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Lung cancer is one of the leading causes of cancer-related deaths. Thus, it is important to
find its biomarkers. Furthermore, there is an increasing number of studies reporting that
long noncoding RNAs (lncRNAs) demonstrate dense linkages with multiple human
complex diseases. Inferring new lncRNA-disease associations help to identify potential
biomarkers for lung cancer and further understand its pathogenesis, design new drugs,
and formulate individualized therapeutic options for lung cancer patients. This study
developed a computational method (LDA-RLSURW) by integrating Laplacian
regularized least squares and unbalanced bi-random walk to discover possible lncRNA
biomarkers for lung cancer. First, the lncRNA and disease similarities were computed.
Second, unbalanced bi-randomwalk was, respectively, applied to the lncRNA and disease
networks to score associations between diseases and lncRNAs. Third, Laplacian
regularized least squares were further used to compute the association probability
between each lncRNA-disease pair based on the computed random walk scores.
LDA-RLSURW was compared using 10 classical LDA prediction methods, and the
best AUC value of 0.9027 on the lncRNADisease database was obtained. We found
the top 30 lncRNAs associated with lung cancers and inferred that lncRNAs TUG1,
PTENP1, and UCA1 may be biomarkers of lung neoplasms, non-small–cell lung cancer,
and LUAD, respectively.
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1 INTRODUCTION

Cancers are posing threat for the health of humans (Yang et al., 2013; Liu et al., 2021). Lung cancer is
the most common cancer worldwide and one of the leading causes of cancer-relevant deaths, and it
has been so for many years. Thus, in 2008, the global statistical analysis demonstrated that
approximately 1.6 million new lung cancer cases were diagnosed, and 1.4 million deaths were
confirmed globally. In 2012, there were 1.8 million of new lung cancer diagnoses and 1.6 million
deaths (de Groot et al., 2018; Howlader et al., 2020). In 2018, the number of new lung cancer cases
exceeded 2 million and the number of deaths exceeded 1.7 million (Yuan et al., 2019). In the
United States, approximately 234,000 cases of lung cancer were diagnosed the same year. This year,
lung cancer diagnosis account for 14 and 13% of new cases in men and women, respectively.
Estimation of mortality is 83,550 and 70,500 deaths in men and women, respectively. Lung
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carcinoma is one of cancers with the lowest survival rate. It is
usually not diagnosed until an advanced stage (de Groot et al.,
2018; Howlader et al., 2020).

Despite the fast development of lung cancer therapy, high
morbidity and mortality rates still pose a severe challenge for
cancer researchers. The majority of patients with advanced-stage
lung cancer have been ultimately poorly diagnosed. Thus,
designing efficient therapy strategies is extremely important
for lung cancer patients. However, existing techniques applied
to diagnosis and therapies of lung cancer remain suboptimal.
Thus, better strategies supplementing or replacing the existing
techniques are urgent. Genome-wide association studies have
found numerous genetic variants relevant to various cancers, one-
third of which are densely linked to noncoding regions. The
noncoding RNAs can be used as biomarkers of lung cancers.
Therefore, accurate biomarker identification is urgently required
to effectively diagnose lung cancer and boost the survival rate
while decreasing its mortality and morbidity (Huang et al., 2017;
Roointan et al., 2019; Yang et al., 2020).

Long noncoding RNAs (lncRNAs) are a type of noncoding
RNAs that has over 200 nucleotides and post-transcriptional
modifications including splicing, capping, and
polyadenylation. lncRNAs can be used as a guide for
protein-DNA interactions, protein-RNA interactions, and
protein–protein interactions (Peng et al., 2020a). With the
fast advancement of cancer genomics, many lncRNAs have
been demonstrated to be aberrantly expressed in diverse
cancers and play key action in the development of tumors
through modulation of cancer-related signaling pathways.
lncRNAs can regulate survival, metastasis, angiogenesis, and
proliferation of tumor cells. Therefore, lncRNAs can be used as
potential biomarkers and therapeutic targets in cancers by
interacting with proteins (Chandra Gupta and Nandan
Tripathi, 2017). For example, Peng et al. and her groups
(Peng et al., 2021a; Zhou L. Q. et al., 2021; Peng et al.,
2021b; Zhou L. et al., 2021; Tian et al., 2021; Peng et al.,
2022) designed a series of state-of-the-art lncRNA-protein
interaction prediction methods and significantly improved
biomarker identification for various diseases. In addition,
lncRNA SNHG14, BCRT1, DSCAM-AS1, MaTAR24, and
HOTAIR have been validated to densely link to breast
cancer (Niknafs et al., 2016; Dong et al., 2018; Chang et al.,
2020; Liang et al., 2020; Yang et al., 2022; Xue et al., 2016).
HOTAIR has been reported to be highly expressed in non-
small–cell lung cancer (NSCLC) and affect NSCLC
tumorigenesis and metastasis. In addition, many biomarkers
(for example, CA125, NSE, CEA, VEGF, and EGFR
(Khanmohammadi et al., 2020) have been validated to
associate with lung cancer.

More importantly, many machine learning methods,
especially deep-learning methods, have been applied to
identify lncRNA biomarkers of various diseases through
lncRNA-disease association prediction. Thus, Fan et al. (2022)
designed an LDA prediction method (GCRFLDA) using the
graph convolutional matrix completion. Ma Y (Ma, 2022)
exploited a deep multi-network embedding-based LDA
inference framework. Wu et al. (2021) integrated graph auto-

encoder and random forest for LDA prediction. Sheng et al.
(2021) developed an attentional multi-level representation
encoding method to find new LDAs combining convolutional
and variance autoencoders. Zhao et al. (2022) proposed a
heterogeneous graph attention network-based LDA
identification model. These methods significantly improved the
LDA prediction.

With the development of single cell RNA sequencing
technologies (Peng et al., 2020b), we can obtain numerous
RNA data. These data can improve the analyses of RNA data,
for example, SARS-CoV-2 (Xu et al., 2020; Li et al., 2021). By
finding new lncRNA biomarkers, we can design corresponding
therapeutic strategies for lung cancer based on drug repositioning
(Peng et al., 2015; Liu et al., 2020; Meng et al., 2022; Shen et al.,
2022).

Although experimental methods found a few biomarkers for
lung cancer, they are time-consuming and waste of resources.
Therefore, computational techniques have been exploited to infer
potential biomarkers for lung cancer. However, the majority of
computational approaches need to improve the inference
performance. In this study, to analyze the diagnostic,
prognostic, and therapeutical potential of lncRNAs in lung
cancer patients, we exploit a computational model combining
Laplacian regularized least square and unbalanced bi-random
walk, LDA-RLSURW, to predict possible lncRNA biomarkers for
lung cancer.

2 DATASETS

First, the lncRNA-disease association dataset was collected. The
dataset can be obtained from the lncRNADisease database at
http://www.cuilab.cn/lncrnadisease (Chen et al., 2012). We
obtained 82 lncRNAs, 157 diseases, and 701 associations after
excluding lncRNAs without record in the lncRNADisease
database and diseases with inappropriate names or without
MeSH tree numbers.

3 METHODS

This study developed an lncRNA-disease association prediction
method LDA-RLSURW. First, LDA-RLSURW computed disease
semantic similarity and lncRNA functional similarity. Second,
LDA-RLSURW calculated the initial association probability of
each lncRNA-disease pair using unbalanced bi-random walk
based on disease similarity matrix and lncRNA similarity,
respectively. In conclusion, the computed initial lncRNA-
disease association probabilities were further updated
Laplacian regularized least squares. The flowchart of LDA-
RLSURW is presented in Figure 1.

3.1 Disease Semantic Similarity
Semantic similarity between diseases can be computed using the
directed acyclic graph (DAGs) based on their MeSH descriptors
(Fan et al., 2020). Given a diseaseA, let its DAG be represented as
DAGA � {TA, EA}, where TA denotes the ancestor node set of A
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includingA, and EA denotes all edge set. For a disease term t ∈ TA

inDAGA, its semantic contribution to A can be computed by Eq.
1 provided by LNCSIM1 (Chen et al., 2015):

SV1
A(t) �

1 t � A
max(α × SV1

A(t′)|t′ ∈ C(t) t ≠ A , (1)

where C(t) denotes the children of t and α denotes a sematic
contribution value of an edge linking t′ to t in EA.

In Eq. 1, we assume that terms at one identical layer from
DAGA have identical semantic contribution toA. However, when
terms t1 and t2 are in the identical layer ofDAGA, and t1 appears
less than t2 in DAGA, the results from t1 may be more specific
than t2. Thus, it could be more reasonable that SV1

A(t1) is larger
than SV1

A(t2).
Considering this situation, we compute another semantic

contribution value for disease A by Eq. 2 provided by
LNCSIM1 (Chen et al., 2015):

SV2
A(t) � −logDags(t)

D
, (2)

whereD denotes the number of all diseases in the MeSH database
andDags(t) denotes the number ofDAG s, including the disease
term t. In conclusion, the semantic contribution value of disease
A in DAGA can be computed by

SV3
A(t) �

1 t � A
max((α + β)SV3

A(t′)|t′ ∈ C(t) t ≠ A , (3)

where β denotes the information content contribution factor, and

β � max k∈K(Dags(k)) − dags(t)
D

, (4)

where K denotes the disease set from the MeSH database.
Thus, the contribution of all diseases in DAGA to A can be

represented as

FIGURE 1 | Flowchart of LDA-RLSURW.
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SV(A) � ∑
t∈TA

SV3
A(t). (5)

In summary, the semantic similarity between diseases A and B
can be computed by Eq. 6:

Sd(A, B) � ∑t∈TA∩TB
(SV3

A(t) + SV3
B(t))

SV(A) + SV(B) . (6)

3.2 lncRNA Functional Similarity
We calculate the lncRNA similarity using the approach provided
by Fan et al. (2020). Assuming thatDG(u)/DG(v) denotes diseases
associated with lncRNA u/ v based on the LDA matrix, the
lncRNA similarity between u and v was computed through
semantic similarity between diseases involved in DG(u) and
DG(v). First, we construct a disease semantic similarity sub-
matrix, where both rows and columns denote all diseases
involved in DG(u)∪DG(v), and the value of each element can
be measured using the semantic similarity between
corresponding diseases. Second, let du/ dv denote one disease
in DG(u)/DG(v); the similarity between du/ dv and DG(v)/DG(u)
can be computed by Eqs. 7 and 8:

S(du,DG(v)) � max
d∈DG(v)

(Sd(du, d)), (7)
S(dv, DG(u)) � max

d∈DG(u)
(Sd(dv, d)). (8)

Third, the similarity betweenDG(u) toDG(v) and one between
DG(v) to DG(u) can be calculated by Eqs. 9 and 10:

Su→v � ∑
d∈DG(u)

S(d,DG(v)) , (9)

Sv→u � ∑
d∈DG(v)

S(d,DG(u)). (10)

In conclusion, the similarity between two lncRNAs u and v can
be computed by Eq. 11:

Sl(u, v) � Su→v + Sv→u

|DG(u)| + |DG(v)|, (11)

where |DG(u)|/|DG(v)| indicates the number of diseases in
DG(u)/DG(v).

3.3 Unbalanced Bi-Random Walk
In this section, inspired by Shen et al. (2022), we consider
that the lncRNA similarity network and the disease network
and design an unbalance bi-random walk model to score
lncRNA-disease pairs. The two networks exhibit different
topological structures. Therefore, we use different optimal
walking step sizes when randomly walking on these two
networks. That is, we propose an unbalanced bi-random
walk algorithm. First, we compute lncRNA-disease
association scores by randomly walking with the maximal
iteration number of nl on the lncRNA network based on the
lncRNA similarity by Eq. 12:

Pt
l � γSl · P(t−1) + (1 − γ)Y for t � nl. (12)

In Eq. 12, at each step, the lncRNA similarity is fused with the
random walk step by multiplying Sl on the left of the lncRNA-
disease association probability matrix. γ ∈ (0, 1) is used to
decrease the importance of circular bigraphs where the paths
are longer during random walk and balance possible and
known LDAs.

Second, we compute lncRNA-disease association scores by
randomly walking with the maximal iteration number of nd
on the disease network based on the disease similarity by
Eq. 13:

Pt
d � γP(t−1) · Sd + (1 − γ)Y for t � nr. (13)

In Eq. 13, at each step, disease similarity is fused with the
random walk step by multiplying Sd on the right of the lncRNA-
disease association probability matrix.

3.4 Laplacian Regularized Least Squares
In the last section, we compute the association probability for
each lncRNA and disease using unbalanced bi-random walk
method. However, for the algorithm, the jump condition is
determined by known LDA data and the two similarity
matrices. For a node ni in an LDA network, if two other
nodes nj and nk exhibit the same similarity with ni, nj and nk
may equally contribute to the jump. However, the node that has
lower similarities with other nodes should have more
contribution. Thus, we introduce Laplacian regularized least
squares to solve the problem. First, the lncRNA Laplacian
matrix Ll and the disease Laplacian matrix Ld are normalized
to assess the jump probability for each node via Eqs 14, 15.

Ll � (Ml)−1/2(Ml − Sl)(Ml)−1/2, (14)
Ld � (Md)−1/2(Md − Sd)(Md)−1/2, (15)

where Ml/Md represent the diagonal matrices of lncRNAs/
diseases whose element Ml(i, i)/Md(j, j) denotes the
summation of the i-th/ j-th row of Sl/Sd .

Second, to optimize the above minimum problems, the loss
functions in the lncRNA and disease spaces are defined based on
Laplacian matrices Ll and Ld via Eqs. 11 and 12, respectively:

minFl[‖YT − Fl‖2F + ηl‖Fl · Ll · (Fl)T‖2F], (16)

minFd[‖Y − Fd‖2F + ηd‖Fd · Ld · (Fd)T‖2F] , (17)

where ‖ ·‖F denotes the Frobenius norm, (·)T indicates the
transpose, and ηv and ηd represent trade-off parameters.
Models (11) and (12) can be solved via Eqs. 13 and 14,
respectively:

Fp
l � Sl(Sl + ηl · Ll · Sl)−1YT, (18)

Fp
d � Sd(Sd + ηd · Ld · Sd)−1Y . (19)

To comprehensively detect the effect of unbalanced bi-random
walk on the inference performance, we replace Y using LDA
association probabilities computed by random walks. Assume
that Eqs. 20 and 21 can be defined as follows:
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Fl � Sl(Sl + ηl · Ll · Sl)−1, (20)
Fd � Sd(Sd + ηd · Ld · Sd)−1. (21)

At the t-th walking, Eqs. 22 and 23 can be defined as

Pt
l � Fd · Pt

l , (22)
Pt
d � Pt

d · Fl. (23)
In conclusion, the LDA-RLSURW calculates the association

score for each lncRNA-disease pair by combining association
scores from the lncRNA and disease networks using Eq. 24:

Pt � 1
2
(Pt

l + Pt
d). (24)

4 EXPERIMENTS

4.1 Experimental Settings and Evaluation
The semantic contributionweight α is set as 0.5, the jump probability
γ is set as 0.001, the maximal iteration number on the lncRNA
network nl is set as 31, the maximal iteration number on the disease
network nr is set as 1, and Laplacian regularized least square
parameters ηl and ηd are set as 0.01. When the parameters are

set as the above values, respectively, the LDA-RLSURW
computes the best AUC on the lncRNADisease dataset.
Therefore, we choose the parameters as the corresponding
values. For other parameters, we set them as defaults provided
by corresponding methods. The proposed LDA-RLSURW
method and other comparative methods are evaluated using
area under the receiver operating characteristic curve (AUC).
Larger AUC values denote better performance.

4.2 Performance Comparison With Other
Methods
To assess the performance of our proposed LDA-RLSURW
method, we compare it with other 10 classical LDA prediction
methods, that is, LNCSIM1, LNCSIM2, ILNCSIM, and
IDSSIM (Fan W. et al., 2020). LNCSIM1 and
LNCSIM2 measured the disease similarity separately using
DAGs and the information content and computed association
score for each lncRNA-disease pair by Laplacian regularized
least squares. IDSSIM designed novel lncRNA functional
similarity and disease semantic similarity computation
approaches and computed the lncRNA-disease association
scores using the computed similarity matrices and weighed
K nearest known neighbor method. Table 1 shows the AUC

TABLE 1 | AUC values of LDA prediction methods on the lncRNADisease dataset.

LNCSIM1/LNCSIM2 ILNCSIM IDSSIM RWRlncD IIRWR

5-fold CV 0.8892/0.8881 0.8866 0.8966 0.6976 0.7781
SIMCLDA LRLSLDA LLCPLDA LDA-LNSUBRW LDA-RLSURW
0.7986 0.8174 0.8678 0.8874 0.9027

The LNCSIM1, LNCSIM2, LRLSLDA, and LDA-RLSURW are Laplacian regularized least square-based LDA methods, and the LDA-RLSURW can compute a better AUC. The results
demonstrate that integrating unbalanced bi-random random walk can improve the performance. In addition, the IDSSIM and LDA-RLSURW computed the lncRNA similarity and disease
similarity using the same method. The IDSSIM used the weighed K nearest known neighbor method to compute the lncRNA-disease association scores. The LDA-RLSURW outperforms
IDSSIM, which show that the combination of Laplacian regularized least square and unbalanced bi-random walk can improve the LDA prediction performance compared to weighted K
nearest known neighbormethod. Both RWRlncD and IIRWR are randomwalk with restart-based LDA predictionmethods. The SIMCLDA is an inductive matrix completion-basedmethod.
The LLCPLDA is a locality-constraint linear coding-based method. The LDA-RLSURW computes a better AUC than RWRlncD, IIRWR, SIMCLDA, and LLCPLDA, which further validates
the powerful performance of LDA-RLSURW.

TABLE 2 | Inferred top 30 lncRNAs associated with LN.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 MINA the MNDR database
2 HOTAIR Known 17 PVT1 the MNDR database
3 MEG3 Known 18 TUG1 Unconfirmed
4 H19 Known 19 PANDAR Unconfirmed
5 GAS5 Known 20 XIST the MNDR database
6 UCA1 Known 21 HULC Unconfirmed
7 CCAT2 Known 22 HNF1A-AS1 Unconfirmed
8 SPRY4-IT1 Known 23 PTENP1 Unconfirmed
9 CCAT1 Known 24 KCNQ1OT1 Unconfirmed
10 CDKN2B-AS1 Known 25 HIF1A-AS2 Unconfirmed
11 BANCR Known 26 DANCR Unconfirmed
12 BCYRN1 Known 27 NPTN-IT1 Unconfirmed
13 PCAT1 Known 28 CRNDE Unconfirmed
14 SOX2-OT Known 29 CBR3-AS1 Unconfirmed
15 CASC2 Known 30 MIR31HG Unconfirmed

The bold values denotes lncRNAs that were predicted to associate with LN and need to further validate in Table 2.
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values of LDA prediction methods on the lncRNADisease
dataset. From Table 1, we can see that LDA-RLSURW
computes the best AUC, which demonstrates the powerful
LDA prediction performance of LDA-RLSURW.

4.3 Case Study
In this section, we conduct case studies to find potential lncRNA
biomarkers for lung neoplasms, NSCLC, and adenocarcinoma of
lung after confirming the performance of the proposed LDA-
RLSURW method.

4.3.1 Finding Potential lncRNA Biomarkers for Lung
Neoplasms
Lung neoplasms are one of the leading causes of death associated
with malignant tumors in China (Khanmohammadi et al., 2020).
Thus, Wang et al. (2020) investigated 14,528 lung cancer patients
suffering from multiple primary malignant neoplasms (MPMN)
and found 364 MPMN cases. In this section, we inferred the top
30 lncRNA biomarkers associated with lung neoplasms. The results
are shown in Table 2 and Figure 2. From Table 2 and Figure 2, we
can find that 15 lncRNAs are known to be associated with lung
neoplasms in the lncRNADisease database, 3 lncRNAs (MINA,
PVT1, and XIST) are unknown to be associated with lung
neoplasms in the lncRNADisease database, which can be
validated by the MNDR database (Cui et al., 2018). In addition,
12 lncRNAs are predicted to link to lung neoplasms and may be
possible biomarkers of lung neoplasms.

More importantly, we predict that lncRNA taurine-upregulated
gene 1 (TUG1)may be associatedwith lung neoplasms. TUG1 is one
of lncRNAs that were first identified to associate with human disease.
It is linked to diverse physiological processes, for example, gene
regulation involved in translation, post-translation, transcription,
and post-transcription. In this section, we infer that TUG1 may be
the biomarker of lung neoplasms (Guo et al., 2020).

4.3.2 Finding Potential lncRNA Biomarkers for NSCLC
The NSCLC is a subtype of lung cancer. It is one of the leading
causes of cancer death in the United States and accounts for 85% of

lung cancers among all its subtypes. Although we have achieved
important advancements in the NSCLC treatment, our
understanding about the biology and mechanisms of NSCLC
progression and early detection is still superficial. In this
section, we aim to infer new lncRNA biomarkers for NSCLC
after confirming the performance of LDA-RLSURW. The
predicted top 30 lncRNAs associated with NSCLC are presented
in Table 3 and Figure 3. From Table 3 and Figure 3, we can find
that 18 lncRNAs associated with NSCLC are known in the
lncRNADisease database, 10 lncRNAs associated with NSCLC
have been validated in the MNDR database, and 2 lncRNAs
(MINA and PTENP1) associated with NSCLC are unknown
and require validation. The lncRNA PTENP1 has exerted the
tumor-suppressive function through modulating PTEN
expression in multiple malignancies. We predict that the

TABLE 3 | Inferred top 30 lncRNAs associated with NSCLC.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 PANDAR Known
2 HOTAIR Known 17 HIF1A-AS1 Known
3 MEG3 Known 18 PCAT1 the MNDR database
4 GAS5 Known 19 CASC2 the MNDR database
5 H19 Known 20 SOX2-OT the MNDR database
6 UCA1 Known 21 HULC the MNDR database
7 CCAT2 Known 22 MINA Unconfirmed
8 SPRY4-IT1 Known 23 PTENP1 Unconfirmed
9 CDKN2B-AS1 Known 24 HIF1A-AS2 the MNDR database
10 PVT1 Known 25 HNF1A-AS1 Known
11 CCAT1 Known 26 KCNQ1OT1 the MNDR database
12 TUG1 Known 27 CRNDE the MNDR database
13 BANCR Known 28 DANCR the MNDR database
14 BCYRN1 Known 29 MIR31HG the MNDR database
15 XIST Known 30 NPTN-IT1 the MNDR database

The bold values denotes lncRNAs that were predicted to associate with NSCLC and need to further validate in Table 3.

FIGURE 2 | Associations between the inferred top 30 lncRNAs and lung
neoplasms (LN). Black solid lines represent known LDAs in the
lncRNADisease database. Blue-dot lines represent LDAs that can be
observed in the MNDR database. Red-dash lines represent LDAs
predicted to be potential lncRNA biomarkers of LN.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9330096

Guo et al. LDA-RLSURW

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


PTENP1 may be a potential biomarker of NSCLC (Herbst et al.,
2018; Arbour and Riely, 2019; Fan et al., 2020; Leighl et al., 2019).

4.3.3 Finding Potential lncRNA Biomarkers for Lung
Adenocarcinoma
The NSCLC is divided into three main subtypes: lung squamous cell
carcinoma, large-cell lung cancer, and lung adenocarcinoma
(LUAD), among which lung squamous cell carcinoma and
LUAD are the most prevalent. In this section, we predict possible
lncRNAs associated with LUAD. The results are shown in Table 4
and Figure 4. From Table 4 and Figure 4, we can find that
6 lncRNAs are known to associate with LUAD, 2 lncRNAs are
not known to associate with LUAD in the lncRNADisease database,
although they are known in the MNDR database, and 22 lncRNAs
have not been confirmed to associate with LUAD.

Urothelial carcinoma associated 1 (UCA1) is an oncogenic
lncRNA. It is highly expressed in many cancers. UCA1 can bind
to tumor-suppressive microRNAs, activate a few pivotal signaling
pathways, and alter epigenetic and transcriptional regulation.
More importantly, its high expression is linked to poor
clinicopathological characteristics. In this section, we predict
that UCA1 may associate with LUAD and require validation
(Yao et al., 2019).

5 DISCUSSION

LNCSIM1 and LNCSIM2 obtained better performance
improvements based on cross-validation and case analyses.
However, LNCSIM1 cannot effectively distinguish the

TABLE 4 | Inferred top 30 lncRNAs associated with LUAD.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 XIST Unconfirmed
2 HOTAIR Known 17 PANDAR Unconfirmed
3 MEG3 Known 18 BCYRN1 Unconfirmed
4 GAS5 Known 19 PCAT1 Unconfirmed
5 CCAT1 Known 20 HULC Unconfirmed
6 HNF1A-AS1 the MNDR database 21 CASC2 Unconfirmed
7 MIAT Known 22 SOX2-OT Unconfirmed
8 H19 the MNDR database 23 PTENP1 Unconfirmed
9 UCA1 Unconfirmed 24 MINA Unconfirmed
10 CDKN2B-AS1 Unconfirmed 25 CRNDE Unconfirmed
11 PVT1 Unconfirmed 26 DANCR Unconfirmed
12 TUG1 Unconfirmed 27 WT1-AS Unconfirmed
13 CCAT2 Unconfirmed 28 KCNQ1OT1 Unconfirmed
14 SPRY4-IT1 Unconfirmed 29 NPTN-IT1 Unconfirmed
15 BANCR Unconfirmed 30 CCDC26 Unconfirmed

The bold values denotes lncRNAs that were predicted to associate with LUAD and need to further validate in Table 4.

FIGURE 3 | Associations between the inferred top 30 lncRNAs and
NSCLC. Black solid lines represent known LDAs in the lncRNADisease
database. Blue-dot lines represent LDAs that can be observed in the MNDR
database. Red-dash lines represent LDAs predicted to be potential
lncRNA biomarkers of LN.

FIGURE 4 | Associations between the inferred top 30 lncRNAs and
LUAD. Black solid lines represent known LDAs in the lncRNADisease
database. Blue-dot lines represent LDAs that can be observed in the MNDR
database. Red-dash lines represent LDAs predicted to be potential
lncRNA biomarkers of adenocarcinoma of lung.
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semantic contributions of various disease terms from the identical
layer. LNCSIM2 computed the IC values only through integrating
DAG information. ILNCSIM is an edge-based prediction model.
It combined the concept of information content and the
hierarchical structure of DAGs to compute disease semantic
similarity.

The RWRlncD conducted random walk with restart on the
lncRNA similarity network. However, the RWRlncD cannot be
used to predict associated information for diseases without any
associated lncRNAs. The IRWRLDA improved random walk-
based method through setting an initial probability vector to
reduce the disadvantages of random walk with restart. The
SIMCLDA used an inductive matrix completion model to
complement missing LDA information. The LRLSLDA utilized
Laplacian regularized least square model to predict LDAs. The
LLCLPLDA first applied a locality-constraint linear coding model
to project the local-constraint characteristics of lncRNAs and
diseases, and then propagated LDAs by the initial LDA. The
LDA-LNSUBRW used linear neighborhood similarity
measurement and unbalanced bi-random walk algorithm to
find possible LDAs.

The LDA-RLSURW obtains better performance for lncRNA-
disease association prediction. It has three advantages: First, it
utilizes the biological features to compute the lncRNA and
disease similarity. Second, it uses unbalanced bi-random walk
to compute the lncRNA-disease association probability. In
conclusion, it further computes the lncRNA-disease

association probability combining Laplacian regularized least
squares.

6 CONCLUSION

Lung cancer is one of the most threatening cancer forms
worldwide. In this study, we designed a computational
method, LDA-RLSURW, to find possible lncRNA biomarkers
for lung cancer. LDA-RLSURW effectively combines unbalanced
bi-random walk and Laplacian regularized least square. We
predict that TUG1, PTENP1, and UCA1 may be the
biomarkers of lung neoplasms, NSCLC and LUAD, respectively.
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