
A novel lactate
metabolism-related signature
predicts prognosis and tumor
immune microenvironment of
breast cancer

Zhihao Zhang1, Tian Fang2 and Yonggang Lv1*
1Department of Thyroid Breast Surgery, Xi’an NO. 3 Hospital, The Affiliated Hospital of Northwest
University, Xi’an, China, 2Department of Medical Oncology, Cancer Center, West China Hospital of
Sichuan University, Chengdu, China

Background: Lactate, an intermediate product of glycolysis, has become an

essential regulator of tumor maintenance, development, and metastasis.

Lactate can drive tumors by changing the microenvironment of tumor cells.

Because of lactate’s important role in cancer, we aim to find a novel prognostic

signature based on lactate metabolism-related genes (LMRGs) of breast

cancer (BC).

Methods: RNA-sequencing data and clinical information of BC were enrolled

from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

database. We obtained LMRGs from the Molecular Signature Database v7.4 and

articles, and then we compared candidate genes with TCGA data to get

differential genes. Univariate analysis and most minor absolute shrinkage and

selector operator (LASSO) Cox regression were employed to filter prognostic

genes. A novel lactate metabolism-related risk signature was constructed using

a multivariate Cox regression analysis. The signature was validated by time-

dependent ROC curve analyses and Kaplan–Meier analyses in TCGA and GEO

cohorts. Then, we further investigated in depth the function of the model’s

immune microenvironment.

Results: We constructed a 3-LMRG-based risk signature. Kaplan–Meier curves

confirmed that high-risk score subgroups had a worse prognosis in TCGA and

GEO cohorts. Then a nomogram to predict the probability of survival for BCwas

constructed. We also performed Gene Ontology (GO) enrichment analysis and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway function analysis.

The function analysis showed that the lactatemetabolism-related signaturewas

significantly related to immune response. A significant correlation was observed

between prognostic LMRGs and tumor mutation burden, checkpoints, and

immune cell infiltration. AnmRNA–miRNA network was built to identify anmiR-

203a-3p/LDHD/LYRM7 regulatory axis in BC.

Conclusion: In conclusion, we constructed a novel 3-LMRG signature and

nomogram that can be used to predict the prognosis of BC patients. In addition,

the signature is closely related to the immune microenvironment, which may

provide new insight into future anticancer therapies.
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Introduction

Breast cancer (BC) is the most common cancer among

women, which seriously threatens women’s health. The

current risk stratification of BC is mainly based on

clinicopathological factors, including tumor stage, tumor size,

lymph node status, and molecular subtypes (Ding et al., 2021).

However, the high heterogeneity of BC causes the current

stratification to fail to provide proper treatment and

prognostic information, leading to inadequate or excessive

treatment (Wang et al., 2020). Therefore, it is necessary to

develop novel and credible prognostic markers to provide

more accurate stratification for BC, which can guide clinicians

to make better individualized treatment decisions.

In recent years, tumor metabolism has received increasing

attention. In particular, there has been increased interest in the

“Warburg effect” (Goodwin et al., 2019). Despite normoxic

conditions, tumor cells will still use glycolysis, which leads

tumor tissues to have more lactate accumulation than normal

tissues. Lactate promotes tumor cell migration, aggregation, and

immune escape by regulating themicroenvironment. In addition,

a high concentration of lactate can directly kill immune cells

(Warburg, 1956). Lactate can regulate the function of immune

cells in tumors, thereby establishing an immunosuppressive

microenvironment to promote tumor progression (Feichtinger

and Lang, 2019). Therefore, lactate plays an essential role in

tumorigenesis and proliferation in tumor cells. But there is a

paucity of lactate metabolism-related signatures of BC.

Accordingly, we aimed to establish a lactate metabolism-

related signature for BC.

In our study, we analyzed RNA-seq and clinical information

in The Cancer Genome Atlas (TCGA) dataset to filter

differentially expressed LMRGs between breast cancer and

normal tissues, and further extracted prognostic genes to

construct a lactate metabolism-related prognostic signature.

The function enrichment analysis indicated that the module

was significantly related to immune response. Therefore, we

further analyzed the relationship between lactate-related

prognostic genes and the immune microenvironment. The

results show that this model can not only predict survival but

also stratify patients and low-risk BC patients who are often more

sensitive to immunotherapy.

Materials and methods

Datasets and preprocessing

In our study, the transcriptome RNA-sequencing data and

clinical information of BC were enrolled from The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/),

including 104 normal tissues and 1,078 tumor tissues. The

gene expression matrix and clinical data for the validation

cohort were obtained from the Gene Expression Omnibus

database (GEO, https://www.ncbi.nlm.nih.gov/geo/).

GSE53031 includes 197 tumor samples with breast cancer.

Data analysis was performed with the R (version 4.1.0) and R

Bioconductor packages.

Preprocessing and analysis of lactate
metabolism-related gene expression data

A total of two gene sets related to lactate metabolism (lactate

metabolic process and lactate transmembrane transport) were

acquired from the Molecular Signature Database v7.4 (MSigDB;

https://www.gsea-msigdb.org/gsea/msigdb) (Liberzon et al.,

2011). Moreover, we extracted the other three genes related to

lactate metabolism by browsing the articles. We found

differentially expressed genes (DEGs) in BC and normal

tissues through the “limma” R package with the specific

criteria of FDR <0.05 and | log2FC |≥1 in TCGA cohort. The

differentially expressed LMRGs were exhibited by the heatmap

and gene ranking dot plot.

Establishment of a lactate metabolism-
related gene prognostic signature

We obtained lactate metabolism genes significantly

associated with prognosis by generating a univariate analysis.

Subsequently, the least absolute shrinkage and selector operator

(LASSO) Cox regression (R package “glmnet”) was performed to

prevent the overfitting problem (Goeman, 2010). Based on these

prognostic LMRGs, we constructed a prognostic model by

developing multivariate Cox regression. The risk score was

based on the specific formulate “Riskscore = gen1 * coef1 +

gen2 * gen2 + . . . + genx * coefx.” Then the samples were divided

into high and low groups according to the median score. The

overall survival between the two risk subgroups was compared by

Kaplan–Meier analysis with the log-rank test. The “survivalROC”

R package generated the time-dependent curve analysis to assess

the predictive accuracy of the LMRG prognostic signature.

Independent prognostic analysis of the
signature

We accessed the BC patients’ clinical information (age, stage,

pT, pN, and pM). These variables were analyzed in combination
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with the risk score by conducting univariate and multivariable

Cox regression. We also compared the clinical information with

prognostic LMRGs. Subsequently, we developed a nomogram to

predict the probability of survival.

Functional enrichment and immune
analysis between the two risk groups

We divided BC patients into high- and low-risk subgroups

based on the median scores. We compared the two risk groups to

extracted DEGs with specific criteria (|log2FC|≥1 and

FDR <0.05). Based on these candidate DEGs, Gene Ontology

(GO) enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were generated by applying

the “clusterProfiler” package. Then the “gsva” R package was

developed to conduct the ssGSEA to compute the scores of

infiltrating immune cells and immune-related pathways.

Immune infiltration, checkpoint, and
tumor mutation burden analysis

We used the Tumor Immune Estimation Resource (TIMER;

https://cistrome.shinyapps.io/timer/) to analyze the relationship

between prognostic genes and immune cell infiltration. The

“SCNA” function of the TIMER database was used to explore

the somatic copy number alterations (SCNA) of prognostic genes

and their effect on the infiltration levels of immune cells.

Moreover, immune checkpoints (PD-L1 and CTLA-4) and

tumor mutation burden (TMB) were further explored in the

risk models.

MRNA–miRNA network construction

We developed an mRNA–miRNA network to further explore

the potential function of LMRGs in BC. TargetScan (http://www.

targetscan.org/) was used to predict the miRNA targets binding

to the LMRGs. We examined the expression and features of this

miRNA target using TCGA BC datasets.

Statistical analysis

Univariate and multivariate Cox regression analyses were

conducted to identify independent prognostic survival factors.

The model’s predictive value for OS was assessed by performing

Kaplan–Meier analysis. The time-dependent ROC curves

evaluated the predictive accuracy of this model. We conducted

all data analysis with the R (version 4.1.0) and R Bioconductor

packages. The p-value < 0.05 was regarded statistically

significant.

Result

Identification of lactate metabolism-
related differentially expressed genes in
The Cancer Genome Atlas

The detailed flowchart is shown in Supplementary Figure S1.

We obtained 1,182 breast RNA-sequencing and clinical data

from TCGA database. Those samples’ characteristics are shown

in Figures 1A,B. To identify genes related to lactate metabolism,

we selected two pathways related to lactate metabolism through

the MSigDB database and extracted 22 related genes. We found

three additional genes (LYRM7, MYC, and PTEN) by reading

articles related to lactate metabolism (Le et al., 2010; Invernizzi

et al., 2013; van derMijn et al., 2017). DEGs were defined with the

specific criteria of FDR <0.05 and | log2FC |≥1. Finally,

12 LMRGs were identified (Figures 1C,D), among which

LDHA, MIR210, PFKFB2, PNKD, SLC16A3, and SLC5A12

were upregulated, and ACTN3, LDHD, LYRM7, MYC, PER2,

and PTEN were downregulated; the characteristics are listed in

Supplementary Table S1. In addition, we further studied the

interrelationships between these 12 LMRGs (Figure 1E).

Construction and assessment of a
prognostic model based on selected
lactate metabolism-related genes

First, 12 LMRGs correlated with OS were identified by

performing a univariate Cox regression; three genes that meet the

criteria of p < 0.05 have significant prognostic value, one gene

(PNKD) performed a protective effect with HRs<1, and two genes

(LDHD and LYRM7) were related to increased risk with HRs>1
(Figure 2A). Then, the three filtered genes were further included in

the least absolute shrinkage and selection operator (LASSO) to

eliminate the overlapping problem (Figures 2B,C). Afterward,

these three candidate genes were conducted to build a prognostic

signature by performing a multivariate Cox regression analysis, and

detailed information is shown in Supplementary Table S2. The risk

score = (0.05951 * expression of LDHD) + (0.30230 * expression of

LYRM7) + (−0.04653 * expression of PNKD). We calculated the risk

score of each sample based on the three genes’ expression level and

their coefficient, and the samples were divided into two-risk

subgroups based on the median risk score (Figure 2D). The

principal component analysis (PCA) proved that samples with

two risk scores were divided into two groups (Figure 2E). The risk

score distribution and survival status are shown in Figures 2F,G. As

the risk score increases, the risk of death increases, and the OS time

decreases. Kaplan–Meier survival curves analyses found that the low-

risk subgroup had a longer OS than the high-risk group (p = 0.0064;

Figure 3A). Subsequently, the time-dependent ROC curve analyses

were generated to estimate the predictive ability of the prognostic

signature (Figure 3C). The AUC of the prognostic signature was
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0.692, whichmanifested that the lactate metabolism-related signature

had moderate predictive power. To assess the robustness of the

signature, we performed a survival analysis using the validation

cohort from the GEO dataset (GSE53031). The patients from the

validation cohort were divided into the high-risk and low-risk groups

by the median value of risk scores calculated with the same formula

fromTCGA cohort. Consistent with our previous analysis, patients in

the high-risk group had a poorer prognosis than those in the low-risk

group (p = 0.014; Figure 3B). The AUC of the prognostic signature

was 0.731 (Figure 3D).

Independent prognostic value of the risk
model

To further explore whether the prognostic signature can

independently predict the survival rate of BC, univariate and

multivariate Cox regression analyses were generated. The

univariate Cox regression analysis showed that the risk score

was an independent factor predicting poor OS in BC (HR =

1.6380, 95% CI: 1.1508–2.3316; Figure 4A). The multivariate

analysis obtained the same conclusion, and the risk score was an

independent prognostic factor (HR = 1.5637, 95% CI:

1.0952–2.2326; Figure 4B) after adjusting other clinical

features, including age, tumor stage, T, N, and M.

Construction of the nomogram

We constructed a nomogram for the prognosis of BC

combined with clinicopathological characteristics such as age,

stage, pT, pN, and pM. The prognostic nomogram can predict

tumors at 1, 3, and 5 years (Figure 4C), and the calibration curve

confirms the accuracy of the nomogram in predicting survival

prognosis (Figure 4D).

Functional enrichment analysis of the
signature

To further study the difference between functions and

pathways in the two risk subgroups of this risk model, we

FIGURE 1
Characteristics of TCGA BC patients and expressions of the LMRGs. (A,B) Clinicopathological of all patients included in this study. (C) Heatmap
(blue: low expression level; red: high expression level) of the LMRGs between the normal (N, brilliant blue) and tumor tissues (T, red). p-values were
shown as *p < 0.05; **p < 0.01; and ***p < 0.001. (D) Gene ranking dot plot (The redder the color, the closer the p-value is to zero; the bigger the
circle, the taller the | log2FC |). (E) Interaction analysis among the 12 LMRGs.
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extracted 1,260 DEGs from two risk groups by conducting the

“limma” R package with specific criteria (|log2FC| ≥ 1 and

FDR <0.05). Among them, 381 DEGs were downregulated,

and 879 DEGs were upregulated. Then we utilized the

obtained DEGs for GO and KEGG analyses. We found that

those 1,260 DEGs were mainly correlated with neuroactive

ligand–receptor interaction, cytokine–cytokine receptor

interaction, and drug metabolism–cytochrome P450 by KEGG

analysis (Figure 5A). The GO study showed that those DEGs

were mainly related to humoral immune response, regulation of

humoral immune response, immunoglobulin complex, an

integral component of synaptic membrane, immunoglobulin

receptor binding, and antigen-binding.

Comparison of immune activity between
the two subgroups

It is worth noting that most cell functions are related to immune

response. Therefore, immune cells and pathways were further

compared between the two risk groups. Based on the function

analysis, we compared the enrichment scores of 8 critical immune

cells and 13 immune-related pathways between the low- and high-

risk subgroups by conducting the single-sample gene set enrichment

analysis (ssGSEA). The result showed that the 8 types of immune

cells (CD8 cells, B cells, NK cells, macrophages, Tfh, TIL, Treg, and

DCs) were significantly correlated with the lactate metabolism-

related prognostic signature (p < 0.001), and the low-risk group

had higher levels of infiltration of immune cells (Figures 6A–H).

When comparing the immune-related pathways, similar

conclusions were drawn. All tracks except MHC_class_I proved

to be statistically significant (p < 0.001) and the low-risk group had

higher immune-related pathway activity than the high-risk group

(Figure 6I).

Risk signature was associated with
immune checkpoints and tumor
biomarkers

Previous results indicated the relationship between the

lactate metabolism-related signature and the immune

FIGURE 2
Construction of the LMRG prognostic signature. (A) Univariate Cox regression analysis of 12 LMRGs, and three genes with p < 0.05. (B,C) LASSO
regression analysis. (D) Two risk score groups were separated based on the expression of three genes. (E) PCA plot for OCs based on the risk score.
(F,G) Risk score distribution and survival status of BCs based on the risk score.
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response. Overexpression of immune checkpoints in tumor

cells has been proven to be an immune escape mechanism, and

many innovative drugs targeting immune checkpoints have

become a new direction for immunotherapy. Therefore, PD-

L1 and CTLA-4 as important immune checkpoints, were

compared in the risk signature (Figures 7A,B). We found a

negative association between the risk score and the expression

level of checkpoints (PD-L1 and CTLA4). The TMB, as a

tumor biomarker, can be used to predict the efficacy of

immunotherapy for BC. So the TMB was compared in the

risk signature. The results showed that the risk scores were

negatively associated with the expression level of the TMB

(Figure 7C).

Lactate metabolism prognostic genes
were associated with tumor immune
infiltration in BC

Lactate metabolism plays an essential role in the tumor

microenvironment. Therefore, we also explored the correlation

between the expression of LMRGs (LDHD, LYRM7, and PNKD)

and BC immune infiltration (Figures 8A–C). The results showed

that the LMRGs’ expression was correlated with most immune

cells (Supplementary Table S3). We also utilized the TIMER

database to further explore the relationship between immune cell

infiltration and somatic copy number changes (CNAS) of lactate

metabolism prognostic genes (Table 1). The results illuminated

FIGURE 3
Survival analysis. Kaplan–Meier curves in TCGA (A) and GEO (B). ROC curves in TCGA (C) and GEO (D).
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that arm-level deletion and arm-level gain of LDHD were

associated with breast cancer immune cell infiltration

(Figure 8D). High amplification of LYRM7 was associated

with breast cancer immune cell infiltration (Figure 8E). Arm-

level deletion of PNKD was associated with breast cancer

immune cell infiltration in BC (Figure 8F).

Construction of a network of
mRNA–miRNA

LDHD and LYRM7 are more closely related to prognosis (p <
0.05) in the multivariate Cox regression analysis, so we

constructed an mRNA–miRNA network to further study the

potential molecular mechanism of LDHD and LYRM7 in BC. We

found that miR-203a-3p acts as a targeted mRNA to bind LDHD

and LYRM7 according to the TargetScan database. Further study

showed that miR-203a-3p was upregulated in BC (Figure 9A; p =

3.95e-22). Moreover, the ROC indicated that miR-203a-3p could

be utilized to distinguish between BC tissue and adjacent breast

tissue by data analysis in the CancerMIRNome dataset (http://

bioinfo.jialab-ucr.org/CancerMIRNome) (AUC = 0.79;

Figure 9B).

Discussion

BC is the leading cause of female deaths, and there is an

urgent need for robust prognostic signatures to be stratified to

achieve precise treatment. Increasing evidence shows that lactate

metabolism is related to tumor maintenance, progression, and

immunosuppression. Excessive lactate can alter the normal

function of immune cells, which can encourage cancer cell

proliferation (de Bari and Atlante, 2018; Feichtinger and Lang,

FIGURE 4
Independent prognostic value of the risk model in TCGA cohort. (A) Forest of Univariate analysis. (B) Forest of multivariate analysis.
(C)Nomogram to predict the 1-, 3-, and 5-year overall survival rate of BC patients. (D) Calibration curves of the nomogram for 1-, 3-, and 5-year OS
prediction.
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2019). Accordingly, we evaluated the prognosis of LMRGs and

established a prognostic signature to provide a more accurate

treatment strategy for BC.

Our prognostic signature consisted of three LMRGs (LDHD,

LYRM7, and PNKD). They all play various roles in tumor

progression. The source of lactate is believed to be via

conversion of pyruvate by lactate dehydrogenase (LDH) in the

last step of glycolysis (Mack et al., 2017). LDHD is a member of

the LDH gene family; changes in LDHD gene expression affect

the process of lactate metabolism through the glycolytic pathway.

FIGURE 5
Functional analysis based on the DEGs between the two risk groups. (A) Bubble graph for GO enrichment (the bigger bubblemeansmore genes
are enriched, and the increasing depth of red means the differences were more obvious. (B) Cnetplot for KEGG pathways.

FIGURE 6
Comparison of the ssGSEA scores for immune cells and immune pathways. (A–H) Comparison of the two risk groups for immune cells. (I)
Comparison of the two risk groups for immune pathways.
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One study has confirmed its correlation with kidney cancer

prognosis (Wang et al., 2018). Lidia de Bari believed that the

expression of LDHD is higher in prostate cancer cells than in

normal tissues (de Bari et al., 2013). However, its role in breast

cancer is unclear due to the lack of data. LYRM7 encodes the

mitochondrial LYR motif-containing protein 7, a part of the

mitochondrial respiratory chain complex III (CIII). The defect in

CIII can cause a rare mitochondrial disorder, which affects the

process of lactate metabolism (Fernández-Vizarra and Zeviani,

2015). PNKD is a functional gene known as paroxysmal

nonkinesigenic dyskinesia, which is overexpressed in many

solid malignancies, such as chronic myelogenous leukemia,

breast cancer, and hepatoma. PNKD can lead to tumor cell

differentiation, accelerates metastasis, and initiates malignant

transformation (Wang et al., 2018).

We further explore the function analysis among the two risk

subgroups of the prognostic signature. The results showed that the

signature was significantly related to immune response. As we all

know, the immunemicroenvironment plays an essential role in the

development and maintenance of cancer (Itoh et al., 2018).

FIGURE 7
Immune checkpoints and TMB analysis of the LMRG signature. The risk score is related to PD-L1 (A), CTLA4 (B), and TMB (C).

FIGURE 8
Association between three prognostic genes and immune infiltration in BC. The association between the immune cells and the expression of
LDHD (A), LYRM7 (B), and PNKD (C). Relationship between the mutants of three model-related genes and immune cell infiltration LDHD (D),
LYRM7 (E), and PNKD (F). *p < 0.05, **p < 0.01, and ***p < 0.001.
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Therefore, we study the relationship between the lactate

metabolism-related prognostic signature and the immune

microenvironment. Different degrees of immune cell infiltration

(CD8+ T cells, B cells, NK, macrophages, Treg, Tfh, TIL, and DCs)

are related to the prognostic signature and LMRGs. CD8+ T cells

are the most critical tumor killer in the anti-cancer immune

response and play a decisive role in anti-cancer immunotherapy

(Crispin and Tsokos, 2020). Antigens derived from tumor tissues

can activate CD8+ T cells to produce anti-cancer responses,

improving pore formation in target tumor cell membranes and

subsequent target-cell killing by secreting cathepsin C, perforin,

and granulysin to fusion target cell membranes. Moreover, CD8+

T cells and Treg play a synergistic role in the anti-tumor process

(Raskov et al., 2021). The heterogeneity of B cells in tumors makes

the impact of these cells on tumors controversial. A retrospective

study believed that high expression of B cells and immunoglobulin

genes is beneficial to prolonging survival (Olkhanud et al., 2011).

However, some studies have linked B cells to the poor prognosis of

BC (Tower et al., 2019). NK cells have both adaptive and innate

immune properties. NK cells destroy tumors by producing pro-

inflammatory cytokines and recruiting other immune cells. They

also play a powerful role in cancer immune surveillance. Growing

evidence shows that NK cells become dysfunctional during BC

(Slattery et al., 2021). Therefore, solving NK cell dysfunction may

become new cellular immunotherapy. M1 macrophages can

activate the tumor immune response to produce the tumor-

killing effect. On the contrary, M2 macrophages will help

tumor cells evade immune surveillance, which is not conducive

to patient survival (Moradi-Chaleshtori et al., 2021). Tfh promotes

tumor immune response by germinal center formation, activating

B cells, and antibody class switching (Jogdand et al., 2016). To sum

up, immune cells play various roles in the development of tumors.

Immune cell infiltration also determines the probability of

response to cancer immunotherapies (van der Leun et al.,

TABLE 1 Major mutation types affecting cell infiltration.

Variable LDHD LYRM7 PNKD

Cna level p Cna level p Cna level p

B cell Arm-level deletion 0.039 High amplication 0.004 Arm-level deletion 0.004

CD8+ T cell Arm-level gain 0.001 High amplication 0.001 Arm-level deletion <0.001
CD4+ T cell Deep deletion 0.022 High amplication 0.034 Arm-level deletion <0.001
Macrophage Arm-level gain 0.009 High amplication 0.007 Deep deletion <0.001
Neutrophil Arm-level deletion 0.019 Arm-level deletion 0.014 Arm-level deletion <0.001
Dendritic cell Arm-level deletion 0.005 High amplication 0.016 Arm-level deletion <0.001

Cna, copy number alterations.

FIGURE 9
Construction of mRNA-miRNA network. (A) Expression of has-mir-203a-3p in BC. (B) ROC curves for the OS of the expression of has-mir-
203a-3p in BC.
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2020). In our study, immune cell infiltration in the low-risk group

is more abundant, which indicates more sensitivity to

immunotherapy.

Applying immune checkpoint inhibitors (ICI) to cancer is a

milestone on the road to anti-tumor immunotherapy. ICI therapy,

whether as amonotherapy or a combination therapy, has become the

first-line treatment option for many types of tumors (Zhou et al.,

2021). Among them, anti-CTLA-4 and anti-PD-1/PD-L1 have been

approved by the European Medicines Agency (EMA) and Food and

Drug Administration (FDA), and they have been applied to various

malignant tumors. Tumor cells continuously activate the PD-1/PD-

L1 signaling pathway by overexpressing PD-L1, triggering different

immunosuppressive mechanisms. PD-1/PD-L1 has been considered

the target of anti-cancer immunotherapy, and various monoclonal

antibody drugs targeting the PD1/PD-L1 signaling pathway have

achieved effective outcomes in anti-cancer therapies. Themonoclonal

antibody mainly interferes with the PD-1/PD-L1 signaling pathway

in three aspects: 1) suppressing transcription and translation of PD-1/

PD-L1, 2) promoting degradation of the PD-1/PD-L1 protein, and 3)

inhibiting the direct combination of PD-1 and PD-L1 (Wu et al.,

2021). CTLA-4 is an essential stimulatory receptor that regulates

T-cell activation, which can reduce or eliminate immune cell function

and encourage tumor cells to escape immune surveillance. Inhibition

of CTLA-4 can eliminate immune tolerance and tumor cell

proliferation (Kern and Panis, 2021). The TMB represents the

number of mutations per megabase (Mut/Mb) in specific cancer.

TMB, as themost widely used immunotherapy biomarker to identify

populations, predicts better immunotherapy efficacy with higher

values (Dong et al., 2021). In our study, the higher values of

LMRG risk score are positively related to immune checkpoints

and TMB, which shows that it is more sensitive to

immunotherapy. Therefore, we can use this prognostic signature

to stratify BC patients receiving immunotherapy.

We also developed an mRNA–miRNA network, identifying a

miR-203a-3p/LDHD/LYRM7 regulatory axis. Numerous studies

have shown that miR-203a-3p plays different roles in various

cancers. The higher expression of miR-203a-3p has been detected

in colorectal and hepatocellular carcinoma (Huo et al., 2017; Xu

et al., 2021). By contrast, the lower expression of miR-203a-3p was

detected in esophageal cancer, non-small-cell lung carcinoma, and

gastric cancer (Liu et al., 2016; Wang et al., 2018; Liang et al., 2020).

Earlier studies have shown that the expression ofmiR-203a-3p in BC

tissues is significantly higher than in normal tissues, which aligns

with our research conclusion. In addition, it was detected that

upregulated miR-203a-3p was related to age, PR-negative, and

ER-negative BC tissue, and it may enhance the oncogenesis and

development of BC (Cai et al., 2018). No matter whether in our

study or previous research, no prognostic value was observed. But

miR-203a-3p could be utilized to distinguish between BC tissue and

adjacent breast tissue, which was related to clinical features. Further

study should be conducted to verify this result.

Our research draws the following conclusions: 1) we can get

the risk score based on the prognostic signature, and then use the

nomogram to predict the overall survival rate of patients. 2) The

risk score can estimate the patient’s immune status and stratify the

patient for immunotherapy. 3) LMRGs are significantly related to

the immune response, which provides insights for future research.

However, our research also has limitations. First, we were unable to

conduct in vivo or in vitro experiments to verify our research

because of the limitation of conditions. Second, the effect of clinical

immunotherapy cannot be compared with the model due to data

limitations. Third, the area under the AUC curve was not very

significant, suggesting that our model had only indicated a nine-

gene signature which had a moderate predictive ability. Those

challenges will motivate us to continue to explore. Our study also

has the advantage that it is the first breast cancer-related model to

be constructed using genes related to lactate metabolism, and we

investigated in depth the relevance of the model to the immune

microenvironment. In addition, our lactate metabolism-related

genes are well sourced, mainly from the Molecular Signature

Database and published reviews. We believe our study may

provide new insight for future anti-cancer therapies.

Conclusion

In conclusion, a novel lactate metabolism-related prognostic

signature was constructed and can be used to predict the

prognosis of BC patients. In addition, the signature is closely

related to the immune microenvironment, which may provide

new insight for future anti-cancer therapies.
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