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Background: Glioma is the most prevalent malignant intracranial tumor. Many

studies have shown that angiogenesis plays a crucial role in glioma

tumorigenesis, metastasis, and prognosis. In this study, we conducted a

comprehensive analysis of angiogenesis-related genes (ARGs) in glioma.

Methods: RNA-sequencing data of glioma patients were obtained from

TCGA and CGGA databases. Via consensus clustering analysis, ARGs in

the sequencing data were distinctly classified into two subgroups. We

performed univariate Cox regression analysis to determine prognostic

differentially expressed ARGs and least absolute shrinkage and selection

operator Cox regression to construct a 14-ARG risk signature. The

CIBERSORT algorithm was used to explore immune cell infiltration, and

the ESTIMATE algorithm was applied to calculate immune and stromal

scores.

Results: We found that the 14-ARG signature reflected the infiltration

characteristics of different immune cells in the tumor immune

microenvironment. Additionally, total tumor mutational burden increased

significantly in the high-risk group. We combined the 14-ARG signature with

patient clinicopathological data to construct a nomogram for predicting 1-, 3-,

and 5-year overall survival with good accuracy. The predictive value of the

prognostic model was verified in the CGGA cohort. SPP1 was a potential

biomarker of glioma risk and was involved in the proliferation, invasion, and

angiogenesis of glioma cells.

Conclusion: In conclusion, we established and validated a novel ARG risk

signature that independently predicted the clinical outcomes of glioma

patients and was associated with the tumor immune microenvironment.
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Introduction

Glioma is the most common malignant tumor of the central

nervous system (CNS), accounting for approximately 15% of all

brain tumors (Ostrom et al., 2019). By degree of malignancy,

gliomas are classified into low-grade gliomas (LGGs) and

glioblastoma multiforme (GBM) (Louis et al., 2016). Despite the

availability of a variety of treatment options including surgery,

radiotherapy and chemotherapy, immunotherapy, and targeted

therapy (Aldape et al., 2019), prognosis in glioma has remained

poor; this is especially true in GBM patients, whose median survival

time is < 15 months (Chen et al., 2017; Xu et al., 2020a). This poor

prognosis is largely attributed to aberrant angiogenesis, high

invasiveness, and therapeutic resistance (Furnari et al., 2007; Tan

et al., 2018). According to previous research, gliomas with IDH

mutation and 1p/19q codeletion have a relatively favorable

prognosis (Eckel-Passow et al., 2015). The methylation status of

the MGMT promoter has emerged as a key predictive biomarker of

glioma and a potential predictor of response to temozolomide (Wick

et al., 2014; Butler et al., 2020). However, additional research is

needed to explore novel prognostic biomarkers and identify new

therapeutic targets.

Angiogenesis refers to the formation of new blood vessels in the

existing vasculature, which plays a pivotal role inmany physiological

and pathological processes such as embryonic development, wound

healing, and tumor progression (Carmeliet, 2005). The

pathophysiological processes of angiogenesis are reported to play

critical roles in glioma development and therapeutic resistance

(Onishi et al., 2011). Due to the important role of angiogenesis

in gliomas, the use of angiogenesis-related genes (ARGs) to

effectively stratify risk determining potential targets for

individualized treatment is a promising research strategy.

However, there have been few studies on the link between ARGs

and prognosis in patients with glioma.

More recently, numerous studies have shown that the tumor

immune microenvironment (TIME) plays a critical role in tumor

progression and response to therapeutics (Quail and Joyce, 2017).

Tumor-infiltrating immune cells can regulate tumor growth and

invasion and are key components of the tumor microenvironment

(TME) (Xu et al., 2020a; Xu Y. et al., 2020c). `The existing body of

research on the TME suggests that immunotherapy is a promising

method for the treatment of malignant tumors (Kruger et al., 2019;

Xu et al., 2020b). In addition, the components of the TIME are

closely correlated with the efficacy of immunotherapy.

In this study, we used data from the Cancer Genome Atlas

(TCGA) and the Chinese Glioma Genome Atlas (CGGA)

databases to explore the expression profiles and prognostic

value of ARGs in gliomas. Then, based on ARG expression,

we constructed clustering subgroups and risk models to verify the

predictive value of ARGs in risk stratification and clinical

outcome. We also evaluated the associations between the ARG

expression risk signature and the immune microenvironment,

tumor mutational burden (TMB), and immunotherapy response.

Finally, to validate the clinical application of the ARG expression

signature, a nomogram model was developed to predict the

overall survival (OS) rates of glioma patients. The flow chart

of this study is shown in Figure 1.

Materials and methods

Data resources

The TCGA dataset provided raw counts of RNA-sequencing

data (FPKM values) and accompanying clinical information for

glioma samples. The expression data and clinical information of the

validation RNA-seq cohort CGGA693 were acquired from the

CGGA website. We transformed the FPKM values into transcript

per million (TPM) values (Wagner et al., 2012); all values of the

expression data were log2 (x + 1)-transformed. The characteristics of

patients in the TCGA and CGGA cohorts are summarized in

Supplementary Table S1.

FIGURE 1
Flow chart of the study.
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Consensus clustering analysis

We used the R package ConsensusClusterPlus, version

1.54.0, for consistency analysis. The maximum number of

clusters was 6, and 80% of the total sample was drawn

100 times, clusterAlg = “hc,” innerLinkage = ’ward.D2.’ CDF

and consensus matrices were used to calculate the appropriate

number of subtypes. Then, we used PCA to detect differential

gene expression between the two subtypes.

Construction of the angiogenesis-related
gene signature

Univariate Cox regression analysis was performed to screen out

ARGs significantly correlated with survival (p < 0.001). Next,

biomarkers of the 28 ARGs were identified from the LASSO Cox

regression algorithm using the glmnet package in R. We calculated

the risk score of each glioma patient by the following formula:

Riskscore � ∑
n

i�1
(Coefipxi),

where Coefi is the coefficient of each ARG and xi is the expression

level of each ARG. In the risk score model, samples were

subdivided into high- and low-risk groups according to the

median risk score value.

Tumor-infiltrating immune
microenvironment analysis

CIBERSORT is a deconvolution method for expression

matrices of immune cell subsets (Newman et al., 2019).

LM22 is a gene signature matrix that specifies the content

of immune cell types. We used the CIBERSORT package in R

to calculate the number of immune cells per sample, setting

the permutation to 1,000 and selecting p < 0.05 as the

screening threshold. The ESTIMATE algorithm was used to

evaluate immune score, tumor purity, and stromal score

(Yoshihara et al., 2013). We calculated abundances of

immune infiltrates, including B cells, CD4+ T cells, CD8+

T cells, neutrophils, macrophages, and dendritic cells

(DCs), using Tumor IMmune Estimation Resource

(TIMER) (Li et al., 2017).

Single-sample gene set enrichment
analysis

We used the ssGSEA method with the Gene Set Variation

Analysis (GSVA) package in R to evaluate infiltration levels of

different immune cells, the related expression pathways, and the

activity of immune-related functions.

Tumor mutational burden analysis

We used the Maftools package to analyze and visualize

somatic-mutation data in order to study the mutational

landscapes of glioma patients (Mayakonda et al., 2018). TMB

was defined as the total number of somatic mutations per million

bases.

Survival analysis

We conducted Kaplan–Meier (KM) analysis to characterize

the differences in survival of glioma patients using the R packages

survival and survminer. The significance of differences in

survival time was determined by using the log-rank test

(p < 0.05).

Building and verification of the nomogram

The nomogram was constructed using the rms package in R.

We created a calibration curve to examine the consistency

between the actual survival rate and expected survival rate.

We built the nomogram model based on our multivariate Cox

regression results. We created calibration plots of the nomogram

for 1-, 3-, and 5-year OS using the “calibrate” function in rms.

Decision curve analysis (DCA) was used to assess the clinical net

benefit.

Protein–protein interaction

The protein–protein interaction (PPI) analysis of ARGs was

performed by using the STRING website (https://www.string-db.

org/). The interaction analysis was conducted by Cytoscape

software. The hub nodes were identified by the MCC method

of cytoHubba plugin.

Cell culture

We cultivated the glioma cell lines U87 and LN229 in high-

glucose Dulbecco’s modified Eagle’s medium (DMEM) with 10%

fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml

streptomycin at 37°C with 5% CO2. SPP1 small-interfering RNA

(siRNA) sequences were as follows: si-SPP1-1: CCAGTTAAA

CAGGCTGATT; si-SPP1-2: GTCTCACCATTCTGATGAA.
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Western blotting

Western blot (WB) analysis was performed as previously

reported (Han et al., 2017). Briefly, we extracted total proteins

using a Total Cell Protein Extraction Kit (KeyGen Biotechnology,

Nanjing, China). Equal amounts of protein were electrophoresed,

transferred onto nitrocellulose membranes, and blocked with 2%

bovine serum albumin (BSA). We used primary antibodies against

SPP1 (1:1,000; ab69498; Abcam, Cambridge, United Kingdom) to

detect the expression of this protein. After washing them four times

with Tris-buffered saline + Polysorbate 20 (TBST)/0.1% Tween-20,

we incubated the membranes with the corresponding secondary

antibody. A glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

protein band was used as a control to normalize protein levels. We

visualized protein bands using a chemiluminescence kit (Beyotime

Biotechnology, Beijing, China).

Cell viability assay

We inoculated the treated U87 and LN229 cells in 96-well

plates at a density of 1 × 103 cells/well for 24, 48, 72, 96, and 120 h.

The plates were examined using a cell viability assay kit (Promega

Corp., Fitchburg, WI, United States) in accordance with the

manufacturer’s protocol, as described previously (Wang et al.,

2021).

5-ethynyl-2′-deoxyuridine cell
proliferation assay

We performed an EdU assay to visualize the proliferating

cells and used a Click-iT EdU Alexa Fluor 488 Imaging kit

(Invitrogen Corp., Carlsbad, CA, United States) to detect cell

proliferation as per the manufacturer’s instructions. We

photographed EdU+ cells under a fluorescence microscope and

counted them using ImageJ software (National Institutes of

Health [NIH], Bethesda, MD, United States).

Transwell invasion assay

We performed a transwell invasion assay according to

previously described methods (Han et al., 2015). U87 and

LN229 cell invasion was assessed using a Matrigel-coated filter

over the lower compartment for 20 h. We counted the invading

cells under a microscope (Olympus, Tokyo, Japan).

Co-culture

Glioma cells and human brain microvascular endothelial

cells (hBMECs) were co-cultured in Boyden chambers. Briefly,

hBMECs were cultured in 6-well plates, while glioma cells were

seeded in chambers.

Tube formation assay

A pre-cooled 96-well plate was coated with 50 μl Matrigel

(BD Biosciences, United States) per well and incubated at 37°C

for 30 min. PBS was used to wash the tumor cells, and 0.25%

trypsin was used for digestion. Cells were collected and counted

using a hemocytometer after centrifugation. Then, the cells were

resuspended with serum-free DMEM, and 2 × 104 cells/well were

inoculated on the surface of Matrigel. After 12 h, tube formation

was photographed using a microscope (Olympus, Tokyo, Japan).

ImageJ software was used to quantify and analyze tubule

intersections.

Statistical analysis

Statistical analyses and visualization were carried out in R.

We performed time-dependent receiver operating characteristic

(ROC) curve analysis to evaluate the predictive value of the

constructed risk model using the R package survivalROC. The

Wilcoxon test was used for comparisons between two groups,

and the Kruskal–Wallis test was used for comparisons between

multiple groups. A two-sided p < 0.05 was considered to be

statistically significant.

Results

Consensus cluster analysis for
angiogenesis-related gene expression
profiles

The set of ARGs we obtained from Gene Set Enrichment

Analysis—Hallmark, Angiogenesis (GSEA) included 36 genes

that are upregulated in tumorigenic angiogenesis (Subramanian

et al., 2005; Ren et al., 2020). We performed consensus clustering

in the glioma patient training cohort to analyze the prognostic

implications of the ARGs (Figure 2A). The empirical cumulative-

distribution function (CDF) plot revealed the lowest rangeability

at 0.2–0.8, with k = 2 (Figure 2A); the delta area scores were the

highest also at k = 2 (Figure 2A). In addition, the maximum

consistency was found at k = 2 in the consensus matrix plot

(Figure 2A; Supplementary Figure S1). Therefore, k = 2 was

shown to have the best clustering stability. Cluster 1 (n = 260)

and cluster 2 (n = 403) were generated from a total of

663 patients. We used principal component analysis (PCA) to

display differences in gene expression levels between the two

subgroups (Figure 2A). The heatmap shows the expression

pattern of 36 ARGs in clusters 1 and 2 (Figure 2B). We found
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that immune score was significantly higher (p < 0.05), while

tumor purity was significantly lower (p < 0.05) in cluster 1 than in

cluster 2 (Figure 2C). Furthermore, a KM curve showed that the

OS outcome of cluster 1 was worse than that of cluster 2

(Figure 2D). In addition, cluster 1 had significantly higher

abundances of B cells, CD8+ T cells, neutrophils,

macrophages, and DCs than cluster 2 (p < 0.05), while there

was no between-cluster difference in CD4+ T cells (Figure 2E).

These results indicated that the cluster assignment based on

ARGs was closely related to prognosis and TIME in glioma.

FIGURE 2
(A)Consensus clustering, CDF, and relative change in the CDF AUCwith k = 2–6. (B)Heatmap of clinical information of the two clusters among
36 ARGs. (C) Tumor purity and ESTIMATE, stromal, and immune scores. (D) KM curve of glioma patients. (E) Content of six immune cells.
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Establishment and validation of the risk
signature based on angiogenesis-related
gene expression

First, we conducted univariate Cox regression analysis to

screen out 29 OS-related ARGs (p < 0.001) in the TCGA cohort

(Figure 3A). Subsequently, we selected these genes to conduct an

additional least absolute shrinkage and selection operator

(LASSO) Cox regression analysis (Figures 3B,C). The formula

was as follows: risk score = (LUM × −0.11114) + (SLCO2A1 ×

0.11913) + (VEGFA × 0.01235) + (POSTN × 0.06287) + (FSTL1 ×

0.14389) + (PRG2 × 0.00485) + (SERPINA5 × 0.07829) +

(MSX1 × 0.13564) + (PDGFA × 0.08695) + (TIMP1 × 0.1885)

+ (SPP1 × 0.18423) + (KCNJ8 × −0.00092) + (ITGAV × 0.08581)

FIGURE 3
(A) Univariate Cox regression analysis of the 36 ARGs in the TCGA cohort. (B) LASSO coefficient profiles of the common genes. (C) Cross-
validation for tuning parameter screening in the LASSO regressionmodel. (D)GO and KEGG enrichment analysis across the 14 genes. (E) Functional-
enrichment map of pathways of the 14 ARGs.
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FIGURE 4
Prognostic value of the risk score in TCGA and CGGA. (A,B) Distribution of risk score and survival status. (C,D) Expression pattern of 14 ARGs in
the high- and low-risk groups. (E,F) KM analysis of the risk model. (G,H) Time-dependent ROC curve analysis of the risk model.
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+ (TNFRSF21 × −0.0817). GO and KEGG enrichment analysis

was performed by R package “clusterProfiler” (Yu et al., 2012).

These genes were shown to be involved in extracellular

structure organization and the PI3K-Akt signaling pathway

(Figures 3D,E). Differential analysis was performed to detect

14 ARGs (Supplementary Figure S2). Patients in the training

cohort (TCGA) were divided into high- and low-risk groups

based on the median risk score. According to our findings, the

number of patients who died increased as their risk score

increased (Figures 4A,B). Differential expression levels of the

14 ARGs in the high- and low-risk groups are shown in

heatmaps (Figures 4C,D). To evaluate the role of the 14-

ARG signature in glioma, we drew KM curves for the high-

and low-risk groups of the TCGA cohort (Figure 4E). These

two subgroups significantly differed in OS (p < 0.0001).

Thereafter, we used a time-dependent ROC curve to predict

the efficacy of the risk signature. The area under the curve

(AUC) of the prediction model was 0.91 over 1 year, 0.91 over

3 years, and 0.86 over 5 years in the TCGA training cohort

(Figure 4G).

To assess the predictive value of the risk model, we used the

risk score algorithm in the CGGA cohort. The results in the

validation cohort revealed that glioma patients in the high-risk

group had worse survival rates than those in the low-risk group

(Figure 4F). The AUCs for 1-, 3-, and 5-year survival were 0.69,

0.75, and 0.75, respectively (Figure 4H). These findings suggested

that the 14-ARG risk model could accurately predict the

prognoses of patients with glioma.

Association between angiogenesis-
related gene risk signature and clinical
information

Expression of the 14 ARGs in low- and high-risk patients in

the TCGA and CGGA datasets is depicted by heatmaps (Figures

5A,C). Other than those of TNFRSF21, expression of the 13 other

ARGs increased significantly (p < 0.05) in the high-risk group

(Figure 5B) of the TCGA cohort. All 14 ARGs were highly

expressed in the high-risk group in the CGGA database (p <

FIGURE 5
(A,C) Heatmap of the 14-ARG expression pattern in clinicopathologic characteristics and risk score in the TCGA and CGGA databases. (B,D)
Expression differences in the 14 ARGs between the low- and high-risk groups in the TCGA and CGGA databases.
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FIGURE 6
(A) Relationship between risk score and each clinicopathological characteristic (IDH-mutant status, 1p/19q codeletion, MGMT promoter
methylation, age, WHO grade, and histology). (B) KM analyses of patients in the CGGA dataset stratified by IDH-mutant status, 1p/19q codeletion,
MGMT promotermethylation, age, andWHOgrade in the TCGA cohort. ROC curve analysis of the riskmodel in predicting 1-, 3- and 5-year OS in the
TCGA–LGG cohort and 1-, 2- and 3-year OS in the TCGA–GBM cohort.
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0.05; Figure 5D). We also performed survival analysis of single

ARGs in glioma patients (Supplementary Figures S3,S4). The

results showed that for glioma patients in the TCGA cohort, all of

the ARGs were prognostic-risk factors, except for TNFRSF21.

Thereafter, we evaluated differences in risk score between

different clinicopathological characteristics of glioma patients

in the training and validation cohorts, including IDH mutation

status, 1p/19q codeletion, MGMT promoter methylation, age,

WHO grade, and histology. The results showed that in the TCGA

dataset, the risk score was elevated in the IDH wild-type (WT),

1p/19q non-codeletion subtype, MGMT promoter unmethylated

subtype, older patients, and high-grade glioma (p < 0.05); we

validated these results in the CGGA dataset (Figure 6A;

Supplementary Figure S5A). Next, we drew KM curves of the

risk score signature stratified by IDH-mutant status, 1p/19q

codeletion, MGMT promoter methylation, age, and WHO

grade in the glioma patients of the training and validation

cohorts. The KM curve suggested the predictive value of the

ARG risk score signature in prognosis in the LGG and GBM

subgroups (Figure 6B; Supplementary Figure S5B). The results

demonstrated the power of the ARG risk score signature’s

prognostic value in the glioma subgroups of the TCGA cohort

(Figure 6B), and these results were consistent in the CGGA

cohort (Supplementary Figure S5B).

Because different grades of glioma have different clinical

features and prognoses, we performed subgroup analyses of LGG

and GBM. The relationships between risk score and each clinical

characteristic (IDH-mutant status, 1p/19q codeletion, MGMT

promoter methylation, age) in the TCGA/CGGA-LGG and

TCGA/CGGA-GBM subgroups are shown in Supplementary

Figures S6A,S6D and in Supplementary Figures S7A,S7D,

respectively. Tumor purity was significantly higher (p < 0.05)

and ESTIMATE, immune, and stromal scores significantly lower

(p < 0.05) in the low-risk group in the LGG and GBM subgroups

(Supplementary Figures S6B,S6E, Supplementary Figures

S7B,S7E). Expression differences of the 14 ARGs between the

high- and low-risk groups of the LGG and GBM subgroups are

shown in Supplementary Figures S6C,S6F and in Supplementary

Figures S7C,S7F. The ROC curve showed the efficiency of the risk

signature in these two subgroups. The AUC of the prediction

model was 0.896 over 1 year, 0.850 over 3 years, and 0.729 over

5 years in the LGG subgroup and 0.712 over 1 year, 0.665 over

2 years, and 0.683 over 3 years in the GBM subgroup (Figure 6B;

Supplementary Figure S5B). These results indicated the

predictive stability of the 14-ARG risk score model’s

prognostic value in both these subgroups.

Next, we performed univariate and multivariate Cox

regression analyses in the TCGA and CGGA cohorts to assess

the independent prognostic value of the ARG risk signature. We

observed that in univariate analysis, age,WHO grade, IDH status,

chromosome 1p/19q status, and risk score were significantly

correlated with prognosis in both the TCGA and CGGA cohorts

(Figures 7A,C). However, multivariate analysis indicated that

age, grade, and risk score were independent prognostic factors in

the TCGA cohort (Figure 7B; p < 0.05). In the validation cohort

(CGGA), we also found that risk score was an independent

prognostic factor (Figure 7D; p < 0.05).

Furthermore, we compared the prognostic predictive abilities of

20 different risk signatures of gliomas in TCGA from published

articles, including inflammatory response-related gene (IRRG)

signature (Yan et al., 2022), DNA damage and repair-related

gene (DDRRG) signature (Li et al., 2022c), CXCR members

signature (He et al., 2022), pyroptosis-related gene signature

(Zhang M. et al., 2021b; Chao et al., 2022; Yang et al., 2022;

Zhang et al., 2022), ECM-related gene (ECMRG) signature (Li

et al., 2022b), tripartite motif (TRIM) family gene signature (Xiao

et al., 2022), antigen presentation machinery (APM) signature

(Chen et al., 2022), natural killer cell-related gene (NKRG)

signature (Li C. et al., 2022a), IL-4-related gene (IL4RG)

signature (Qi et al., 2022), hypoxia-related gene (HRG) signature

(Gao et al., 2021), S100 family-based signature (Hu et al., 2021),

TIME signature (Zhang C. et al., 2021a), focal adhesion-related gene

(FARG) signature (Li et al., 2021), m6A RNAmethylation regulator

signature (Cong et al., 2021), HDAC1-related signature (Fan et al.,

2021), RNA-binding protein (RBP)-based signature (Chen et al.,

2021a) and ferroptosis-related gene (FRG) signature (Chen et al.,

2021b). The results of univariate and multivariate Cox analyses

showed that our ARG signature had independent predictive ability

(p < 0.001, Table 1).

Based on the abovementioned comprehensive analyses, we

considered the effect of risk score on prognosis to be accurate

and stable.

Angiogenesis-related gene risk signature
and the tumor immunemicroenvironment

The heatmap of immune responses based on the ESTIMATE

algorithms and single-sample GSEA (ssGSEA) is depicted in

Figure 8A. Tumor purity was substantially lower (p < 0.05) in the

high-risk group, but ESTIMATE, immune and stromal scores

were significantly higher (Figure 8B). We calculated the

proportions of 22 types of immune cells in each glioma

sample based on the CIBERSORT algorithm. Next, we

compared differences in proportions of immune cells between

the high- and low-risk groups in the TCGA database.

Abundances of CD8+ T cells, follicular helper T (Tfh) cells,

regulatory T cells (Tregs), gamma delta (γδ) T cells, resting

natural-killer (NK) cells, M0, M1, and M2 macrophages, and

neutrophils were significantly more enriched in the high-risk

than in the low-risk group (Figure 8C). Additionally, we

identified two immune subtypes based on immune-genomic

profiling of 29 immune signatures in ssGSEA. We found a

significantly higher risk score in the immunity-high subtype

than the immunity-low subtype (Figure 8D). We also

compared six immune cell types via the TIMER algorithm,
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and results showed that abundances of B cells, CD8+ T cells,

neutrophils, macrophages, and DCs were significantly higher in

the high-risk group (Figure 8E). We obtained similar TIME

infiltration results in the validation cohort (Supplementary

Figure S8), indicating greater infiltration of CD8+ T cells, Tfh

cells, Tregs, and M0 macrophages in the high-risk group

(Supplementary Figure S8C), and risk score remained higher

in the immunity-high subtype (Supplementary Figure S8D).

These results demonstrated that the ARG risk signature was

closely associated with infiltration of immune cells.

Angiogenesis-related gene risk signature
and mutational profile

The mutational landscapes between the low- and high-risk

groups of each glioma patient in TCGA were analyzed and are

displayed as a waterfall plot (Figures 9A,B). Compared with the

low-risk group, TMB was significantly high (p < 0.001) in the

high-risk group (Figure 9C). A log rank test and the KM curve

showed that the high-TMB group had worse survival outcomes

than the low-TMB group (p < 0.001; Figure 9D). We also drew

the survival curve of the TMB combined risk score (Figure 9E);

the results showed that the high-TMB plus high-risk score group

had a worse survival outcome (p < 0.001).

Angiogenesis-related gene risk signature
and immunotherapy

The association between risk score and immunotherapeutic

effect was also explored.We found that risk scores were positively

correlated with expression of crucial immune checkpoints

(B7H3, PD-L1, PD-L2, HAVCR2, LAG-3, PD-1, CTLA4, and

the inflammatory factors HLA-A, HLA-B, and HLA-C) in the

TCGA and CGGA databases (Figures 10A,B). Furthermore, we

evaluated immune checkpoint and HLA complex expression

levels. The high-risk group of the training and validation

cohorts had considerably greater expressions of both. (p <
0.05; Figures 10C,D). Collectively, the results suggested that

risk stratification could help predict the effect of

immunotherapy in gliomas.

Construction and validation of the
prognostic-nomogram model

To evaluate the prognostic significance of the ARG signature

in glioma patients, we established a nomogram model based on

age, WHO grade, and risk score (Figure 11A; Supplementary

Figure S9A) using our multivariate-analysis results. The C-index

of the nomogram model was generated to assess discriminating

FIGURE 7
(A,B) Univariate and multivariate Cox regression analyses in the TCGA cohort. (C,D) Univariate and multivariate Cox regression analyses of
clinicopathologic features in the CGGA cohort.
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abilities, and it performed well (TCGA training cohort, 0.875;

CGGA validation cohort, 0.735). In the TCGA and CGGA

cohorts, the calibration curves revealed a favorable consistency

between expected and observed survival rates (Figures 11B–D;

Supplementary Figures S9B–D). In addition, we used DCA to

examine the suitability of the nomogram in clinical settings. The

model exhibited an excellent net benefit (Figures 11E–G;

Supplementary Figures S9E–G). Taken together, the results

described above suggested that the nomogram model had

good reliability in predicting OS in glioma patients.

Knockdown of SPP1 significantly inhibited
cell proliferation, invasion, and
angiogenesis

SPP1 was overexpressed in the high-risk group of glioma

patients and was correlated with poor prognosis. The results of

PPI analysis and the MCCmethod of cytoHubba suggested SPP1

may be the hub gene (Figure 12A). In the U87 and LN229 glioma

cell lines, we determined the role of SPP1 using in vitro

experiments. SiRNA was used to reduce expression of SPP1 in

both U87 and LN229 cells; SPP1 protein expression levels are

shown in Figure 12B.We used a cellular-viability assay to analyze

the effects of SPP1 on the proliferation of U87 and LN229 cells.

The results, which were presented as the mean ± standard

deviation (SD) of three independent experiments, suggested

that SPP1 knockdown significantly reduced the viability of

glioma cells (Figure 12C; p < 0.05). Meanwhile, the results of

EdU assay suggested that SPP1 inhibited the proliferation

capacity of the glioma cell lines (Figure 12D). Transwell

experiments suggested that knockdown of SPP1 could also

inhibit migration and invasion of U87 and LN229 cells

Figure 12E). hBMECs co-cultured with si-SPP1 glioma cells

showed attenuated network formation when compared with

controls (Figure 13), which suggested knockdown of SPP1

inhibited angiogenesis.

Discussion

Despite advances in surgical and medical treatment, glioma

remains a fatal disease. Numerous studies indicate that aberrant

angiogenesis is involved in the processes of tumorigenesis,

development, invasion, and poor prognosis in glioma (Tan

et al., 2018). To date, there are still few studies on ARG in

TABLE 1 Univariate and multivariate Cox regression analyses of different risk signatures.

Characteristics Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Our ARG signature 3.032 (2.648–3.470) < 0.001 3.019 (1.808–5.041) <0.001

IRRG signature 13.574 (9.597–19.200) < 0.001 0.785 (0.342–1.804) 0.569

DDRRG signature 6.885 (5.419–8.748) < 0.001 2.899 (1.363–6.165) 0.006

CXCR member signature 1.251 (1.089–1.438) 0.002 0.971 (0.838–1.125) 0.698

PRG signature (Chao B et al.) 6.134 (4.858–7.745) < 0.001 0.714 (0.387–1.321) 0.283

PRG signature (Yang Z et al.) 2.555 (2.257–2.892) < 0.001 0.971 (0.698–1.350) 0.860

PRG signature (Zhang M et al.) 2.218 (2.013–2.444) < 0.001 1.165 (0.825–1.645) 0.385

PRG signature (Zhang Y et al.) 2.751 (2.413–3.135) < 0.001 1.177 (0.828–1.675) 0.364

ECMRG signature 5.518 (4.477–6.800) < 0.001 0.455 (0.182–1.136) 0.092

TRIM family gene signature 23.500 (14.501–38.083) < 0.001 0.904 (0.351–2.332) 0.835

APM signature 4.157 (3.333–5.185) <0.001 0.578 (0.341–0.979) 0.041

NKRG signature 1195154.632 (130202.538–10970558.754) < 0.001 5.857 (0.187–183.904) 0.315

IL4RG signature 266.447 (124.392–570.730) < 0.001 0.738 (0.117–4.646) 0.746

HRG signature 2.974 (2.532–3.495) < 0.001 0.923 (0.681–1.251) 0.606

S100 family-based signature 2.833 (2.475–3.244) < 0.001 0.784 (0.524–1.172) 0.235

TIME signature 5.365 (4.355–6.607) < 0.001 1.365 (0.704–2.646) 0.357

FARG signature 2.974 (2.502–3.535) < 0.001 0.689 (0.510–0.931) 0.015

m6A RNA methylation regulators signature 3.852 (3.236–4.586) < 0.001 0.845 (0.562–1.269) 0.416

HDAC1-related signature 3.605 (3.033–4.284) < 0.001 1.158 (0.796–1.685) 0.444

RBP-based signature 3.130 (2.673–3.664) < 0.001 1.081 (0.808–1.445) 0.602

FRG signature 2.786 (2.456–3.159) < 0.001 1.569 (1.053–2.338) 0.027

The bold values are p < 0.05.
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glioma (Biterge-Sut, 2020; Wang et al., 2022). Two major aspects

of glioma biological processes that contribute to treatment

resistance are abnormal formation of new blood vessels via

angiogenesis and invasion of glioma cells along white-matter

tracts (Carmeliet, 2005; Onishi et al., 2011). Although using

immunohistochemistry (IHC) to analyze the expression level

of a single angiogenesis gene is convenient (Tan et al., 2018; Peng

et al., 2021), multi-gene signature analysis can reveal the complex

interactions among various factors that affect angiogenesis in the

pathophysiology of gliomas. Therefore, application of multi-gene

methods might help researchers better describe the

characteristics of tumor biology, thereby guiding clinical

decision-making for accurate cancer diagnosis and treatment.

The effectiveness of single-ARG targeted treatment is still limited

(Onishi et al., 2011), suggesting that angiogenesis in glioma likely

results from multiple genes and factors and that exploration of

multi-gene signatures might provide guiding significance for

multi-target combined therapy.

In this study, we performed consensus clustering based on

the ARG expression level to create two clusters. KM analysis

showed that glioma patients in cluster 1 had unfavorable clinical

outcomes. Moreover, immune cell infiltration in cluster 1 was

greater than that in cluster 2. These results indicated that high

immune scores and high infiltration of immune cells were

correlated with poor prognosis, which was consistent with

that in previous studies (Deng et al., 2020; Tian et al., 2020;

Xu et al., 2021). Next, we identified 14 ARGs of significance and

applied them to build a risk model by combining LASSO and Cox

regression analyses. The risk score showed a favorable predictive

value for the survival rate of glioma patients in the training and

validation cohorts. Moreover, the risk score was found to be an

independent predictor of glioma prognosis in multivariate Cox

regression analyses. Furthermore, we established and validated a

nomogram model to predict OS in glioma. The calibration curve

revealed high concordance between predicted and actual OS

rates, indicating good prediction performance of the

nomogram model.

The biological functions of 14 ARGs have been moderately

studied in various cancers, but not as much in gliomas.

Crocker et al., (2011) found that TIMP-1 serum level is

positively correlated with TIMP-1 expression in tumor

tissue and inversely correlated with survival time of glioma

FIGURE 8
Relationship between risk signature and TIME in the TCGA database. (A)Heatmap of risk score and the two immunity subtypes based on ssGSEA.
(B) Comparison of tumor purity and of ESTIMATE, immune, and stromal scores in the high- and low-risk groups. (C) Association between immune
cells and the risk signature. (D) Comparison of risk score between the immunity-high and immunity-low subtypes. (E) Abundances of six immune
cells in the high- and low-risk groups.
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patients. VEGFA is a critical target of anti-angiogenic

treatment for a variety of malignant tumors, including

gliomas, since it is a fundamental mediator of tumor

angiogenesis (Tamura et al., 2019). In addition to

angiogenesis, VEGFA can inhibit the maturation of DCs to

inhibit tumor immune response and induce

immunosuppressive cells (Lindau et al., 2013). Previous

research studies have shown that elevated VEGFA

expression levels are related to poor prognosis in many

tumors, including gliomas (Hicklin and Ellis, 2005). Reddy

et al., (2008) found that overexpression of FSTL1 is a

biomarker of poor prognosis in GBM patients, and Jin

et al., (2017) demonstrated that this gene is a critical

modulator that promotes cell proliferation and cell cycle

progression. Overexpression of SPP1 is associated with

poor OS in patients with glioma (Chen et al., 2019). The

results of our functional experiments showed that SPP1

knockout could inhibit the proliferation, invasion, and

angiogenesis of glioma cell lines U87 and LN229.

Therefore, we believe that SPP1 might affect the prognosis

of glioma by helping regulate angiogenesis and cell

proliferation. The abovementioned evidence indicated that

the 14 ARGs might play important roles in angiogenesis,

invasiveness, and the TIME of gliomas. This also suggested

that the ARG risk signature could help support clinical

decision-making in glioma patients.

Previous studies have shown that immune infiltration

plays an important role in determining therapeutic effect

and prognosis in glioma patients (Gentles et al., 2015;

Pereira et al., 2018; Kruger et al., 2019; Xu et al., 2020b).

Tumor angiogenesis facilitated by hypoxia in the TIME leads

to an antitumor immune response (Abou Khouzam et al.,

2020). Macrophages are abundant cell components in the

glioma microenvironment, which can promote

proliferation, invasion, and migration of glioma (Uneda

et al., 2021). Researchers have found that a high level of

FIGURE 9
Mutational profile and TMB in the low- and high-risk groups. (A)Mutational profile in the low-risk group. (B) Mutational profile in the high-risk
group. (C) Difference in TMB between low- and high-risk groups. (D) KM analysis of the high- and low-TMB groups. (E) Survival curve of the TMB
combined risk score.
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infiltrating CD8+ T cells is correlated with poor prognosis in

glioma (Zhai et al., 2017; Weenink et al., 2019; Guo et al.,

2020). Therefore, we further explored the relationship

between immune cell infiltration and risk stratification.

Data from the ESTIMATE algorithm showed that ARG risk

stratification was negatively correlated with tumor purity and

positively correlated with immune and stromal scores, which

suggested higher infiltration levels of immune and stromal

cells in the TME of the high-risk group. Numerous studies

have shown that TAMs might promote the proliferation and

progression of gliomas by enhancing immunosuppression,

migration, invasion, and angiogenesis (Li and Graeber,

2012; Coniglio and Segall, 2013; Kennedy et al., 2013;

Zhang Y. et al., 2021c). In our study, we found that the

high-risk group had a higher infiltration of

immunosuppressive cells such as M2 macrophages and

Tregs, which create an immunosuppressive

microenvironment and inhibit NK cell activation. The

abundance of activated NK cells in the high-risk group was

lower than that in the low-risk group. In general, we speculate

that the poor prognosis of glioma patients in the high-risk

group might be related to the tumor immunosuppressive

microenvironment.

Multiple studies have reported that glioma acquires

aggressive characteristics depending on a series of genome

alterations (Kim et al., 2015; Yin et al., 2020). TMB has

become a novel potential biomarker for predicting the

efficacy of immune checkpoint therapy in many cancers

(Braun et al., 2016; Chan et al., 2019). We explored the

mutational profiles and TMBs of the high- and low-risk

groups to investigate the predictive value of the risk model.

We found that TMB increased significantly in the high-risk

group and that patients with high TMB had poor prognoses.

Consistent with our findings, Yin et al., (2020) found that

TMB is negatively correlated with OS in glioma patients.

Previous studies have suggested that immune checkpoints

and the HLA complex have been implicated in the

treatment response and prognosis of glioma (Luoto et al.,

2018; Cloughesy et al., 2019; Feng et al., 2019). Kim et al.,

(2020) found that HAVCR2 (TIM-3) plays specific

intracellular and intercellular immunoregulatory roles in

the TME of gliomas. Studies have shown that the HLA level

is positively related with development of gliomas (Machulla

et al., 2001). In this study, risk score was positively correlated

with expression of immune checkpoint molecules and HLA

complex. These findings demonstrated the 14-ARG risk

model’s accuracy in the prediction of the TIME of glioma,

which therapeutic targets based on this signature might alter.

The ARG expression signature could be used to predict

clinical prognosis and efficacy of immunotherapy in glioma

FIGURE 10
(A,B) Correlation of risk score to immune checkpoints and HLA complex expression levels. (C,D) Difference in expression of immune
checkpoints and the HLA complex between the high- and low-risk groups.
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FIGURE 11
Construction and validation of the nomogram to predict OS in glioma patients. (A) The nomogramwas established using age, WHO grade, and
the ARG risk signature in the TCGA cohort. (B–D) Calibration curve of the nomogram for predicting the probability of OS at 1, 3, and 5 years in the
TCGA cohort. (E–G) DCA of the OS-related nomogram at 1, 3, and 5 years in the TCGA cohort.
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FIGURE 12
SPP1 experiments. (A) PPI analysis and the MCCmethod of cytoHubba showed that SPP1 had the highest hub node score. (B) SPP1 knockdown
using two independent SPP1 siRNAs (si-SPP1-1, si-SPP1-2) in U87 and LN229 cells was evidenced by WB analysis. GAPDH was using as loading
control. (C) Cellular-viability assays demonstrated that silencing SPP1 inhibited the growth of U87 and LN229 cells. (D) Representative images of
cellular-proliferation assays using EdU staining (left) and quantification of EdU+ cells (right). Nuclei were counterstained with Hoechst 33,342
(scale bar: 50 μm). (E) Matrigel assay demonstrated that knockdown of SPP1 inhibited U87 and LN229 invasion (scale bar: 100 μm).
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patients, and it might itself constitute a potential therapeutic

target.

Conclusion

In summary, the study analyzed the expression pattern

and predictive value of ARGs in gliomas. Furthermore, we

used a risk model based on the expression of ARGs to predict

survival, and the risk score was correlated with the TIME in

gliomas. The risk score can be used as an independent

prognostic indicator. However, further studies using

prospective, large-scale, multicenter clinical cohorts are

needed to validate the risk model.
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Tube formation assay. Knockdown of SPP1 inhibited tumor angiogenesis in vitro. All experiments were performed in triplicate.
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