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Objective: The currently established diagnostic and prognostic tools for

diabetic kidney disease (DKD) have limitations, which demands the necessity

to find new genes and pathways associated with diagnosis and treatment. Our

study aims to reveal the gene expression alteration and discover critical genes

involved in the development of DKD, thus providing novel diagnostic molecular

markers and therapeutic targets.

Materials and methods: The differences of infiltrating immune cells within

kidney were compared between healthy living donors and DKD patients.

Besides, differentially expressed genes (DEGs) within kidney from healthy

living donor, early stage DKD and advanced stage DKD samples were

detected. Furthermore, the weighted co-expressed network (WGCNA) and

protein-protein interaction (PPI) network were constructed, followed by

recognition of core hub genes and module analysis. Receiver operating

characteristic (ROC) curve analysis was implemented to determine the

diagnostic value of hub genes, correlation analysis was employed to explore

the association between hub genes and infiltrating immune cells, and certain

hub genes was validated by quantitative real-time PCR and

immunohistochemistry staining in cultured tubule cells and diabetic mice

kidney. Finally, the candidate small molecules as potential drugs to treat

DKD were anticipated through utilizing virtual screening and molecular

docking investigation.

Results: Our study revealed significantly higher proportion of infiltrating

immune cells within kidney from DKD patients via probing the immune

landscape by single-cell transcriptomics. Besides, 126 commonly shared

DEGs identified among three group samples were enriched in immune

biological process. In addition, the ROC curve analysis demonstrated the

strong diagnostic accuracy of recognized hub genes (NFKB1, DYRK2, ATAD2,

YAP1, and CHD3) from PPI network. Correlation analysis further confirmed the

positive association between these hub genes with infiltrating natural killer cells.

More importantly, the mRNA transcripts and protein abundance of YAP1 were
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significantly higher in high glucose-treated renal tubule cells and diabetic mice

kidney, and the small molecules exhibiting the best binding affinities with

YAP1 were predicted and acquired.

Conclusion: Our findings for the first time indicate that NFKB1, DYRK2, ATAD2,

YAP1, and CHD3 might be potential novel biomarkers and therapeutic targets

for DKD, providing insights into the molecular mechanisms underlying the

pathogenesis of DKD.
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Introduction

Diabetes mellitus (DM) has emerged as a global epidemic and

the worldwide prevalence of adult DM has reached 415 million

(Ogurtsova et al., 2017). Diabetes kidney disease (DKD) is among

themost severe complications related to DM, affecting 25 percent

of type 1 DM and 40 percent of type 2 DM, respectively

(Callaghan et al., 2012). DKD is characterized by increased

urine albumin excretion and microalbuminuria, as well as

diminished renal function, as shown by the increased plasma

creatinine concentration or diminished glomerular filtration rate

(Fineberg et al., 2013). DKD leads to a significant percentage of

end-stage renal disease (ESRD) and eventually results in renal

replacement therapy in developed countries (Yung et al., 2013;

Alicic et al., 2017). Despite the current use of angiotensin

converting enzyme inhibitors and angiotensin II receptor

blockers, the risk of DKD progression has still not been

lowered (Bash et al., 2008; Dounousi et al., 2015), pointing to

huge unsatisfied demand for innovative therapies for DKD. Of

note, a clinically silent early stage DKD develops along the course

of disease before the manifestation of advanced stage DKD

(Bjornstad et al., 2014; Chen L. et al., 2020), thus there is an

unmet need for discovering better diagnostic molecular markers

that can early identify individuals at high risk of DKD

progression, as well as better therapeutic targets for optimal

treatment to prevent the development to advanced stage DKD.

DKD is one of the most serious microvascular complications

of DM that is linked with systemic or renal inflammation (Winter

et al., 2018). Classic inflammatory biomarkers and effector

molecules, as well as immune cells, are dramatically increased

within the renal microenvironment of DKD patients (Mensah-

Brown et al., 2005). For instance, infiltrating T and B cells were

shown to be much higher in type 2 diabetic human kidneys and

were positively associated with the degree of proteinuria (Moon

et al., 2012). The infiltration and activation of immune cells

within kidney microenvironment contributes to the acceleration

of chronic inflammation, renal damage, and advancement of

DKD (Matoba et al., 2019). Accordingly, dysregulated renal

immune status and overwhelming inflammation possibly serve

as indicators for early detection and monitoring of disease

progression, as well as potential targets for therapeutic

intervention. On the other side, the integrated use of

bioinformatics approaches based on high-throughput

techniques has enabled the investigation of significantly

altered genes that are closely linked with immune cell

infiltration and activation (Li et al., 2020; Li et al., 2022).

However, to the best of our knowledge, there are few studies

that employed bioinformatic tools to analyze the existing

multiple genomics data and find new potential biomarkers or

therapeutic targets associated with immune status alteration

within DKD kidney.

The objective of our current research is to comprehensively

analyze the transcriptomic profiles of the existing DKD-related

datasets for a deeper understanding of the pathogenesis of DKD

(Figure 1). Findings from our investigation indicated a

significantly higher proportion of immune cells including

natural killer (NK) cells in diabetic kidney in comparison with

healthy living donor by using Single-cell sequencing (scRNA-

seq) dataset GSE131882. Besides, using public transcription

profiling by array data (GSE142025) including kidney samples

fromDKD patients and healthy living donor, we for the first time

identified five novel hub genes (NFKB1, DYRK2, ATAD2, YAP1,

and CHD3) that were significantly linked with the immune status

such as NK cells infiltration and validated by Receiver operating

characteristic (ROC) curve analysis. More importantly,

significantly higher YAP1 transcripts and protein expression

were validated in high glucose-treated tubule cells and diabetic

mouse kidney tissue. Finally, two small molecules with the

highest binding affinities to YAP1 were screened by molecular

docking.

Materials and methods

Retrieval of single-cell RNA sequencing
dataset collection

The scRNA-seq data was derived from the Gene Expression

Omnibus (GEO) dataset with the accession number

GSE131882 that includes 23,980 single-cell transcriptomes
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from three healthy kidney samples and three diabetic kidney

samples, respectively. The analysis of scRNA-seq data was

conducted by the R package Seurat (Song et al., 2022) and

data filtering and normalization were carried out. Cells with a

unique feature count of more than 2,000, fewer than 200 or with a

mitochondrial count of more than 10% were eliminated

(Supplementary Figure S1), and the remaining 20,552 cells

were used for subsequent analysis. Moreover, unsupervised

clustering was performed via uniform manifold approximation

and projection (UMAP) and t-distributed stochastic neighbor

embedding (t-SNE), while the immune cell cluster was manually

annotated using the known immune cell marker genes (CD3G,

CD8A, FCGR3A, and NCAM1). Then, immune cells were

selected for the subcluster analysis. Among the identified

subclusters, we annotated the NK cell cluster by known NK

cell marker genes (KLRD1, IL2RB, FCGR3A, and SLAMF6).

Retrieval of microarray dataset collection,
identification of differentially expressed
genes and gene ontology analyses

The high throughput gene expression profile of

GSE142025 dataset that contains kidney biopsy from 9 healthy

living donor, 6 early stage DKD and 22 advanced stage DKD

samples were obtained from GEO and firstly standardized,

normalized by Transcripts Per Kilobase Million (Fan et al.,

2019). The R edgeR package was used to identify differentially

expressed genes (DEGs) (Robinson et al., 2010). Genes with

log2foldchange > 0.8 and p-value < 0.05 were defined as DEGs

between healthy living donor and early stageDKDor advanced stage

DKD samples, while genes with log2foldchange > 1.5 and p-value <
0.05 were defined as DEGs between early stage DKD and advanced

stage DKD samples. Volcano plots and heatmap clusters of the

DEGs were plotted using the ggplot modules of R package. The

overlapping DEGs among all three group samples were further

screened to define the commonly shared DEGs essential for the

pathogenesis of DKD, and these commonly shared DEGs were

subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis through

clusterprofiler package.

Evaluation of immune cells infiltration

Microenvironment Cell Populations-counter (MCP-

counter) R package, a transcriptome-based computational

method that robustly quantifies the absolute infiltration

abundance of eight immune (CD3+ T cells, CD8+ T cells,

cytotoxic lymphocytes, NK cells, B lymphocytes, cells

originating from monocytes (monocytic lineage), myeloid

dendritic cells, neutrophils), as well as two stromal cell

subpopulations (endothelial cells and fibroblasts) in a

heterogeneous tissue sample was employed in our current

study (Becht et al., 2016). From a gene expression matrix,

MCP-counter calculates an abundance score for each cell

subtype in each sample, and these scores can be utilized for

comparing the abundance of each cell subpopulations across

FIGURE 1
Flowchart of the analysis used in this study.
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samples within a cohort. In our current study, the T cells, NK

cells and fibroblasts were selected for further analysis.

Weighted co-expression network and
protein-protein interaction network

A weighted gene co-expression network (WGCNA) was

implemented via the WGCNA package in R language for

transcriptomic data of GSE142025 (Langfelder and Horvath,

2008). A similarity matrix was constructed by calculating the

correlation coefficient between any two genes, and the similarity

matrix was subsequently converted into an adjacency matrix

according to the optimal soft threshold. The cutreeDynamic

function was used for tree pruning of the gene hierarchical

clustering dendrograms resulting in co-expression modules.

Modules with a similarity >0.75 were then combined into a

single module with a minimum of 50 genes. Association between

eigenvalues and immune status was assessed by Pearson’s

correlation, and the modules with the strongest associations to

immune cells was selected as candidate module for additional

investigation. The STRING database (http://stringdb.org/)

was applied to establish the module genes-encoded proteins

and their connections. Cytoscape was used to design and test

the protein-protein interaction (PPI) network, and the degree

was utilized to rank and select hub genes by cytoHubba plugin.

The diagnostic accuracy values of selected hub genes were

determined by ROC curve analysis from the pROC package

(Robin et al., 2011).

Correlation analysis between differentially
expressed genes and infiltrating immune
cells

The commonly shared DEGs among three groups were

regarded as critical regulators linked with the development of

DKD. Accordingly, the ggstatsplot package was utilized to

implement correlation analysis between these commonly

shared DEGs and infiltrating immune cells.

Validation of hub genes on independent
datasets

The high throughput gene expression profiles of GSE30122

(Na et al., 2015), GSE96804 (Pan et al., 2018), and GSE104954

(Grayson et al., 2018) datasets that contain kidney biopsy from

healthy living donor and DKD samples were obtained and used

for validation of hub genes. GSE30122 contains 10 DKD

glomeruli and 24 control glomeruli samples,

GSE96804 contains 41 DKD kidney and 20 control samples,

and GSE30122 contains 7 DKD kidney and 18 control samples.

Cell culture

Human proximal tubular cell line, human kidney 2 (HK-2)

cells purchased from American Type Culture Collection (ATCC,

Manassas, VA, United States ) were cultured in Dulbecco’s

Modified Eagle Medium/Nutrient Mixture F-12 supplemented

with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin at

37°C in 5% Co2. Cells were growth arrested in culture media

containing 0.5% FBS for 12 hours before the initiation of all

experiments. For high glucose (HG) administration, HK-2 cells

were subjected to 5.5 mM glucose as normal treatment or 45 mM

glucose as HG treatment.

RNA isolation and quantitative real-
time PCR

Trizol reagent (Life Technologies Corporation, Carlsbad, CA,

United States) was utilized to extract the total RNA from HK-2

cells. Isolated RNA was utilized for synthesizing cDNA by High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Carlsbad, CA, United States). Quantitative real-time PCR (qRT-

PCR) analyses were performed in the StepOnePlus Real-time

PCR Systems (Applied Biosystems) using SYBR Green Master

Mix (Applied Biosystems). The following sets of primers were

used: β-ACTIN: 5′-GCACAGAGCCTCGCCTT-3′ (forward)

and 5′-GTTGTCGACGACGAGCG-3′ (reverse); YAP1: 5′-
TGACCCTCGTTTTGCCATGA-3′ (forward) and 5′-GTT
GCTGCTGGTTGGAGTTG-3′ (reverse). Template cDNA was

added to each PCR reaction and each biological sample was

conducted in technical duplicates for each gene. The thermal

cycling conditions consisted of pre-denaturation at 95°C for

2 min; 40 cycles of 95°C for 30 s, 58°C for 30 s, and 72°C for

60 s; and a final extension at 72°C for 5 min. Relative

quantification of genes in each individual sample was

normalized to β-ACTIN expression using StepOne software

v2.3 (Applied Biosystems).

Animal experiment

Male mice (6 weeks old, 20 ± 2 g) were purchased from

Shanghai Model Organisms Center (Shanghai, China). All mice

were kept under standard conditions (23°C ± 2°C, 60% humidity)

with a 12 h light-dark cycle and allowed free access to food and

water. All animal procedures were approved by the Animal Care

and Use Committee and performed in accordance with the

ethical guidelines of Sun Yat-sen University (Approval

Number: 2021001252). Diabetic kidney mice were induced by

high-fat diet (Research Diets, New Brunswick, NJ, United States)

for 8 weeks followed by a single intraperitoneal injection of

streptozotocin at a dosage of 35 mg/kg/day for five

consecutive days, whereas the control mice were received
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common normal diet (Research Diets) and injected

intraperitoneally with equal volume of citrate buffer. After the

completion of the high-fat diet for another 8 weeks, mice were

deeply anesthetized (200 mg/kg ketamine hydrochloride,

10 mg/kg xylazine, 0.2 mg/kg acetylpromazine) and euthanized

by decapitation. Kidneys were excised, snap-frozen in liquid

nitrogen, and stored at −80°C until use.

Immunohistochemistry staining

Paraffin-embedded kidney section was deparaffinized and

rehydrated, followed by microwave-based antigen retrieval in

citrate buffer. Sections were quenched by 3% hydrogen peroxide

and blocked with 2% bovine serum albumin. The primary antibody

against YAP1 (ab205270, Abcam, Cambridge, United Kingdom) was

added according to the instructions and incubated at 4°C for 12 h. The

secondary antibody (ab205718, Abcam) was added and incubated at

room temperature for 10 min. DAB (Dako, Carpinteria, CA,

United States) was added and counterstained for 5 min, and the

staining was observed under a microscope. Quantification of staining

was performed using ImageJ analysis software.

Virtual screening and molecular docking
protocol

The protein structure of YAP1 protein was determined by

AlphaFold2 that is capable of learning far more effectively with

little data and producing correct structure models without known

templates (Jumper et al., 2021). The structure of 1615 FDA approved

small molecule drugs were downloaded from zicn15 database

(Sterling and Irwin, 2015). The virtual screening was applied on

the AutoDock Vina that is an application of PyRx (Dallakyan and

Olson, 2015). The parameters in virtual screening were set as

“center_x = −3.53547519904, center_y = 11.7871326158,

center_z = 10.6340273361, size_x = 62.2605676947, size_y =

43.6242652316, and size_z = 40.4080936428”. Two small

molecules with the lowest binding free energy (low binding free

energy represents a stable protein-molecule complex) were selected as

two best docking models with the largest ligand-binding affinities.

The molecular docking was completed on Autodock4 software, and

the docking results were plotted by Pymol software.

Results

Immune cells increased in kidney tissue
from Diabetes kidney disease samples

An unsupervised clustering technique was employed to

recognize 12 distinct cell types by using the scRNA-seq

dataset of GSE131882. Among these cell clusters, cluster 9 had

a greater number of immune cell markers and was therefore

designated as an immune cell cluster (Figures 2A,B). Cluster

9 was comprised of 860 cells, 602 of which were from DKD

samples and 258 of which were from healthy living donor

samples (Figure 2C), indicating a significantly elevated

infiltrating immune cells within kidney microenvironment of

DKD patients. By further subcluster analysis on the immune cell

cluster, we found that there were eight subclusters among

immune cells, and subcluster 2 had a greater number of NK

cell markers and was therefore designated as the NK cells

(Figures 2D,E). Subcluster 2 was comprised of 144 NK cells,

129 of which were fromDKD samples and 15 of which were from

healthy living donor samples (Figure 2F), indicating a

significantly elevated infiltrating NK cells within kidney

microenvironment of DKD patients. Consistently, by using

the MCP-counter technique to quantify the absolute

abundance of immune cells, we also found robustly increased

values of NK cells within kidney from both early stage DKD and

advanced stage DKD samples (Supplementary Figure S2).

Identification of differentially expressed
genes

Upon setting the cut-off criterion as p-values < 0.05 and

log2foldchange > 0.8, 2,692 DEGs (1,518 upregulated and

1,174 downregulated) between the 9 healthy living donors and

6 early stage DKD samples were recognized in

GSE142025 dataset, and the volcano and heatmap plots of

DEGs were plotted in Figures 3A,B. Meanwhile, 6,005 DEGs

(4,033 upregulated and 1,972 downregulated) between the

9 healthy living donors and 21 advanced stage DKD samples

were recognized based on p-values < 0.05 and log2foldchange

> 0.8, with the volcano and heatmap plots of DEGs displayed

in Figures 3C,D. Moreover, 1,211 DEGs (1,200 upregulated and

11 downregulated) between the 6 early stage DKD samples

and 21 advanced stage DKD samples were found based on

p-values < 0.05 and log2foldchange >1.5, with the volcano pot

and heatmap plot DEGs presented in Figures 3E,F. In addition,

the Venn diagram was implemented to exhibit the commonly

shared 126 DEGs among samples from three different disease

stages (Figure 4A).

Gene ontology and pathway enrichment
analysis of commonly shared differentially
expressed genes

The commonly shared DEGs among three group samples in

GSE142025 dataset were uploaded to clusterprofiler package to

perform GO and KEGG pathway enrichment analysis. The most

enriched GO terms in biological process (BP) term included

various immune processes such as neutrophil activation,
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immune response-activating signal transduction, T cell

activation, and mononuclear cell differentiation

(Supplementary Table S1), which to some extent agreed

with our previous findings showing the significantly

elevated infiltrating immune cells within kidney

microenvironment of DKD patients (Figure 2). The

primarily enriched KEGG pathways contained B cell

receptor signaling, tumor necrosis factor (TNF) signaling,

the cell adhesions, and T cell receptor signaling

(Supplementary Table S2).

Construction of the weighted co-
expressed network

In WGCNA analysis, the expression data of commonly

shared DEGs was utilized to find the co-expressed gene

modules. A soft threshold (β) = 16 (Figures 4B,C) was

selected to ensure a scale-free network (R2 = 0.84;

Supplementary Figure S3). Modules having a height cut-off

value of 0.25 were deemed similar and chosen for further

integration (Figure 4D). Six modules (colored by green, blue,

yellow, brown, turquoise, and gray) were recognized, and

associations between modules and traits were determined.

Interestingly, the yellow module possessed the most positive

correlation with NK cells (r = 0.83) and fibroblasts (r = 0.85)

with the lowest p-values (Figure 4E).

Identification and evaluation of hub genes

Subsequently, the 16 genes from the yellow module were

uploaded into the STRING platform to construct a PPI

network of 13 nodes and 26 edges (Figure 5A). Five genes

with a higher degree value, including nuclear factor kappa B

subunit 1 (NFKB1), dual specificity tyrosine phosphorylation

regulation kinase 2 (DYRK2), ATPase family AAA domain

containing 2 (ATAD2), yes-associated protein 1 (YAP1) and

chromodomain helicase DNA binding protein 3 (CHD3),

were recognized as hub genes that play key roles in the

pathogenesis of DKD. ROC curves were employed to

evaluate the diagnostic value of each hub gene, with the

AUC values being 0.976, 0.969, 0.988, 0.925, and 0.733 for

NFKB1, DYRK2, ATAD2, YAP1, and CHD3, respectively

(Figures 5B–F), confirming the capacity of these hub genes

to distinguish DKD from healthy living donors.

FIGURE 2
Integrated scRNA-seq of kidneys from healthy living donors and diabetic samples. (A) The identified clusters by TSNE analysis. (B) The
expression patterns of immune cells biomarkers. (C) The distributions of immune cell clusters. (D) The identified subclusters among immune cells by
TSNE analysis. (E) The expression patterns of NK cells biomarkers. (F) The distributions of NK cell clusters. HLD, healthy living donor; DKD, diabetic
kidney disease.
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Expression patterns of hub genes

Analysis of all the five hub genes (NFKB1, DYRK2, ATAD2,

YAP1, andCHD3) fromGSE142025 dataset revealed that all of them

reached the highest expression levels in the kidney tissues of

advanced stage DKD samples (Figure 6A). Besides, the

expression levels of CHD3 and DYRK2 were minimized in the

kidney tissues of healthy living donor samples (Figure 6A). By

contrast, the kidney tissues of early stage DKD samples had the

lowest expression levels of ATAD2, NFKB1, and YAP1 (Figure 6A).

Validation of hub genes on another three
independent datasets

Then, the five recognized hub genes were further validated in

another three bulk transcriptomic datasets from kidney tissue. In

accordance with our previous findings from GSE142025, CHD3,

DYRK2, and NFKB1 were significantly higher in DKD samples

from GSE30122 (Supplementary Figure S4), NFKB1 and ATAD2

were found dramatically elevated in DKD samples from

GSE96804 (Supplementary Figure S5), and ATAD2, DYRK2,

and NFKB1 substantially increased in DKD samples from

GSE104954 (Supplementary Figure S6).

Validation of yes-associated protein
1 expression, and correlation of the hub
genes with natural killer cell

To verify the constant shift in YAP1 expression in DKD, we

evaluated the mRNA and protein expression levels of YAP1 using

qRT-PCR and immunohistochemistry staining. Consistent with

the highest expression of YAP1 gene in the kidney tissues of

advanced stage DKD samples (Figure 6A), YAP1 transcripts were

found to be significantly elevated in cultured tubular cells treated

with high glucose (Figure 6C), and a greater amount of YAP1 was

detected in tubular cells from DKD mice kidney (Figure 6B).

Moreover, our data revealed that the expression levels of NFKB1,

DYRK2, ATAD2, YAP1 and CHD3 were positively correlated

with NK cell infiltration, with the correlation values being 0.91,

0.84, 0.89, 0.75, and 0.87 forNFKB1,DYRK2, ATAD2, YAP1, and

CHD3, respectively (Figures 7A–E). The consistence of enhanced

YAP1 expression under diabetic conditions with previous

bioinformatics analysis, together with the powerful

associations between hub genes and NK cells, suggested the

essential roles of these hub genes in triggering the

dysregulated immune status. From the overall analysis of hub

genes and expression analysis, overexpression of DYRK2 and

CHD3 could be the potential diagnostic biomarkers for early

FIGURE 3
The volcano and heatmap plots of differentially expressed genes (DEGs). Red points indicate up-regulated genes, green points indicate down-
regulated genes, and gray points indicate genes with no significant difference. (A,B) DEGs from 9 healthy living donors and 6 early stage DKD
samples. (C,D) DEGs from 9 healthy living donors and 21 advanced stage DKD samples. (E,F) DEGs from 6 early stage DKD and 21 advanced stage
DKD samples. HLD, healthy living donor; DKD, diabetic kidney disease.
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stage DKD, while overexpression of NFKB1, ATAD2 and YAP1

could be the possible prognostic biomarkers for advanced stage

DKD. Particularly, the obviously upregulated YAP1 might

represent a potential therapeutic target for DKD.

Virtual screening and molecular docking

The virtual screening results from Vina software showed that

the higher binding abilities of these small molecules were

ZINC000003978005 (−9.7 kcal/mol), ZINC000006716957

(−9.7 kcal/mol), ZINC000242548690 (−9.6 kcal/mol),

ZINC000150338819 (−9.4 kcal/mol), ZINC000169289767

(−9.2 kcal/mol), and ZINC000164760874 (−9.0 kcal/mol).

Then, ZINC000003978005 and ZINC000006716957 were

submitted to the molecular docking analysis. The bindings of

these two small molecules with YAP1 were shown in

Figures 8A,B.

Discussion

DKD is one serious microvascular complication of long-term

DM associated with growing global public health and economic

burden (Tang and Yiu, 2020). Nevertheless, current therapies

such as renin-angiotensin-aldosterone system or sodium-glucose

cotransporter 2 inhibitors cannot impede the malignancy of

DKD, partly due to the incomplete understanding of the

complicated etiology. Therefore, it is of great importance to

explore the new molecular mechanisms, find novel key genes,

FIGURE 4
Weighted co-expressed network (WGCNA) analysis. (A) Venn diagram for differentially expressed genes. (B) A graph showing the selection of a
soft threshold. (C) Under different soft thresholds, the mean connectivity of genes is calculated. (D) The original module (dynamic tree cut) and
allocated mergedmodules (merged dynamic). (E)Module-trait links. Each row corresponds to a module eigengene, and the column corresponds to
cytotoxic T lymphocytes (CTLs), fibroblast, natural killer (NK) cells. Correlation and p-value were displayed for each cell subtype. HLD, healthy
living donor; DKD, diabetic kidney disease.

Frontiers in Genetics frontiersin.org08

Li et al. 10.3389/fgene.2022.934555

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.934555


biomarkers and potential small-molecule inhibitors that may be

helpful for the diagnosis, monitoring and treatment of DKD.

Our current study aims to reanalyze the omics molecular

profiles available in the public databases to recognize the

potential diagnosis, monitoring and prognosis biomarkers, as

well as small-molecule chemical perturbagens for DKD

(Figure 1). We firstly found the apparently elevated infiltrating

NK cells in kidney tissues from DKD patients using the scRNA-

seq dataset. Secondly, a total of 126 commonly shared DEGs were

identified using bulk RNA-seq data of kidney tissues from

healthy living donor, early stage DKD and advanced stage

DKD patients. Gene annotations of these commonly shared

DEGs revealed upregulations of immune-related biological

processes such as neutrophil activation, immune response-

activating signal transduction, T cell activation, and

mononuclear cell differentiation, suggesting a crucial role of

immune cell-mediated proinflammatory status in the

development of DKD. Subsequently, five novel hub genes

(NFKB1, DYRK2, ATAD2, YAP1, and CHD3) were recognized

and demonstrated the strong diagnostic accuracy of

distinguishing DKD patients from healthy living donors.

Intriguingly, correlation analysis further confirmed the

positive association between these five hub genes and

infiltrating NK cells. More importantly, the mRNA transcripts

and protein abundance of YAP1 were in line with the

bioinformatics analysis results to display the significantly

higher expression level of YAP1 in high glucose-treated renal

tubule cells and diabetic mice kidney.

Our study not only displayed increased proportions of

immune cells in DKD kidney by unsupervised clustering

technique towards the scRNA-seq dataset, but also unraveled

significantly enriched immune-cell related biological processes

derived from DEGs of bulk RNA-seq data, which is consistent

with previous findings to imply the altered humoral and cellular

immunity within DKD renal microenvironment, as well as the

essential role of activated immune cells in the pathogenesis of

DKD (Tang and Yiu, 2020). Specifically, NK cells are a subgroup

of innate lymphocytes that are crucial for local immunological

responses (Turner et al., 2019), and human NK cells in healthy

kidneys serve as sentinels to help preserve the barrier integrity

against infections (Bjorkstrom et al., 2016). However, NK cells

also demonstrated direct cytotoxic effects on injured tubular

FIGURE 5
Identification of hub genes and the evaluation the diagnostic value of each hub gene. (A) Top five hub genes were selected by the Cytohub
program. The AUC values of five hub genes: NFKB1 (B), DYRK2 (C), AYTAD2 (D), YAP1 (E), CHD3 (F).
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FIGURE 6
YAP1 was increased in advanced stage DKD samples, high glucose treated HK-2 cells, and mice kidney of diabetic kidney disease. (A) The
expression patterns of hub genes among healthy living donor, early stage DKD, and advanced stage DKD samples. (B) Representative IHC staining of
YAP1 on mice kidney section of diabetic kidney disease. (C) High glucose treatment increased the mRNA expression in HK-2 cells. For all graphs,
results were expressed as mean ± SD of data from three experiments. *p < 0.05 versus control (CTL). CTL, control; HG, high glucose; HLD,
healthy living donor; DKD, diabetic kidney disease.

FIGURE 7
The correlations of hub genes NFKB1 (A), DYRK2 (B), AYTAD2 (C), YAP1 (D), CHD3 (E) with infiltrating natural killer cells.
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epithelial cells in triggering and boosting the chronic

inflammation by stimulating the production of

proinflammatory molecules and activating other immune

cells (Uchida et al., 2019). In line with the previous

evidence, WGCNA analysis employed in our current

investigation found that a gene module (colored by yellow)

was significantly linked with NK cell infiltration, and five

upregulated hub genes (NFKB1, DYRK2, ATAD2, YAP1, and

CHD3) were further chosen as the core hub genes within this

module. In addition, the correlation analysis further

confirmed the obviously positive association of these five

upregulated hub genes with infiltrating NK cells,

supporting our hypothesis that these five novel hub genes

advanced the development of DKD possibly via activation of

immune cells and initiation of proinflammatory status within

kidney microenvironment.

To date, the established noninvasive diagnostic and

prognostic tools for DKD have limitations. For example,

two commonly used indicators, urinary albumin-creatinine

ratio and estimated glomerular filtration rate, are not

sensitive enough as biomarkers to indicate the degree of

renal dysfunction and injury for differentiating early stage

DKD (Bjornstad et al., 2015; Said and Nasr, 2016).

Furthermore, the current therapeutic options, including

blood pressure optimization, optimal control of

hyperglycemia and lipid levels, and maximizing the renin-

angiotensin-aldosterone system blockade can only slow but

not block the progression of DKD (Nathan et al., 2013).

Therefore, early and specific diagnosis and innovative

strategies are urgently needed to both prevent and treat

DKD, and many DKD-related new biomarkers including

proteins, metabolite products and genes have been

discovered in the past decades. Nevertheless, most of

these markers were limited by the lack of specificity and

sensitivity. The development of high-throughput

technologies, such as single-cell or bulk-tissue

transcriptomes, is emerging as one of the most promising

approaches in discovering sensitive biomarkers and specific

therapeutic targets (Herzallah and Karny, 2011).

Accordingly, we further verified the hub genes (NFKB1,

DYRK2, ATAD2, YAP1 and CHD3) in GSE142025 dataset,

and discovered the highest expression of all the five hub

genes in advanced stage DKD samples. By comparison, the

minimal expression of CHD3 and DYRK2 were observed in

healthy living donor samples, and early stage DKD samples

encountered the weakest expression of ATAD2, NFKB1, and

YAP1. These expression patterns of hub genes proposed

CHD3 and DYRK2 as the putative early diagnostic

biomarkers for DKD, while ATAD2, NFKB1, and YAP1 as

putative biomarkers for monitoring DKD progression. More

importantly, the validations of these upregulated hub genes

in another three transcriptomic datasets (GSE30122,

GSE96804, GSE104954) strengthened their potential as

diagnostic or putative biomarkers for DKD.

Particularly, our current findings agree with previous

evidence to show the close association of NFKB1 and

YAP1 with the pathogenesis of DKD. Elevated NFKB1

mRNA expression was attributable to the development of

pro-inflammatory status in children and adolescents with

type 1 diabetes, which might eventually result in

deterioration in renal function and, ultimately, DKD (de

Melo et al., 2022). Administration of NF-κB inhibitor

reduced glomerular inflammation and oxidative stress in

DKD animal model (Foresto-Neto et al., 2020). YAP1 is

the Hippo pathway’s primary transcriptional coactivator

and has been linked to chronic inflammation in multiple

organs and tissues (Zheng et al., 2021). In accordance with

our current results showing the robust elevation of YAP1 in

both high glucose-treated tubule cells and diabetic mice

kidney, enhanced expression and activation of YAP1 were

previously observed in renal proximal tubular epithelial cells

in diabetic mice model and patients (Chen J. et al., 2020),

while inducible YAP1 deletion or pharmacologically

inhibition of YAP1 dramatically reduced tubulointerstitial

inflammation and fibrosis in DKD mice (Zheng et al., 2021).

Hence, findings from our study precipitates one hypothesis

that enhanced YAP1 in renal tubular epithelial cells might

produce inflammatory and adherence factors to recruit and

activate immune cells, although the mechanism underlying

FIGURE 8
Molecular docking results of YAP1 with
ZINC000003978005 (A) and ZINC000006716957 (B). Green color
represents the structure of YAP1 protein, the blue color represents
the structure of small molecules, and the yellow color
represents the hydrogen bonds between the YAP1 protein and
small molecules.
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the activity of YAP1-acitvated tubular cells in exaggerating

the immune response and boosting DKD development

remains to be elucidated yet. Interestingly, two small

molecules with the highest binding affinities with

YAP1 were identified using the virtual screening and

molecular docking analysis, which underpins and warrants

more research to unveil the potential of YAP1 as one

potential therapeutic target for DKD.

Among these five hub genes, there is still little known

about what roles and mechanisms DYRK2, ATAD2 and

CHD3 play in the pathogenesis of DKD. DYRK2 is a

serine/threonine kinase that regulates cell apoptosis in

response to DNA damage through effectively

phosphorylating p53 at Ser46 (Yogosawa et al., 2021).

ATAD2 has genome-regulatory activities, like cell growth,

differentiation and death (Wu et al., 2014), while

CHD3 contributes to the chromatin remodeling by

deacetylating histones that is required for a variety of

activities like transcription (Sharapova et al., 2020). That’s

to say, although our results suggested that these five novel

hub genes have correlations with infiltrating immune cells

and the development of DKD, further efforts and

investigation in numerous areas are urgently needed if

these newly discovered hub genes are highlighted as

promising biomarkers or therapeutic targets for the

monitoring and treatment of disease to succeed.

Our research has some significant limitations. Firstly,

our study was constrained by the sample size, and more

samples from different platforms could have increased the

robustness of the findings. Secondly, experiments to

evaluate the immune cells infiltration within renal

microenvironment could have yielded a more persuasive

conclusion, considering our bioinformatics analysis has also

shown the dramatically elevated infiltrating immune cells.

Finally, the close link between the five newly discovered hub

genes with infiltrating NK cells by WGCNA and small-

molecule inhibitors could have been validated by

extensive experimental and clinical validation to dig

deeper insight on the potential mechanism. Accordingly,

future studies to verify the roles of these hub genes in

orchestrating immune cell responses, as well as early

diagnosis, risk stratification and monitoring of DKD

patients, are urgently required before advancements can

be made.

Conclusion

In conclusion, we identified novel key genes and potential

candidate small molecule drugs in DKD by integrated

bioinformatics analysis. We for the first time identified

NFKB1, DYRK2, ATAD2, YAP1, and CHD3 as five newly

discovered hub genes closely associated with the occurrence

and development of DKD. Besides, significantly elevated

YAP1 transcripts and protein levels were validated in

cultured tubule cells and diabetic mice kidney, and two

small-molecule drugs were identified as potential inhibitors

for YAP1 to treat DKD. Extensive investigation of these hub

genes revealed their capacity to trigger immune cells

activation and distinguish DKD patients from healthy

living donors, highlighting the potential of these hub genes

as new biomarkers and therapeutic targets for the monitoring

and treatment of DKD.
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