SARS-CoV-2-infected individuals remain

asymptomatic or experience only mild symptoms, an estimated 6%–15% of them undergo

severe symptoms (Guan et al., 2020; Wu and McGoogan, 2020). The case fatality rate is

estimated to be from 1.2% to 2.6% (Russell et al., 2020; Verity et al., 2020; Wu and
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McGoogan, 2020), with severe and fatal outcomes substantially

more pronounced in older patients (Verity et al., 2020; Wu and

McGoogan, 2020; Yang et al., 2020). Severe forms of the disease

are often associated with a hyperinflammatory state, the so-called

cytokine storm, where increased levels of many proinflammatory

cytokines and lymphopenia have been observed (Huang and

Pranata, 2020; Ong et al., 2020; Pedersen and Ho, 2020). Overall,

the high mortality in COVID-19 is a consequence of alveolar

damage and pneumonia, cardiovascular complications, and

multi-organ failure (Brunetta et al., 2021).

Several studies have sought to elucidate the human host

factors and immune mechanisms related to COVID-19, its

severity, and post-infection recovery. Beyond studies of the

respiratory microenvironment, a number of bulk and single-

cell RNA-sequencing (RNA-seq) studies have focused on

responses observed in the periphery using whole blood (Ng

et al., 2021), peripheral blood mononuclear cells (PBMCs)

(Lee et al., 2020; Wilk et al., 2020; Liu et al., 2021), or isolated

subsets of blood cells (Brunetta et al., 2021; Overmyer et al.,

2021). However, most of these studies have focused on

comparing the transcriptome profiles of COVID-19 patients

with healthy controls (e.g., Lee et al., 2020; Liu et al., 2021),

while much fewer studies have compared the COVID-19

signatures with other common respiratory infections, such

as influenza (Lee et al., 2020; McClain et al., 2021; Ng et al.,

2021).

To establish a robust transcriptomic signature specific to

COVID-19 and to deepen the understanding of the disease-

related host processes related specifically to COVID-19, we

reanalyzed transcriptome data from nine independent cohort

studies (Arunachalam et al., 2020; Lee et al., 2020; Wilk et al.,

2020; Brunetta et al., 2021; Combes et al., 2021; Liu et al., 2021;

McClain et al., 2021; Ng et al., 2021; Overmyer et al., 2021),

covering over 500 individual profiles, including patients with

common respiratory infections (influenza, seasonal coronavirus,

and bacterial pneumonia) together with COVID-19 patients and

healthy controls. We discovered a COVID-19 specific signature

that appeared systematically across the cohorts. Additionally, we

explored the association of the signature genes with disease

severity, disease progression, and different cell types. To

facilitate easy investigation of the signature, we also present

an online tool for easy visualization of the selected genes

TABLE 1 Datasets used in this study.

Name Sample type Number of
samples

Cohort Method Accession References

McClain Whole blood 46 COVID-19 US RNA-seq GSE161731 McClain et al. (2021)

59 seasonal coronavirus

17 influenza

20 bacterial pneumonia

19 healthy

Lee PBMC 11 COVID-19 South Korea scRNA-seq GSE149689 Lee et al. (2020)

5 influenza

4 healthy

Ng Whole blood 7 COVID-19 US RNA-seq GSE163151 Ng et al. (2021)

20 influenza

6 bacterial sepsis

20 healthy

Combes Whole blood 21 COVID-19 US scRNA-seq GSE163668 Combes et al. (2021)

11 non-COVID

14 healthy

Overmyer Leukocytes 102 COVID-19 US RNA-seq GSE157103 Overmyer et al. (2021)

26 non-COVID

Arunachalam PBMC 17 COVID-19 US RNA-seq GSE152418 Arunachalam et al. (2020)

17 healthy

Liu PBMC 33 COVID-19 China CITE-seq GSE161918 Liu et al. (2021)

14 healthy

Wilk PBMC 7 COVID-19 US scRNA-seq GSE150728 Wilk et al. (2020)

6 healthy

Brunetta Monocytes 6 COVID-19 Italy RNA-seq GSE160351 Brunetta et al. (2021)

3 healthy
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across multiple datasets at both bulk and single-cell levels

(https://elolab.shinyapps.io/COVID19).

Results

To establish a robust COVID-19 specific transcriptomic

signature, we analyzed a total of nine previously published

COVID-19 bulk or single-cell RNA-seq datasets, containing a

total of 511 individuals (Table 1). Two of the datasets (Lee et al.,

2020; McClain et al., 2021) were used for signature identification,

while the other seven datasets (Arunachalam et al., 2020; Wilk

et al., 2020; Brunetta et al., 2021; Combes et al., 2021; Liu et al.,

2021; Ng et al., 2021; Overmyer et al., 2021) were used for

validating the signal. All of the datasets were preprocessed as

similarly as possible and the reproducibility optimized test

statistic (ROTS) was used to detect the COVID-19 specific

signal (Seyednasrollah et al., 2016; Suomi et al., 2017). To

facilitate further use of the data and the results, we also

compiled all the datasets and the associated clinical and other

information as an online resource for visualizing the COVID-19

specific transcriptomic signatures. The tool is freely available at

https://elolab.shinyapps.io/COVID19/.

COVID-19-specific transcriptomic
signature of 149 genes appears
systematically across multiple cohorts

To discover a robust set of genes related specifically to

COVID-19 in peripheral blood, we considered two datasets,

covering COVID-19 patients, patients with other common

respiratory infections, as well as healthy controls: the McClain

data are a whole blood RNA-seq dataset (McClain et al., 2021),

FIGURE 1
Determination of the COVID-19 specific signature (A) Differentially expressed genes in COVID-19 and other infections compared to healthy
controls in the McClain and Lee data. Genes that were differentially expressed specifically in the COVID-19 patients compared to healthy controls
and not between other disease states (influenza, bacterial pneumonia, seasonal coronavirus) and healthy controls are shown with a red background.
The Venn diagram on the right shows the number of shared COVID-19 specific differentially expressed genes in the McClain and Lee data. (B)
Heatmaps of the expression levels of COVID-19 specific genes detected from the McClain and Lee data. (C) Fold changes of the signature genes in
COVID-19 and other infections compared to healthy controls across multiple independent cohorts.
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while the Lee data are a single-cell RNA-seq dataset of PBMCs

(Lee et al., 2020). To focus on COVID-19 specific signals, we

identified those genes that were differentially expressed between

COVID-19 patients and healthy controls at a false discovery rate

(FDR) of 0.05 but not between any other disease state (influenza,

seasonal coronavirus, and bacterial pneumonia) and healthy

controls. This analysis suggested altogether 212 COVID-19

specific genes from the two datasets (Figures 1A,B). Out of

these genes, 123 were discovered from the whole blood

McClain data and 95 from the PBMC Lee data, with an

overlap of six findings between the datasets: IGHG1, IGHG3,

IGHG4, IGCL2, CMTM5, and GP9.

To further refine and validate our COVID-19 specific set of

genes, we used six additional independent datasets, including

both bulk and single-cell RNA-seq data from whole blood

(Combes et al., 2021; Ng et al., 2021), PBMCs (Arunachalam

et al., 2020; Wilk et al., 2020; Liu et al., 2021), or leukocytes

(Overmyer et al., 2021). Of the 212 genes, altogether, 149 genes

were consistently changed across the datasets (Figure 1C;

Supplementary Table S1). Majority of these genes (85%) were

up-regulated in COVID-19 when compared to the healthy

controls.

COVID-19-specific signature is dominated
by immunoglobulin-related genes

Our COVID-19 specific signature was dominated by

immunoglobulin-related genes, including several

immunoglobulin heavy chain variable (IGHV),

immunoglobulin lambda variable (IGLV), immunoglobulin

lambda constant (IGLC), immunoglobulin heavy constant

gamma (IGHG), and immunoglobulin kappa variable (IGKV)

region genes, among others. In particular, four of the shared six

genes between the McClain and Lee data were immunoglobulin

encoding genes: IGHG1, IGHG3, IGHG4, and IGLC2, all of

which were consistently upregulated in a COVID-19 specific

manner across the datasets. Similarly, other immunoglobulin-

related genes were consistently upregulated in COVID-19 across

the datasets, such as pentraxin 3 (PTX3), which has earlier been

associated with COVID-19 (Brunetta et al., 2021).

The functional enrichment results among the COVID-19

specific genes were also dominated by the immunoglobulin-

related signal (Table 2, Supplementary Table S2), the most

enriched processes being the classical pathway of complement

activation (GO:0006958, hypergeometric test, FDR < 10−53) and

immunoglobulin production (GO:0002377, FDR < 10−23).

Among the more specific terms, Fc receptor-related processes

were enriched, such as the Fc-gamma receptor signaling pathway

(GO:0038094, FDR < 10−34). Overall, the detected

immunoglobulin signal was strong and consistent across the

datasets. While this immunoglobulin signal appeared to be

specifically related to COVID-19 in the McClain data, the

involved genes were not expressed highly enough in the Lee

and Ng datasets including, other infections, to confirm this

specificity.

COVID-19-specific signature involves
induction of hemostasis

Another strongly induced signal in the COVID-19 specific

signature was related to hemostasis, including significant

enrichment of platelet activation (GO:0030168, FDR < 10−4)

(Table 2, Supplementary Table S2). Two of the shared-six genes

between the McClain and Lee data were related to platelet

function: glycoprotein IX platelet (GP9) and CKLF-like

MARVEL transmembrane domain-containing protein 5

(CMTM5), both of which were consistently upregulated in a

COVID-19 specific manner across the datasets. GP9 is a small

membrane glycoprotein localized on human platelets and is

associated with hemostasis and platelet adhesion to blood

vessels in injured vascular surfaces (Resource Coordinators

et al., 2017), whereas CMTM5 has been associated with

platelet function in response to aspirin and is related to

cardiovascular outcomes (Voora et al., 2013).

Interestingly, the COVID-19 specific signature was also

highly enriched with genes from the Reactome pathway

TABLE 2 Functionally enriched gene sets among the COVID-19 specific signature. Summary gene sets at false discovery rate (FDR) of 0.05 are shown.

Summary gene set Gene set ID Source of gene set FDR

Complement activation, classical pathway GO:0006958 GO biological processes <10−53

Immunoglobulin production GO:0002377 GO biological processes <10−23

RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function R-HSA-8936459 Reactome gene sets <10−5

Antimicrobial humoral response GO:0019730 GO biological processes <10−4

Platelet activation GO:0030168 GO biological processes <10−4

Mitotic nuclear division GO:0140014 GO biological processes <0.01
Multicellular organismal homeostasis GO:0048871 GO biological processes 0.02

Positive regulation of fibroblast proliferation GO:0048146 GO biological processes 0.02
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“RUNX1 regulates genes involved in megakaryocyte

differentiation and platelet function” (R-HSA-8936459, FDR <
10−5), showing consistent COVID-19 specific upregulation.

Megakaryocytes are large bone marrow cells responsible for

the production of platelets (Choi et al., 1995), while the runt-

related transcription factor 1 (RUNX1) is considered a master

regulator in hematopoiesis, involved in the maturation of

hematopoietic stem cells into mature blood cells (Okuda et al.,

2001).

Several cell cycle-related genes are
dysregulated in COVID-19

Finally, we observed enrichment of the cell cycle and

mitotic division-related processes among our COVID-19

specific genes (Table 2, Supplementary Table S2). Many of

the cell cycle-related genes, such as aurora kinase B (AURKB)

and cyclin-dependent kinase inhibitor 1A (CDKN1A, p21),

were consistently upregulated in a COVID-19 specific

manner, while some were consistently downregulated, such

as cyclin-dependent kinase inhibitor 1C (CDKN1C, p57).

Coronaviruses in general have been shown to manipulate

the cell cycle of host cells, especially the arrest of the cell

cycle at specific cell cycle checkpoints (Dove et al., 2006;

Simabuco et al., 2020; Su et al., 2020) and also mitotic

events (Bock and Ortea, 2020). In agreement, several

distinct terms related to different cell cycle phases, such as

mitotic prometaphase (R-HSA-68877, FDR = 0.02), mitotic

sister chromatid segregation (GO:0000070, FDR < 0.01), and

mitotic nuclear division (GO:0140014, FDR < 0.01) were

enriched among our COVID-19 specific signature

(Supplementary Table S2).

COVID-19-specific signature is associated
with disease severity

Next, we investigated the association of our COVID-19

specific signature with the severity of the disease using those

six datasets (McClain, Lee, Arunachalam, Combes, Liu, and

Overmeyer) that had severity information available. The

patients were divided into two categories based on whether

they required mechanical ventilation or intensive care (severe)

or not (mild) according to the original studies. All the patients in

both categories were hospitalized apart from patients in the mild

category in the McClain data.

FIGURE 2
Association of the COVID-19 specific signature genes with
disease severity heatmaps showing logarithmic fold changes
between the severe and mild cases across the different datasets
separately for (A) upregulated and (B) downregulated
COVID-19 specific genes. The significance of Wilcoxon rank-sum
test is indicated with asterisks in the heatmaps: *p < 0.05, **p <
0.01, and ***p < 0.001. (C) Representative examples of genes with
consistently higher or lower expression in the severe disease, with

(Continued )

FIGURE 2 | the individual expression values scaled by the average
of themild cases for each data; visualizations of all signature genes
are available in our online tool (https://elolab.shinyapps.io/
COVID19/).
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Many of the COVID-19 specific upregulated genes tended

to have higher expression in severe diseases compared to

milder diseases, while considerable variation was observed

between the datasets (Figure 2A). Likewise, many of the

COVID-19 specific downregulated genes tended to have

lower expression in severe diseases compared to milder

diseases (Figure 2B). Especially the hemostasis-related

genes were generally and consistently upregulated in the

severe cases, including the shared gene findings between

the McClain and Lee data; GP9 and CMTM5 (Figures

2A,C). The immunoglobulin encoding genes, on the other

hand, showed considerable variation between the datasets,

with the exception of IGHV4-34, which was systematically

upregulated in the severe cases in all four datasets where it was

detected (Figures 2A,C).

To investigate whether specific functions were related to

disease severity, we explored functional enrichment among

those 52 genes that were consistently up-regulated in the

severe disease when compared to the milder disease across

the datasets (Figure 2A). The most enriched functional terms

were related to RUNX1 (“RUNX1 regulates genes involved in

megakaryocyte differentiation and platelet function,” R-HSA-

8936459, FDR < 10−8), hemostasis (R-HSA-109582, FDR <
10−6), platelet activation, signaling and aggregation (R-HSA-

76002, FDR < 0.001), and blood coagulation (GO:0007596,

FDR < 0.001), suggesting dysregulation related to platelet

function and blood clotting in patients with more severe

disease (Supplementary Table S2).

COVID-19-specific signature is not
generally associated with time from
symptom onset

In addition to disease severity, we investigated the association

of our COVID-19 specific signature genes with time from

symptom onset using those four datasets (Arunachalam,

Combes, Liu, and Wilk) that had the symptom onset

information available. The associations were determined using

Pearson correlation between the reported number of days from

the symptom onset and the measured gene expression level,

scaled by the corresponding control average.

Most (~80%) of the signature genes did not show a significant

correlation with the time from symptom onset (p > 0.05,

FIGURE 3
Association of COVID-19 specific signature genes with time from symptom onset. Representative examples of genes showing a significant
association between expression and time from symptom onset, including (A) genes becoming closer to the healthy controls at later stages and (B)
genes showing larger differences at the later stages. Gene expression levels of COVID-19 patients were scaled to healthy controls within each
dataset and plotted as a function of days since symptom onset across all datasets that had the symptom onset information available
(Arunachalam, Combes, Liu, and Wilk), including linear regression with 95% confidence interval. Additionally, the Pearson correlation coefficients (r)
and the corresponding p-values are shown. Visualizations of all signature genes are available in our online tool (https://elolab.shinyapps.io/
COVID19/).
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FIGURE 4
COVID-19 specific expression signature in single-cell RNA-seq data. (A) Uniform manifold approximation and projection (UMAP) clustering of
the Wilk, Lee, and Combes single-cell RNA-seq datasets together with harmonized cell type annotations. (B) Contribution of the different cell types
to the observed bulk expression of the signature genes, as measured by the relative proportions of sequencing reads assigned to the different cell
subsets that are common across the datasets. Neutrophil proportion was available only in the Combes data and is shown separately. The
upregulated and downregulated COVID-19 specific genes are indicated by the green and purple text, respectively. (C) Expression of selected
representative genes in the single cells of the Wilk dataset; visualizations of all signature genes are available in our online tool (https://elolab.
shinyapps.io/COVID19/). These include FCRL2 and TNFRSF17 as examples of responses in B cells and blasmablasts, CDKN1C in CD16 monocytes as
an example of cell cycle regulation, and LCN2 as an example of a novel marker from a cell population of developing neutrophils defined by Wilk. (D)
Comparison of logarithmic fold changes between COVID-19 cases and healthy controls for genes preferentially expressed in monocytes, as
indicated in panel (B). The data are from seven bulk expression datasets (y-axis) and isolated monocytes (x-axis, Brunetta data). The significance of
Pearson correlation is indicated with asterisks: *p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Table S3). Among the genes showing a trend (p <
0.05), most of them had larger expression changes at the early

stages of the disease than at the later stages, at which the

expression levels typically become closer to the healthy

controls again (Figure 3A). However, two exceptions stood

out: for peptidylprolyl isomerase F (PPIF) and T cell receptor

delta constant (TRDC) the differences tended to be larger at the

later stages (Figure 3B).

COVID-19-specific transcriptional signal
comes from multiple cell types

To further investigate the source of the COVID-19 specific

expression signal, we analyzed the signature genes at the single-

cell level using three single-cell RNA-seq datasets (Wilk, Lee, and

Combes) with harmonized cell type annotations (Hao et al.,

2021) (Figure 4A).

In general, there were more platelets in the COVID-19 cases

than in the healthy controls (Supplementary Table S4). In

particular, in the whole-blood Combes data, ~17% of the cells

in COVID-19 cases were platelets, while the proportion was on

average 9% in the healthy controls (Wilcoxon test p < 0.05).

Similarly, there were significantly more neutrophils in the

COVID-19 cases than in the controls in the Combes data

(49% vs. 21%, p < 0.0001). When considering only the PBMC

cell types, the COVID-19 cases had more plasmablasts in the

Wilk and Combes data (on average 9% and 2%, respectively) than

the controls (0.5% or below in both datasets, p < 0.01), whereas in

the Lee data, both groups had less than 0.5% of the cells classified

as plasmablasts. There was also a systematic tendency to have

larger proportions of CD14monocytes in COVID-19 (on average

30%–38%) than in controls (on average 15%–23%, p < 0.001 in

Combes, p < 0.1 in Wilk, p = 0.2 in Lee data, Supplementary

Table S4).

Next, we investigated which cell types contributed most to

the observed bulk expression of the signature genes (Figures

4B,C). This was done by assigning the sequencing reads to

different cell subsets and determining their relative

proportions. Among the COVID-19 specific signature genes,

~30% were preferentially expressed in platelets (Figure 4B).

All of them were upregulated in the bulk datasets, likely

reflecting the increased proportion of platelets in COVID-19

compared to controls. A total of ~40% of the signature genes were

preferentially expressed in B cells or plasmablasts, with most

genes expressed in both cell types. These were essentially the

immunoglobulin-related genes, which were upregulated in

COVID-19 compared to the controls. In total ~20% of the

signature genes were preferentially expressed in T cells or NK

cells; however, many of these genes were expressed also in several

other cell types. Finally, ~10% of the COVID-19 specific

signature genes were preferentially expressed in

CD14 monocytes and ~1% in CD16 monocytes, including

both upregulated and downregulated genes; many of these

genes were also expressed in neutrophils in the whole-blood

Combes data.

Finally, we confirmed the observed monocyte-related

COVID-19 specific signal by comparing the bulk expression

levels of the preferentially monocyte-expressed genes to those

observed in isolated monocytes (Brunetta data). Indeed, the bulk

expression changes of the monocyte-specific genes were very well

in line with the changes calculated from the Brunetta monocyte

data, with consistent upregulation and downregulation

(Figure 4D) (Brunetta et al., 2021), confirming the relevance

of the detected signature and potential differences in the

monocytes between COVID-19 patients and controls.

COVID-19-specific signature is associated
with multiple known COVID-19-related
drugs

Finally, we investigated the associations of the COVID-19

specific signature with known drug and chemical compound

signatures using the Library of Integrated Network-based

Cellular Signatures (LINCS) database (Koleti et al., 2017;

Keenan et al., 2018). Only the most relevant findings were

considered when accounting for both the significance (p <
0.01) and the concordance (effect size) (concordance

value < −0.35) of the connected drugs and chemical

compounds. Interestingly, several of the top associated drugs

and compounds showing negative concordance have earlier been

suggested to be useful against COVID-19 by independent sources

and by distinct mechanisms (Table 3, Supplementary Table S5).

For instance, the anti-inflammatory theophylline, which is used

for the treatment of asthma and chronic obstructive pulmonary

disease, has been associated with increased respiratory rate and

oxygenation score in COVID-19 pneumonia patients (Wall et al.,

2021), and its potential as a relevant candidate to treat COVID-

19 patients was recently reviewed based on computational studies

(Montaño et al., 2022). Cyclosporin A has been associated with

decreased COVID-19 mortality (Guisado-Vasco et al., 2020) and

it has been demonstrated to act as an antiviral against SARS-

CoV-2 in preclinical infection models (Sauerhering et al., 2022).

Fenofibrate has been suggested to enable faster recovery of

COVID-19 patients compared to patients treated with

standard care (Nahmias et al., 2021). The aminoglycoside

antibiotic amikacin has been predicted in silico both as a

potential inhibitor of the main protease of SARS-CoV-2

(Ahmed et al., 2021) and another enzyme (Elbadwi et al.,

2021), as well as a potential inhibitor of the interaction

between the SARS-CoV-2 spike protein S1 domain and host

ACE2 receptor (Prajapat et al., 2020). The cancer drug lapatinib

has been suggested to effectively block SARS-CoV-2 replication

in human pulmonary fibroblasts (MRC5 cell line) (Raymonda

et al., 2020), while another cancer drug gemcitabine has been
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shown to block the viral protein expression in virus-infected

human lung epithelial cells (Calu-3) (Jang et al., 2021) and kidney

epithelial cells (Vero-E6) (Zhang et al., 2020a). The cancer drug

sunitinib, on the other hand, has been reported to reduce SARS-

CoV-2 infectivity (Wang et al., 2020). Captopril (DrugBank

DB01197) and quinapril (DrugBank DB00881) belong to

angiotensin-converting enzyme (ACE) inhibitors, which are

widely used for the treatment of hypertension and have been

associated with reduced risks of COVID-19 (Hippisley-Cox et al.,

2020; Tepasse et al., 2022).

Besides confirming the relevance of our COVID-19 specific

gene signature, these results also suggest possible new drugs with

potential connections to COVID-19. For instance, enoxacin is a

broad-spectrum antibiotic that has recently been suggested to

also have antiviral activity against various viruses by enhancing

RNA interference (RNAi) as an antiviral defense mechanism (Xu

et al., 2019; Scroggs et al., 2020). A recent in silico analysis

suggested the RNA genome of SARS-CoV-2 is a suitable

substrate for DICER activity and enoxacin is a promising

candidate for COVID-19 treatment (Ahmadi and Moradi,

2021). Similarly, ofloxacin has been suggested to enhance

RNAi activity (Zhang et al., 2008). The potential antiviral

property of fluoroquinolone antibiotics (such as ofloxacin)

against DNA and RNA viruses is well documented (Ikeda

et al., 1987; Witvrouw et al., 1998; Dalhoff, 2015). The

potential action of fluoroquinolones such as ciprofloxacin,

moxifloxacin, and levofloxacin has been demonstrated for the

treatment of SARS-CoV-2 associated pneumonia (Karampela

and Dalamaga, 2020; Marciniec et al., 2020) and these antibiotics

were also recommended to treat community-acquired

pneumonia in COVID-19 patients (Metlay and Waterer,

2020). Cyproheptadine (DrugBank DB00434) is a serotonin

antagonist. Interestingly, a recent study of in vivo platelet

activation reported a significant COVID-19 specific increase

in plasma serotonin levels compared to healthy controls and

patients with acute respiratory distress syndrome without

COVID-19 (Zaid et al., 2021). In a case study, COVID-19

patients whose symptoms resembled serotonin syndrome were

treated with cyproheptadine (Keith et al., 2021).

COVID-19 shares several transcriptomic
changes with other viral and bacterial
infections

While our focus was on host genes related specifically to

COVID-19 in peripheral blood, we also investigated functional

enrichment of pathways and processes among genes similarly

regulated in COVID-19 and other viral or bacterial infections

(influenza, seasonal coronavirus, and bacterial pneumonia).

Altogether, 246 genes shared differential regulation between

all these disease states versus the healthy controls in the

McClain data (Figure 1A), the majority of which (89%) were

downregulated. Functional enrichment analysis of the shared

differentially regulated genes identified the KEGG ribosome

pathway as the most distinctively enriched (hsa03010, FDR <
10−63, Supplementary Table S2), with almost all of the genes

downregulated in the different disease states, suggesting an

TABLE 3 Top drug and chemical compound signatures negatively associated with the COVID-19 specific signature. Signatures with p < 0.01 and
negative concordance value below −0.35 are listed.

Drug/Compound Signature ID Source of signature Concordance p-value

Lapatinib PG_2820 Pharmacogenomics −0.42 0.0001

Gemcitabine PG_2488, PG_2404 Pharmacogenomics −0.38 0.0005

Sulfadimethoxine DM_4847 Drug Matrix −0.55 0.001

Geldanamycin PG_2042, PG_2102 Pharmacogenomics −0.36 0.001

Sunitinib PG_4065 Pharmacogenomics −0.35 0.001

Amikacin DM_1692 Drug matrix −0.52 0.002

Theophylline DM_4986 Drug matrix −0.51 0.002

Enoxacin DM_2916 Drug matrix −0.51 0.002

Alendronic acid DM_1630 Drug matrix −0.50 0.003

Fenofibrate DM_3102 Drug matrix −0.50 0.003

Captopril DM_2148 Drug matrix −0.49 0.004

Ofloxacin DM_4225, DM_4227 Drug matrix −0.48 0.005

Stannous fluoride DM_4809, DM_4810 Drug matrix −0.47 0.006

Quinapril DM_4566 Drug matrix −0.47 0.006

Cyproheptadine DM_2616 Drug matrix −0.46 0.007

Choline chloride DM_2382 Drug matrix −0.45 0.009

Cyclosporin A DM_2594 Drug matrix −0.44 0.009
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overall downregulation of the ribosome pathway. Similarly,

several other ribosome-related functionalities were enriched,

such as the TRBP-containing protein complex involved in

microRNA-mediated silencing (CORUM:5380, FDR < 10−10),

ribonucleoprotein complex subunit organization (GO:0071826,

FDR < 10−9), and themitochondrial 55S ribosome (CORUM:320,

FDR < 10−5).

Furthermore, investigation of the shared differentially

regulated genes in COVID-19 and any other disease state

(grey area in Figure 1A Venn diagrams), excluding the effect

of the 246 common genes regulated across all the disease states,

resulted in 180 genes, of which 59% were downregulated.

Functional enrichment analysis of these genes did not reveal

any strong enrichment (Supplementary Table S2), suggesting

variable functions among the host genes. This is in sharp contrast

to the COVID-19 specific signature or the genes commonly

regulated between all the disease states, for which striking

enrichments were discovered. The genes were included in

various processes, such as those related to cell death,

immunoglobulin production, interferon response, and

hemostasis, but none of them remained statistically significant

after multiple hypothesis correction. For comparison, processes

active specifically in bacterial pneumonia (top 500 most

differentially expressed genes in patients with bacterial

pneumonia compared to the healthy controls and not detected

in any other disease state) were related to the regulation of

leukocyte activation (GO:0002694, FDR < 10−15), lymphocyte

activation (GO:0046649, FDR < 10−15), T helper cell 17 (Th17)

differentiation (hsa04659, FDR < 10−15), neutrophil

degranulation (R-HSA-6798695, FDR < 10−10), and T cell

selection (GO:0045058, FDR < 10−7), suggesting a larger

involvement of adaptive immune responses in the respiratory

infections related to bacterial pneumonia.

Discussion

Using altogether nine independent transcriptomic datasets

from diverse cohort studies and various types of blood samples,

we discovered a signature of 149 genes consistently and

specifically related to COVID-19, providing a comprehensive

view of the specific disease-related host processes. The identified

COVID-19 specific signature confirmed many processes

previously associated with the disease in multiple studies,

including induction of the immunoglobulin and hemostasis

signals, as well as dysregulation of the cell cycle. Moreover,

many specific genes previously associated with COVID-19

showed consistent dysregulation across multiple datasets,

supporting their relevance in the disease.

In addition to genes previously associated with COVID-19,

we also identified multiple genes that have not yet been widely

studied in the context of COVID-19. These included, for

instance, COVID-19 specific upregulation of tumor necrosis

factor receptor superfamily members 13B and 17

(TNFRSF13B and TNFRSF17), predominantly found in B cells

and involved in immune responses; upregulation of the regulator

of G protein signaling 1 (RGS1), which has previously been

linked to multiple immune-mediated diseases such as celiac

disease, type 1 diabetes, and multiple sclerosis (Smyth et al.,

2008; International Multiple Sclerosis Genetics Consortium et al.,

2011); upregulation of the G protein-coupled receptor 84

(GPR84), which is a pro-inflammatory receptor that has

previously been associated with inflammatory bowel disease

(Planell et al., 2017); and downregulation of Fc receptor-like 2

(FCRL2), which encodes a member of the immunoglobulin

receptor superfamily.

One of the strongest COVID-19 specific signals observed in

this study was related to specific immunoglobulin genes, which

were consistently upregulated in COVID-19 patients compared

to healthy controls across multiple datasets. Furthermore, the

discovered immunoglobulin genes were not similarly

upregulated in other infections in the McClain data,

suggesting a possible COVID-19 specific upregulation for the

particular combination of the discovered immunoglobulin genes.

Our findings were in agreement with those of McClain et al.

(2021), who observed the immunoglobulin pathways and specific

immunoglobulin-related genes as upregulated in COVID-19

patients when compared to other infections and healthy

controls. Investigation of the immunoglobulin-related genes at

the single-cell level suggested that the observed bulk signal came

from B cells and plasmablasts (class-switched B cells), possibly

reflecting a markedly strong induction of B cell differentiation to

antibody-producing plasmablasts in COVID-19 patients.

Immunoglobulin-related genes have been recently reported to

be similarly upregulated in COVID-19 when compared to

healthy patients and patients with active influenza infection

(Bibert et al., 2021). The B cell-mediated humoral immune

response plays a critical role in preventing and neutralizing

COVID-19 infection and partly depends on the somatic

recombination and differential usage of the immunoglobulin

genes in producing a diverse repertoire of B cell receptors and

associated antibodies (He et al., 2021). It is conceivable that a

COVID-19 infection induces a strong immunoglobulin signal

involving a distinct combination of immunoglobulin-related

genes. However, even though suggestive, the extent to which

the discovered immunoglobulin signal in this study is specific to

COVID-19 and not other respiratory infections requires further

confirmation from future studies.

The elevated expression of the immunoglobulin-related

genes was observed in both severe and mild cases. While

Overmyer et al. (2021) observed upregulation of many

immunoglobulin genes in patients with severe COVID-19

when compared to those with mild disease, we did not

observe systematic associations between immunoglobulin-

related genes and disease severity across the datasets. The only

exception was IGHV4-34, which was systematically upregulated

Frontiers in Genetics frontiersin.org10

Välikangas et al. 10.3389/fgene.2022.929887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.929887


in the severe cases in all three datasets, where it was detected.

Curiously, IGHV4-34 has an inherent ability to encode

autoreactive antibodies; IGHV4-34 antibodies represent a

major proportion of serum antibodies, especially in systemic

lupus erythematosus (SLE), and they are associated with the

disease severity, while they are underrepresented in the serum of

healthy adults (van Vollenhoven et al., 1999; Pugh-Bernard et al.,

2001). In line with our study, increased usage of IGHV4-34 has

also been observed in COVID-19 compared to healthy controls

(Galson et al., 2020). It would be interesting to study whether

autoreactivity contributes to the development of long COVID,

with symptoms often resembling those observed in autoimmune

diseases (Galson et al., 2020; Khamsi, 2021).

Immunoglobulin antibodies against the SARS-CoV-2 spike

protein antigens have been shown to develop rapidly in

individuals infected with the virus (Secchi et al., 2020).

Intravenous immunoglobulin injections from healthy donors

or recovering patients (Nabih, 2021) have been used to treat

COVID-19 patients with promising results (Herth et al., 2020;

Cao et al., 2021), with the rationale to suppress the hyperactive

immune responses seen in patients with severe disease (Tzilas

et al., 2020). Interestingly, PTX3 has been suggested as a

biomarker for the unresponsiveness to intravenous

immunoglobulin treatment of patients with Kawasaki disease,

causing inflammation of blood vessels throughout the body

(PTX3 and PREDICTS INTRAVENOUS

IMMUNOGLOBULIN UNRESPONSIVENESS IN PATIENTS

WITH KAWASAKI DISEASE, 2011; Kitoh et al., 2021). PTX3 is

involved in humoral innate immunity and regulation of

inflammation, including neutrophil recruitment and

complement cascade regulation (Deban et al., 2008; Deban

et al., 2010). Uncontrolled complement activation has been

associated with severe COVID-19 (Risitano et al., 2020).

Recently, PTX3 was identified as a predictor of 28-day

mortality of hospitalized COVID-19 patients, with increased

PTX3 hypothesized to reflect the failure to regulate

uncontrolled inflammation (Brunetta et al., 2021).

Several previous studies have shown that the interferon

response is elevated in COVID-19 when compared to healthy

controls, but it appears to be less strongly induced in COVID-19

compared to other infections such as influenza (Lee et al., 2020;

Wilk et al., 2020; Liu et al., 2021; McClain et al., 2021; Ng et al.,

2021), especially in the severe disease (Combes et al., 2021; Liu

et al., 2021). We did not observe an enrichment of genes directly

related to the interferon response among our COVID-19 specific

gene signature. Only one gene directly related to the interferon

response was detected in our COVID-19 specific gene signature:

interferon-alpha inducible protein 27 (IFI27). IFI27 was

consistently up-regulated in COVID-19 when compared to the

healthy controls, but the comparisons against other infections

and in relation to disease severity varied depending on the

dataset, perhaps reflecting inconsistent interferon response

observed in previous studies. IFI27 was also strongly

associated with the time from the symptom onset, with the

initial high expression decreasing close to control levels

relatively quickly.

Although the interferon signal among our COVID-19

specific genes was mostly absent, some upregulated

chemokines were identified as COVID-19 specific. These

included the C-X-C motif chemokine ligand 3 (CXCL3),

which is involved in the migration and adhesion of

monocytes (Smith et al., 2005), and the platelet factor 4

(PF4), which is also known as the C-X-C motif chemokine

ligand 4 (CXCL4) and is a chemotaxis inducer for neutrophils,

monocytes, and fibroblasts (Eisman et al., 1990). Chemokines

have been suggested to be deeply involved in COVID-19 and

even the main cause of the acute respiratory syndrome and

cytokine storm associated with the most severe forms of the

disease (Majumdar and Murphy, 2020; Coperchini et al., 2021;

Khalil et al., 2021). Furthermore, neutrophilia (i.e., a high

number of circulating neutrophils) (Coperchini et al., 2021;

Ng et al., 2021), neutrophil degranulation (Ng et al., 2021;

Overmyer et al., 2021), and high chemokine expression (Ng

et al., 2021; Overmyer et al., 2021) have previously been

associated with severe COVID-19.

Curiously, Wilk et al. (2020) observed a novel cell population

of developing neutrophils in COVID-19. These neutrophils

appeared similar to plasmablasts and neutrophil progenitors

in their gene expression and were suspected to be possibly

derived from plasmablasts or through emergency

granulopoiesis (Wilk et al., 2020). Interestingly, LCN2 was

identified to be upregulated in a COVID-19 specific manner

in our analysis across the datasets and was preferentially

expressed in that cell population. Recently, Meizlish et al.

(2021) suggested LCN2 as a discriminator of critical illness in

COVID-19, being highly enriched in neutrophil precursors in

circulation. Earlier studies have implicated LCN2 to deactivate

macrophages, worsening the inflammatory response and

negatively affecting the outcome of pneumococcal pneumonia

(Warszawska et al., 2013).

The identified COVID-19 specific signature involved a clear

upregulation of hemostasis signal when compared to healthy

controls. The signal was stronger in severe diseases, with many of

the hemostasis-related genes consistently upregulated when

comparing severe cases to milder diseases. This was well in

line with previous studies. Several studies have shown

significant increases in platelet activation, platelet reactivity,

and platelet-leukocyte aggregates in COVID-19 compared to

healthy blood donors (Hottz et al., 2020; Manne et al., 2020;

Comer et al., 2021). Platelet activation has also been reported to

correlate with COVID-19 severity (Hottz et al., 2020; Comer

et al., 2021) and platelet hyperreactivity has been suggested as a

primary driver of thrombosis contributing to organ failure and

death in the severe disease (Zaid et al., 2021). Notably, a recent

study reported that platelet activation was significantly higher in

COVID-19 patients compared to patients with acute respiratory
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distress syndrome without COVID-19 (Zaid et al., 2021),

supporting the COVID-19 specificity of the signal.

In association with hemostasis and platelet function, we also

observed a highly enriched Reactome pathway

“RUNX1 regulates genes involved in megakaryocyte

differentiation and platelet function” (Matthews et al., 2009)

in our COVID-19 specific signature. The related genes were

consistently upregulated in COVID-19 patients when compared

to healthy controls and other infections. RUNX1 is a

transcription factor and a master regulator that is involved in

the maturation of hematopoietic stem cells into mature cells, and

it has been previously related to angiogenesis and fibrosis

(O’Hare et al., 2021). Accumulated clonal mutations in

hematopoietic stem cells have been associated with an

increased risk of severe COVID-19 (Bolton et al., 2020).

Moreover, inhibition of RUNX1 has been shown to enhance

symptoms of lung fibrosis in a mouse model (O’Hare et al., 2021),

while overexpression of RUNX1 has been observed in the lungs

of severe COVID-19 patients who died of the disease, with

widespread thrombosis and microangiopathy and related

vascular angiogenesis much more prevalent in COVID-19

than in influenza (Ackermann et al., 2020). In line with this,

the RUNX1-related genes of our COVID-19 signature were

mostly detected as upregulated in the severe form of the

disease when compared to the milder disease.

Neutrophils are known to interact extensively with platelets

during inflammatory conditions, and they modulate each other’s

functions (Lisman, 2018; Ramirez et al., 2019; Zucoloto and

Jenne, 2019). Among such interactions, platelets have been

shown to induce the formation of neutrophil extracellular

traps, which are known to kill pathogens but also be involved

in thrombin activation and coagulation initiation, which has

been associated with hypercoagulability in vascular disorders

(Zucoloto and Jenne, 2019). Interestingly, COVID-19 has been

strongly associated with a hypercoagulative phenotype (Becker,

2020; Goshua et al., 2020), and thrombosis (Ackermann et al.,

2020; McClain et al., 2021), and widespread microangiopathy in

the lungs (Ackermann et al., 2020). Furthermore, while platelets

are well known to be associated with hemostasis (Lisman, 2018;

Zucoloto and Jenne, 2019), the myriad of interactions between

the two cell types also suggests the involvement of neutrophils in

hemostasis and blood coagulation during inflammatory

conditions (Lisman, 2018; Ramirez et al., 2019; Zucoloto and

Jenne, 2019).

Another clear signal detected among our COVID-19 specific

genes was related to cell cycle and mitotic division control.

Coronaviruses in general have been shown to manipulate the

cell cycle of the host cells, especially the arrest of the cell cycle at

specific cell cycle checkpoints (Dove et al., 2006; Simabuco et al.,

2020; Su et al., 2020) and also mitotic events in COVID-19 (Bock

and Ortea, 2020). Furthermore, several mRNA molecules related

to the cell cycle and mitotic processes have been observed to be

upregulated in response to COVID-19 infection (Bouhaddou

et al., 2020). For instance, CDKN1A has been observed to have

significantly higher expression in COVID-19 patients than in

healthy controls (Bordoni et al., 2021), which is in agreement

with our results of COVID-19 specific CDKN1A upregulation.

The protein product of CDKN1A, p21, is an essential mediator of

p53-dependent cell arrest (Bordoni et al., 2021).

While multiple genes in our COVID-19 specific signature

were associated with disease severity, their association with time

from symptom onset was less evident, as could be expected.

Among the genes showing association, the expression changes

typically tended to become closer to the healthy controls over

time, with two outstanding exceptions: TRDC and PPIF. TRDC

encodes the constant region of the T cell receptor delta chain, and

it is considered a marker of gamma-delta T cells. In line with our

finding that the expression of TRDC decreased in the blood of

COVID-19 patients, previous studies have suggested decreased

proportions of gamma-delta T cells in the blood of hospitalized

COVID-19 patients compared to healthy controls (Wilk et al.,

2020). The decrease has been associated with their recruitment to

airway tissues (Caron et al., 2021) and disease severity (Zhang

et al., 2020b).

PPIF, whose expression increased in the blood of COVID-19

patients, is a cyclophilin that is an essential component of the

mitochondrial permeability transition pore. The opening of the

pore has been implicated in the pathophysiology of multiple

diseases, such as muscular dystrophies, ischemia-reperfusion

injury, and various neurological diseases, while inhibition of

PPIF has been suggested as a therapeutic strategy to delay it

(Briston et al., 2019). Intriguingly, one of our identified top drug

candidates was cyclosporin A, which is indeed a cyclophilin

inhibitor. Cyclosporin A is widely used to prevent organ rejection

after transplantation, but it has recently been shown to have

substantial antiviral activity against SARS-CoV-2 and

preliminary clinical trials on COVID-19 patients have

reported a lower incidence of death among the cyclosporin A

treated patients, recently reviewed by (Devaux et al., 2021).

Overall, an investigation of the associations of the COVID-19

specific transcriptomic signature with known drug and chemical

compound signatures identified several drugs and chemical

compounds with known relations to COVID-19, providing

further support for the relevance of our COVID-19 specific

signature. Additionally, this provided opportunities to gain

further insights for possible new drug relationships with the

disease, while further investigations of the findings are needed to

provide the rationale for their potential in COVID-19 treatment.

In addition to the newly discovered COVID-19 specific gene

signature, we explored genes similarly regulated in COVID-19

and other viral or bacterial infections when compared to healthy

controls. The majority of these genes were down-regulated and

they were highly enriched in ribosome-related processes.

Congruently to our results, different viruses such as influenza

(Bercovich-Kinori et al., 2016), HIV-1 (Kleinman et al., 2014),

vaccinia (Dai et al., 2017), and SARS-CoV2 (Banerjee et al., 2020;
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Hsu et al., 2021) have been observed to be related to a global

inhibition of the host mRNA translation upon infection and, as

such, might represent a common strategy employed by several

viruses to shut down the native host protein synthesis

(Bercovich-Kinori et al., 2016; Hsu et al., 2021). Similarly, the

bacterial agent Legionella pneumophila, causative of pneumonia

in humans, has been observed to target and inhibit host mRNA

translation and protein synthesis (Belyi, 2020).

Taken together, our results offer a rich resource to

comprehensively investigate the COVID-19 specific host

responses in circulating blood, providing support for many

signals previously associated with the disease and a solid

foundation for future research into the specific mechanisms

related to COVID-19. To facilitate such exploration, we also

offer a web-based software platform enabling information-rich

visualization of the transcriptomic profiles across multiple

datasets at both bulk and single-cell levels. The expression of

specific genes can be compared between COVID-19 patients and

healthy controls, as well as patients with other infections. Gene

expression can also be investigated in relation to many relevant

attributes, such as age, sex, disease severity, disease progression,

and cell-type specificity. The software platform is freely available

at https://elolab.shinyapps.io/COVID19/.

Methods

Transcriptomic datasets and their
preprocessing

The transcriptomic datasets used in this study (Table 1) were

downloaded from the Gene Expression Omnibus (GEO) as raw

count matrices, except for the monocyte Brunetta data, for which

only the preprocessed data was available, and the single-cell Wilk

data, which was downloaded from the COVID-19 cell Atlas

(https://www.covid19cellatlas.org) as preprocessed data.

The single-cell Lee and Combes datasets were processed

using Seurat (v.4.0.1) in R similarly to in the original

publications (Lee et al., 2020; Combes et al., 2021). Cell type

annotations for all the single-cell datasets were performed using

the Azimuth tool with the human PBMC reference (Hao et al.,

2021). Since the PBMC reference did not include neutrophils,

the neutrophil annotations for the whole-blood Combes data

were retrieved from the original study. For the bulk analysis, the

raw gene-wise count values from all cells belonging to a sample

were aggregated using the R package Muscat (v.1.4.0), resulting

in a pseudobulk expression matrix with genes as rows and

samples as columns. To identify gene signals comparable to

those from bulk RNA-seq datasets, the raw count values were

aggregated across all cells belonging to one sample (Crowell

et al., 2020).

All bulk and pseudobulk RNA-seq datasets were preprocessed as

similarly as possible from the raw count matrices. First, lowly

expressed genes were filtered out, retaining only genes that had a

count per million (CPM) value above the threshold in at least as

many samples as the size of the smallest experimental group in the

data. The threshold was determined for each dataset as the CPM

value corresponding to the read count of ten in the sample with the

smallest library size. The data were normalized using the trimmed

mean of M-values (TMM) method from the Bioconductor package

edgeR (v.3.26.8). For the analysis, we used log2 transformed CPM

values with an offset of 1.

In the Lee data, one influenza sample (“Flu 5”) was removed

as an outlier. In the Combes data, nine samples (one healthy

control, three COVID-19 positives, and five COVID-19

negatives) were excluded because they contained less than

1,000 cells.

Defining the COVID-19-specific gene
signature

For defining the COVID-19 specific gene signature, we

used the whole blood McClain data (McClain et al., 2021) and

the PBMC Lee data (Lee et al., 2020). Only one sample per

individual was considered in the analysis; if an individual had

multiple samples, their median was used for each gene. The

reproducibility optimized test statistic (ROTS) (v.1.12.0)

(Suomi et al., 2017) was first applied to determine

differentially expressed genes between the COVID-19 cases

and healthy controls separately in both datasets. Genes with a

false discovery rate (FDR) of 0.05 were considered

differentially expressed. To focus on COVID-19 specific

signals, we then identified those genes that were

differentially expressed between COVID-19 patients and

healthy controls but not similarly differentially expressed

in the same direction between any other disease state

(influenza, seasonal coronavirus, and bacterial pneumonia)

and healthy controls. Finally, the union of these COVID-19

specific genes was further refined using six additional datasets

by including only those genes that had a concordant fold

change in at least four of the datasets and an opposite change

in at most one dataset in our final COVID-19 specific

signature.

Association of the COVID-19-specific
gene signature with disease severity and
time from symptom onset

For the exploration of disease severity, we used those six

datasets (McClain, Lee, Arunachalam, Combes, Liu,

Overmeyer) that had severity information available. The

patients were divided into two categories based on whether

they required mechanical ventilation or intensive care unit

care (severe) or not (mild) according to the original studies.
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All the patients in both categories were hospitalized apart

from patients in the mild category in the McClain data. To

determine the significance of differences between the severe

and mild cases, Wilcoxon rank-sum test was used. For

functional enrichment analysis, genes consistently

upregulated in severe disease in at least four datasets were

considered.

For determining the association of the COVID-19 specific

genes with time from symptom onset, we considered those four

(Arunachalam, Combes, Liu, Wilk) datasets that had the

symptom onset information available. The associations were

determined using Pearson correlation between the reported

number of days from the symptom onset and the measured

gene expression level, scaled by the corresponding control

average.

Functional enrichment and associations
with known drugs and chemical
perturbations

To explore functional enrichment in the detected COVID-

19 specific gene signature, we used the Metascape platform

(Zhou et al., 2019). The following ontology sources were

considered: KEGG Pathways, GO Biological Processes,

Reactome Gene Sets, Canonical Pathways, and

WikiPathways. All genes in the genome were used as the

background. Metascape calculates the statistical significance

of enrichment using the hypergeometric distribution and

adjusts for multiple testing using the Benjamini-Hochberg

method. Terms with a p-value < 0.01, a minimum of three

genes, and an enrichment of at least 1.5 are further grouped

into clusters using hierarchical clustering with Kappa scores as

the similarity measure. Sub-trees with a similarity of >0.3 were
considered a cluster, and the most significant term within a

cluster was used to represent the cluster.

For investigating the associations of the COVID-19

specific signature genes with known drugs and chemical

compound signatures, we used the Library of Integrated

Network-based Cellular Signatures (LINCS) database and

the associated integrative web-based platform (iLINCS)

(Koleti et al., 2017; Keenan et al., 2018). The upregulated

and downregulated COVID-19 specific genes were used as the

query signatures and the DrugMatrix and pharmacogenomics

transcriptional signatures as the iLINCS signatures.

Concordance was determined on the basis of the

correlation between the query signature and the iLINCS

signatures. Signatures with p < 0.01 and a negative

concordance value below −0.35 were considered.

Cell type proportions and cell type-
specific expression

The Wilcoxon rank-sum test was used to calculate the

statistical significance of differences in the cell type proportions

between the COVID-19 patients and healthy controls in the single-

cell datasets. To investigate which cell types contributed most to

the observed bulk expression of the signature genes, the sequencing

reads were assigned to different cell types and their relative

proportions across the cell types were calculated.
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