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Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its

prognosis remains unsatisfactory. Identification of epigenetic biomarkers

associated with radiosensitivity is beneficial for precision medicine in LUAD

patients. SETD2 is important in repairing DNA double-strand breaks and

maintaining chromatin integrity. Our studies established a comprehensive

analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-

omics analysis revealed enhanced chromatin accessibility and gene transcription

by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA

sequencing (scRNA-seq), we found that SETD2-associated positive transcription

patterns were associated with DNA damage responses. SETD2 knockdown

significantly upregulated tumor cell apoptosis, attenuated proliferation and

migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover,

SETD2 was a favorably prognostic factor whose effects were antagonized by the

m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising

epigenetic biomarker in LUAD patients.
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1 Introduction

Lung cancer is one of the main causes of cancer-related deaths worldwide (Ferlay et al.,

2019; Sung et al., 2021). Approximately 85% of lung cancers are non-small cell lung cancers

(NSCLC), of which around half are lung adenocarcinomas (LUAD) (Behrend et al., 2021). The

prognosis of lung cancer is still unsatisfactory (Goldstraw et al., 2016). Radiotherapy has clear

benefits for patients unsuitable for surgery, and is widely used in the radical and palliative

treatment of LUAD patients (Ettinger et al., 2021). Radioresistance is a major cause of lesion
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recurrence and metastasis (Pollom et al., 2016). In the era of

precision medicine, research is gradually shifting from the

population level to the individual level. Radiosensitivity is not

only determined by tumor histology, but also affected by gene

pathways (Césaire et al., 2022).

With the development of sequencing technology, a large amount

of omics sequencing data have been documented (Hanash et al.,

2002). Multi-omics data provided unparalleled dimensions of

information and reflected the inherent features of individuals (Xu

et al., 2021). Previous studies have successfully developed a genome-

based model for adjusting radiotherapy dose (GARD) (Scott et al.,

2017). Therefore, the identification of potential biomarkers is

conducive to the development of precision radiotherapy.

Epigenetic regulation affects tumor heterogeneity, and is involved

in radiosensitivity (Peng et al., 2021). On the post-transcriptional

level, N6-methyladenosine (m6A) modification transferase

METTL3 increases radioresistance via promoting the stability of

target RNAs in multiple cancers (Huang et al., 2021). For histone

modifications, histone deacetylase (HDAC) inhibitors demonstrate

radiosensitization of various cancers in preclinical studies via

targeting DNA damage responses (DDR) (Shirbhate et al., 2020).

Moreover, Xue et al. (2015);Wu et al. (2020) found upregulatedDNA

methyl-transferase DNMT3B in radioresistant nasopharyngeal and

prostate cancer cells. However, the impact of epigenetics on

radiosensitivity is still not well understood, and the identification

of novel epigenetic markers has a substantial clinical interest.

SETD2 is the sole transferase of histone H3 trimethylation on

lysine 36 (H3K36me3) in humans. SETD2 is involved in DNA

repair and maintaining chromatin integrity (Carvalho et al., 2014;

Pfister et al., 2014). SETD2 is necessary to recruit DDR factors

53BP1 and RAD51 (Carvalho et al., 2014). In theMayo cohort, renal

carcinoma patients without H3K36me3 had worse cancer-specific

survival (Ho et al., 2016). Moreover, SETD2 mutation promotes

MLL-AF9-induced leukemia progression and chemoresistance (Mar

et al., 2017). Our previous studies found that SETD2 knockdown

triggers DNA double-strand breaks (DSB) and activates the cGAS-

STING pathway (Zeng et al., Forthcoming 2022). On the other

hand, SETD2-mediated H3K36me3 guides m6A modifications on

nascent RNA transcripts (Kumari and Muthusamy, 2020).

However, studies on the roles of SETD2 in LUAD are still

lacking. Therapeutical values and possible mechanisms of

SETD2 remain to be investigated in LUAD.

Here, we utilized comprehensive omics-data analysis to

determine that SETD2 was a key radiosensitivity-related

signature. Our results indicated that SETD2 enhanced

chromatin opening and transcription, especially in the

DDR-related pathways. In vitro experiments indicated that

SETD2 knockdown upregulated tumor cell apoptosis,

attenuated proliferation and migration of LUAD cells, and

enhanced their radiosensitivity. Furthermore, SETD2 was a

prognostic protection factor whose effect interacted with

m6A-related genes. Our finding suggested SETD2 as a

potential epigenetic marker in LUAD patients.

2 Materials and methods

2.1 Collection and processing of omics
data

A total of 11 datasets were included in this study (Supplementary

Table S1). The survival fraction at 2 Gy (SF2) was a common index to

describe cellular radiosensitivity. In this study, the determination of

SF2 was based on previous studies, which reported colony formation

with irradiation (Supplementary Table S2) (Torres-Roca et al., 2005;

Eschrich et al., 2009; Gao et al., 2012;Oleinick et al., 2016; Zhong et al.,

2016). For Microarray data, GEO datasets were standardized by the

default method. When multiple probes corresponded to the same

gene, the maximum value of the probes was selected.

GSE20549 contained 42 samples of H460 and H1299 cells at six

time points (0, 2, 4, 8, 12, and 24 h) after 2 Gy ionizing radiation (IR).

We collected 10 NSCLC cell samples fromGSE32036 and 16 samples

from GSE57083 (Byers et al., 2013), which were normalized and

integrated with Z-score. GSE5949 contained 59 pan-cancer cell

samples (Reinhold et al., 2010). We collected SETD2 expression

data for survival analysis in GSE50081 (Der et al., 2014) and

GSE3141 (Bild et al., 2006). For RNA-seq data, we collected RNA-

seq (standardized by RPKM) of the 16 HepG2 cell samples treated

with shSETD2 fromGSE121949 (Huang et al., 2019). The clinical data

of TheCancerGenomeAtlas (TCGA) cohorts were downloaded by R

TCGAbiolinks package (Colaprico et al., 2016). Xena was used to

obtain omics data of TCGA (Goldman et al., 2020). The RNA-seq

data were normalized by log2 (TPM +1). ChIP-seq data was

annotated by R ChIPseeker package (Yu et al., 2015).

H3K36me3 ChIP-seq of HepG2 cells with/without shSETD2 was

obtained from GSE110318 (Huang et al., 2019). The lung cancer

ChIP-seq data (H3K36me3, H3K27me3, H3K9me3, H3K27ac,

H3K4me3, and H3K4me1) were downloaded from Roadmap (ID:

EN96) (Kundaje et al., 2015). Moreover, we collected scRNA-seq for

43,704 cells from tumor tissues of 11 LUAD patients in GSE131907

(Kim et al., 2020). ATAC-seq data of TCGA was obtained from NCI

GDC (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG). The R ChIPseeker package was also used for annotation

(Yu et al., 2015). To compare the expression of SETD2 in different

NSCLC cell lines, we collected SETD2 RNA-seq in the Cancer Cell

Line Encyclopedia (CCLE) database (Barretina et al., 2012).

2.2 Cell culture and radiation

The Type Culture Center of the Chinese Academy of Sciences

(Shanghai, China) provided the LUAD A549 and H1299 cells,

cultivated in RPMI-1640 media (HyClone, United States)

containing 10% fetal bovine serum. The cells were grown in a

standard tissue culture incubator at 37°C, with 95% humidity and

5% CO2. Radiation was conducted using a small animal radiation

research platform (6 Gy, PXI X-RAD 225Cx, Gulmay, CT,

United States).
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2.3 Cell transfection

Small interfering RNAs (siRNAs) and negative control (NC)

were transfected at 20 nM via jetPRIME® transfection reagent.

SETD2 siRNA (siSETD2) 2 sequences were as follows: sense,

CCUUCAGGCUCAGAGUUAATT, and anti-sense, UUAACU

CUGAGCCUGAAGGTT; siSETD2 3 sequences were as follows:

sense, CCGGAAACCUGACUGCAAATT, and anti-sense, UUU

GCAGUCAGGUUUCCGGTT.

2.4 RNA isolation and quantitative real-
time PCR

Using the TRIzol reagent, total RNA was isolated from cells

(Vazyme, China). We used HiScript® Q RT SuperMix (Vazyme,

China) to transcribe RNA and ChamQTM SYBR® qPCR Master

Mix (Vazyme, China) for qRT-PCR. The relative mRNA levels were

calculated with the 2−ΔΔCt method. All experiments were performed

in triplicates.

2.5 Wound healing and colony formation
assays

For wound healing assays, we seeded the transfected cells into 6-

well plates. A straight line was scratched with a pipette tip. The

migration rate was calculated using the following formula: wound

closure rate (%) = (area of initial scratch—the area of final imaged

cell-free area)/area of initial scratch * 100. For colony formation

assays, we subjected the transfected cells to radiotherapy, and they

were seeded into 6-well plates at 1,000 cells/well 48 h later. After

2 weeks, the medium was aspirated, and 4% paraformaldehyde was

added and fixed for 30 min. Then after PBS washing, they were

stained with 0/5% crystal violet for 30 min and finally washed with

water, dried, and photographed.

2.6 Flow cytometry for cell apoptosis

After 48 h, the treated cells were collected andwashed twice with

PBS. We suspended the cells in binding buffer with Annexin

V-FITC staining solution and propidium iodide (PI) solution on

ice. The samples were detected by flow cytometry (Beckman, China).

2.7 Immunohistochemistry from the
human protein atlas database

We collected SETD2 immunohistochemistry images from the

HPA database (https://www.proteinatlas.org/) (Karlsson and Zhang,

2021), including available 5 LUAD and 3 normal lung tissues. All

images were made of antibody HPA042451. SETD2 staining score

was calculated as intensity times quantity. The intensity score

consisted of 0 (Negative), 1 (Weak), 2 (Moderate), and 3

(Strong). The quantity score consisted of 0 (None), 1 (<25%
cells), 2 (25–75% cells), and 3 (>75% cells).

2.8 Analysis of single-cell RNA sequencing

The Seurat workflow was adopted to analyze scRNA-seq

data (Satija et al., 2015). Cells with less than 200 genes

(min.features = 200) and genes with less than 3 cells

(min.cells = 3) were screened out. Only the cells with less

than 15% of mitochondrial genes were retained. A total of

2,000 hypervariable genes were selected with the vst method.

An Elbow diagram was drawn to select the best number of

principal components. The resolution parameter was set as

0.5. Uniform manifold approximation and projection were

used to visualize single-cell atlas (McInnes et al., 2018), which

was realized by Seurat DimPlot and FeaturePlot functions.

Cell types were identified using marker genes from the

previous study (Lambrechts et al., 2018). Specifically, tumor

cell markers were EPCAM and KRT19; T/NK cell markers

were NKG7, CD3E, CD3G, and CD3D; B cell markers were

CD79A and CD79B; myeloid cell marker was LYZ; mast cell

markers were TPSB2 and TPSAB1; fibroblast markers were

COL1A1 and COL1A2; endothelial cell marker was CLDN5;

normal epithelial cell marker was CAPS. GSVA was used to

calculate the gene set enrichment score of individual cells

(Hanzelmann et al., 2013).

2.9 Principal component analysis

PCA was a classic linearly dimensionality reduction

algorithm. We used the R FactoMineR package to perform

PCA (Lê et al., 2008). The first principal component was

considered to be the vector with the largest variance. In

this study, since gene clusters contained a large number of

genes, we used the first principal component as the eigenvalue

to characterize the gene clusters.

2.10 Short time-series expression miner
analysis

Short time-series expression miner analysis was an

algorithm to cluster, compare and visualize time-course

gene expression (Ernst and Bar-Joseph, 2006). Genes with

similar time expression patterns were grouped into the same

clusters. We extracted eigenvalue of time-course clusters

using PCA. Next, we performed Spearman’s correlation

between the eigenvalue of gene clusters and SF2 to

recognize SF2-related clusters.
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2.11 Random forest

The RF was the ensemble methods with multiple decision

trees. We used R randomForest packages to train RF model for

SF2 fitting (Breiman, 2001). The mean-square error was used to

calculate importance of genes.

2.12 Single-gene liner quadratic model

The Linear-Quadrac (LQ) model proposed by Kellerer and

Rossi was a classical model widely used in the field of

radiotherapy (Kellerer and Rossi, 1978). The LQ model

estimated the survival fraction (SF) of cells exposed to radiation:

SF � e−α×D−β×D2

Which e represents the natural logarithm, α and β represent

radiation-specific parameters describing the radiosensitivity of

tumor cells, D is the radiation dose.

However, the equation for fitting SF using gene expression

was still unclear. We next analyzed a gene expression data set

exposed to different doses (0, 2, 5, 6, and 7 Gy) of radiation

(GSE102971, n = 100) (Park et al., 2017). Compared with

quadratic equation and cubic equation, linear equation (dose-

gene expression) has the smallest Akaike information criterion in

the analysis of each gene, suggesting that gene expression was

linearly related to radiation dose (Supplementary Figure S1). In

order to establish a simulation model of gene expression and SF,

we constructed a single-gene linear-quadratic (SGLQ) model

inspired by the LQ model:

SF � eα×Ei−β×Ei
2

Here, α is the linear radiosensitivity parameter of a single

gene i, and β represents the quadratic radiosensitivity parameter

of gene i. Ei is the expression value of gene i. The SGLQ

contributed to modeling the relationship between gene

expression and SF in the era of omics.

2.13 The 4-omics system biological
network

Gene regulations were the complex systems biology networks.

Analysis of nodes in the network helped to identify key genes. The 4-

omics system biological networks consisted of mutation, copy

number alteration (CNA), mRNA co-expression and protein

interaction sub-networks. The gene interaction of protein

interaction sub-network was formed by STRING database

(Szklarczyk et al., 2017). The mutation and CNA sub-networks

were constructed by HotNet diffusion-oriented subnetworks

(HotNet2) algorithm, which was based on random walk with

restart (Leiserson et al., 2015). The HotNet2 included not only

the topology of gene interaction networks from STRING, but also

the heat values. Here, mutation frequency and copy number were set

as heat values of the mutation and CNA sub-networks. Finally,

HotNet2 identified sub-networks with close topology structure and

high overall thermal diffusivity. The mRNA co-expression sub-

network was formed by weight gene co-expression analysis

(WGCNA) (Langfelder and Horvath, 2008). In this study, we

used multi-omics data in TCGA pan-cancer cohorts to build the

4-omics system biological networks. Network analysis and

visualization were realized by Cytoscape (Shannon et al., 2003).

The innovation of this network was the inclusion of multi-

omics data.

2.14 The maSigPro algorithm

Differential expression analysis of time-course transcriptome

was performed by maSigPro using a 2-step regression strategy

(Conesa et al., 2006). Since GSE121949 contained gene

expression data at 4 time points (0, 1, 3, and 6 h) (Huang

et al., 2019), we constructed the cubic equation in the

maSigPro algorithm to identify treatment group related genes.

2.15 Binding and expression target analysis

BETA was a tool to integrate ChIP-seq and gene differential

expression list from transcriptome (Wang et al., 2013). In this

study, we explored the transcriptional activation or inhibition of

H3K36me3, and identified the motif of H3K36me3 and its

collaborators by combining H3K36me3 ChIP-seq

(GSE110318) and RNA-seq (GSE121949) via BETA (Huang

et al., 2019). BETA was realized by cistrome (http://cistrome.

org/ap/root) (Liu et al., 2011).

2.16 Enrichment analysis

Gene set enrichment analysis (GSEA) was used to identify

GO terms that were activated or inhibited in a predefined list of

gene differential expression via permutation test (Ashburner

et al., 2000). Over-representation analysis (ORA) was

performed to identify GO terms associated with a predefined

gene set via a hypergeometric test. GSEA and ORA were realized

by R clusterProfiler packages (Yu et al., 2012).

2.17 Weighted gene co-expression
network analysis

WGCNA clustered genes into different modules according

to expression similarity through kmeans clustering and

dynamic branch cutting (Langfelder and Horvath, 2008). In

Frontiers in Genetics frontiersin.org04

Zeng et al. 10.3389/fgene.2022.935601

http://cistrome.org/ap/root
http://cistrome.org/ap/root
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.935601


this study, we correlated the eigenvalues of the modules with

the SETD2 expression to identify SETD2-related modules.

2.18 Statistical analysis

Most statistical analysis was analyzed in R software 4.1.0. The

basic statistical analysis was performed by the R stats package. Cox

proportional hazards regression was realized by the R survival

package. When the survival curve crossed, landmark analysis was

used to assess the prognostic value of SETD2 at different time

periods (Der et al., 2014). The landmark analysis was realized by R

jskm package (https://rdrr.io/cran/jskm/). Gene expression plots for

TCGA data were implemented by GEPIA (Tang et al., 2017a) and

TIMER (Li et al., 2017). p values less than 0.05 were considered

statistically significant. All the p values were two-sided.

3 Results

3.1 Comprehensive analysis suggested a
critical role of SETD2 in radiosensitivity

3.1.1 Identification of radiosensitivity related
transcriptome patterns

Gene expression induced by temporal changes in radiation

may be related to radiotherapy response and sensitivity. We

collected 42 NSCLC cell samples from GSE20549 (Clough and

Barrett, 2016) with six time points (0, 2, 4, 8, 12, and 24 h) after

2 Gy IR. The ANOVA identified 3,337 genes variously expressed

at different time points (p < 0.05). We next explored IR time-

dependent gene patterns using Short Time-series Expression

Miner method (Ernst and Bar-Joseph, 2006). A total of

11 time-course gene clusters reached statistical significance

(false discovery rate, FDR q < 0.01, Supplementary Figure S2).

To determine the radiosensitivity-related time-course clusters,

we collected 26 untreated NSCLC cell samples from GSE32036 and

GSE57083 (Byers et al., 2013), whose SF2 were provided by colony

formation assays from previous studies (Supplementary Table S2,

see Methods). There were 5 first principal component of clusters

correlated with SF2 (cor >0.1, Figures 1A,B), which were considered
as SF2-related clusters. Gene ontology (GO) enrichment analysis

suggested that the 832 genes in these 5 clusters were linked to cell

cycle, DDR and histone methylation (all, FDR p < 0.05, Figure 1C).

3.1.2 SETD2 was a radiosensitivity signature at
the single-gene scale

Since the above analysis was performed at the gene cluster

level, we subsequently determined the SF2-related signatures at

the single-gene level. Here we used the RF (Breiman, 2001) and

SGLQ model to quantitate the importance of a single gene on

SF2 in GSE32036 and GSE57083. A total of 289 (34.7%) genes did

not perform well both in the RF and SGLQ models (Figures

1D,E), suggesting that these genes were unlikely to be SF2-related

signatures.

In the remaining 543 (65.3%) genes, we next identified the

hub ones. We constructed the “4-level network” (see Methods),

containing the mutation, CNA, RNA, and protein subnetworks

from TCGA pan-cancer data (Figure 1F). The 3 subnetworks

were identified in the 4-level biological network, representing

histone methylation, cell cycle, and DNA damage checkpoint

(Supplementary Figure S3). Considering the topological

structure of networks, the 280 genes were selected as

irradiation-related genes (Figure 1G) with a high degree,

betweenness, and closeness centrality (all, > median value).

The significant enrichment of histone H3K36 methylation, cell

cycle, DDR were observed in these 280 genes (Figure 1H),

containing ATM, ERCC4, H2AFX, DTX3L, CCNA2, RAD9A,

POLE3, BRSK1, CLOCK, CNOT3, CNOT4, CNOT6, BRD4,

CAMK2A, EZH2, RB1, ACTR1A, AURKB, RBX1, NSD1.

We next validated the relationship between

H3K36 methylation regulatory genes (SETD2, SETD3, NSD1,

PAXIP1, BRD4, IWS1, SETMAR, SMYD2, ASH1L) and SF2 in

the dataset GSE5949 (pan-cancer cell lines, n = 59) (Reinhold

et al., 2010). SETD2 was the only gene linked to SF2 via

Spearman correlation analysis (p = 0.04, Figure 1I).

3.2 SETD2 enhanced transcription and
chromosomal accessibility

SETD2 was the main methyltransferase that specifically

trimethylated “Lys-36” of histone H3 in mammals. The

H3K36me3 signals decreased in the whole genome after

SETD2 knockdown in GSE110318 (Huang et al., 2019)

(Figure 2A), which affected both H3K36me3 coverage and

average peak signals (Figure 2B).

GSE121949 (Huang et al., 2019) provided RNA-seq of

HepG2 cells with or without shSETD2 at 4 time points (0, 1,

3, and 6 h, Figure 2C). We performed gene differential expression

analysis between the shSETD2 and control groups using the

maSigPro algorithm (Conesa et al., 2006) (Figure 2D).

Enrichment analysis showed inhibited transcriptiona in the

shSETD2 groups (Figure 2E). Compare with the control

group, more genes were downregulated in the shSETD2 group

at all time points (Figure 2F). Furthermore, binding and

expression target analysis (BETA) (Wang et al., 2013) of

integrating H3K36me3 ChIP-seq (GSE110318) and RNA-seq

(GSE121949) demonstrated that H3K36me3 enhanced

transcription (Figure 2G). Motif analysis of H3K36me3 ChIP-

seq suggested that H3K36me3 regulated transcription factors

(NFIC, ELF2, ELF4, EHF, Figure 2H).

Open chromatin facilitates transcription. Next, we investigated

the relation between SETD2/H3K36me3 and chromosomal

accessibility. We collected ChIP-seq data for the six histone

modifications (H3K36me3, H3K27me3, H3K9me3, H3K27ac,
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H3K4me3, and H3K4me1) of lung cancer sample from Roadmap

(Sample ID: EN96) (Kundaje et al., 2015). Correlation analysis and

PCA showed that H3K36me3 had the similar patterns to open-

chromosome-related histone modifications (H3K27ac, H3K4me3),

but was distant from closed histone modifications (H3K27me3,

H3K9me3, Figures 3A,B). Figure 3C showed a specific example of

peak distributions in chromosome 17: 1-6850845. Furthermore,

ATAC-seq of TCGA cohorts demonstrated that expression and

promotermethylation of SETD2were associated with chromosomal

accessibility in TCGALUAD (Figures 3D,E). The combined analysis

FIGURE 1
SETD2 functions as a radiosensitivity signature. (A) Radiosensitivity-related time-course clusters by the short time-series expression miner
method. (B) Correlation between SF2 and the first principal component (PC1) of each time-course cluster. (C) GO enrichment analysis of the
832 genes in 5 SF2-related clusters. (D) RF analysis of single gene on SF2 in GSE32036 and GSE57083. (E) SGLQ analysis of single gene on SF2 in
GSE32036 and GSE57083. (F) The 4-omics biological networks included mutation, CNA, mRNA co-expression, and protein interaction sub-
networks. (G) Venn diagram for screening key genes. (H) GO enrichment analysis of the 280 hub genes. (I) Correlation between gene expression
and SF2.
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of ATAC-seq and RNA-seq showed that the expression of

SETD2 was positively correlated with the openness of the

promoter region of the extensive genes in TCGA NSCLC (n =

76, Figures 3F,G). These results indicated that SETD2 enhanced

transcription and chromosomal accessibility.

3.3 SETD2 positively regulated
transcriptional patterns associated with
DNA damage responses

The next question was whether the enhanced transcription

by SETD2 was gene-specific. We analyzed SETD2-related co-

expression genes in bulk RNA-seq. In the TCGA LUAD

cohort, WGCNA (Langfelder and Horvath, 2008) identified

35 co-expression modules (Figure 4A, Supplementary Figures

S4, S5). Correlation analysis of module eigenvalues with

SETD2 expression revealed the 4 SETD2 positive

correlation modules (Turquoise, Green, Midnightgreen, and

Blue modules, Figure 4B). GO enrichment analysis showed

that genes of the above 4 modules enriched in DDR, DNA

repair, RNA splicing, and histone modification signals

(Figure 4C).

In the TCGA lung squamous cell carcinoma (LUSC) cohort,

we repeated the WGCNA (Figure 4D, Supplementary Figures S6,

S7). Similarly, we identified 50 modules, the 5 of which were

positively correlated with SETD2 (Turquoise, Brown, Blue,

Darkgreen, and Royalblue Figure 4E). DNA damage repair,

cell cycle, RNA splicing, and histone modification signals were

enriched in genes of these 5 modules (Figure 4F).

FIGURE 2
SETD2 and H3K36me3 enhanced transcription. (A) The H3K36me3 signals of shSETD2 vs. control in GSE110318. (B) The quantitative
H3K36me3 signals. (C) Expression profile of GSE121949. (D)Gene different expression analysis between shSETD2 and control groups usingmaSigPro
algorithm. (E) GSEA of shSETD2 vs. control in GSE121949. (F) Gene expression of shSETD2 vs. control in GSE121949. (G) Binding and expression
target analysis (BETA) of H3K36me3 Chip-seq (GSE110318) and RNA-seq (GSE121949). (H) Motif analysis of H3K36me3 Chip-seq.
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3.4 Single-cell analysis validated the co-
expression patterns of SETD2 in lung
adenocarcinoma

We next investigated 43,704 single-cell RNA profiles of the

11 primary LUAD patients in scRNA-seq GSE131907 (Kim et al.,

2020). Through Seurat workflows, we identified the 8 cell types:

tumor cells, fibroblasts, endothelial cells, epithelial cells, T/NK

cells, B cells, myeloid cells, and mast cells (Figure 5A).

SETD2 was widely distributed in different cell types

(Figure 5B, Supplementary Figure S8). Overall, The

SETD2 positive rate in tumor cells was lower than that in

normal epithelial cells (15.2 vs. 20.2%, p = 0.2, Figure 5C), but

higher than that in immune cells, including T/NK cells (10.7%,

FIGURE 3
SETD2 and H3K36me3 enhanced chromosomal accessibility. (A)Correlation analysis of H3K36me3 and other histonemodifications. (B) PCA of
H3K36me3 and other histone modifications. (C) Peak distributions in chromosome 17: 1-6850845 of H3K36me3 and other histone modifications.
(D,E)Correlation between SETD2 and ATAC signals in TCGA LUAD. (F)Correlation between SETD2 expression and the accessibility of thewhole gene
promoters. (G) The left side shows the location of the ATAC-seq signal of genes whose promoter region accessibility is positively correlated
with SETD2 on the chromosome; The right side shows the position of the ATAC-seq signal of the negatively related gene on the chromosome.
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p < 0.0001), B cells (8.4%, p < 0.0001), and myeloid cells (12.1%,

p < 0.0001). Moreover, in log2 (TPM+1) normalized profiles, we

found that SETD2 was positively associated with the expression

of more genes (Figure 5D), especially in tumor cells (positive rate:

78.7%) and myeloid cells (positive rate: 73.7%), while the

opposite was observed in mast cells (positive rate: 46.4%) and

epithelial cells (positive rate: 44.1%). This finding was consistent

with Section 3.2. Next, we compared the gene expression of

SETD2-positive and negative tumor cells. Genes highly expressed

in SETD2-positive tumor cells were enriched in DDR, RNA

splicing, and histone modification signals (Figure 5E).

3.5 Knockdown of SETD2 upregulated
apoptosis, attenuated proliferation and
migration of tumor cells, and enhanced
the radiosensitivity in lung
adenocarcinoma

SETD2 was downregulated in TCGA LUAD and LUSC tissues

than normal ones (Supplementary Figure S9). In

immunohistochemistry of 5 LUAD and 3 normal lung tissues from

the HPA database (Karlsson and Zhang, 2021), we compared

SETD2 staining scores of tumor and alveolar cells. The results

FIGURE 4
SETD2 regulated transcriptional patterns in bulk RNA-seq. (A) Visualization of topological overlap matrix in TCGA LUAD. (B) WGCNA revealed
the gene clusters related to SETD2 in TCGA LUAD. (C) GO enrichment analysis of SETD2-related clusters in TCGA LUAD. (D) Visualization of
topological overlap matrix in TCGA LUSC. (E) WGCNA revealed the gene clusters related to SETD2 in TCGA LUSC. (F) GO enrichment analysis of
SETD2-related clusters in TCGA LUSC.
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showed that SETD2 staining scores were low but not significantly

different between tumor and alveolar cells, and that the staining was

mainly concentrated in the nuclear (Supplementary Figures S10A,B).

We next investigated the effects of SETD2 on tumor malignant

behaviors and radiosensitivity in vitro. According to our preliminary

studies (Zeng et al., Forthcoming 2022), the expression levels of

SETD2 in H1975 and A549 cells were high. In this study, we

collected RNA-seq for NSCLC cells in the CCLE dataset.

SETD2 expression remained higher in H1975 and A549 cells

than H1299, PC9, and H460 cells (Supplementary Figure S11).

FIGURE 5
Analysis of SETD2 in LUAD scRNA-seq. (A)UMAP of the 43,704 cells in LUAD scRNA-seq. (B)Marker gene expressions in scRNA-seq. (C) Positive
rate of SETD2 for each cell type. (D) The number of genes positively or negatively correlated with SETD2 expression. (E) GSEA of positive SETD2 vs.
negative cells in scRNA-seq.
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Therefore, we cultured LUAD A549 and H1975 cells and divided

them into six groups: negative control, siNC; siSETD2-2, si2;

siSETD2-3, si3; negative control plus 6 Gy IR, IR-NC; siSETD2-2

plus 6 Gy IR, IR-s2; siSETD2-3 plus 6 Gy IR, IR-s3.With or without

IR, siSETD2 showed high knockdown efficiency in A549 andH1975

(Figures 6A,B). Colony formation assays indicated attenuated tumor

proliferation after SETD2 knockdown (Figures 6C–E). Cell

proliferation was diminished after 6 Gy IR, and cells were more

sensitive to radiation upon siSETD2 treatment. Moreover,

SETD2 knockdown decreased cell migration (Figures 6F–H).

Due to the severe killing of tumor cells by IR after transfection

with siSETD2, we did not perform wound healing assays in the IR

groups. Next, we performed flow cytometry for cell apoptosis in

H1975 cells. SETD2 knockdown significantly upregulated LUAD

cell apoptosis (Figures 6I,J).

3.6 SETD2 interacted with N6-
methyladenosine-related genes RBM15 &
YTHDF3 statistically and was associated
with a favorable prognosis

Previous studies reported the possible association between

SETD2 and m6A (Kumari and Muthusamy, 2020). We

FIGURE 6
Flow cytometry, wound healing assays and clone formation experiments treated with siSETD2 or radiation. (A) The qRT-PCR of SETD2 in
A549 cells. (B) The qRT-PCR of SETD2 in H1975 cells. (C) The six well plate image of clone formation experiment. (D) Clone formation rate of
A549 cells. (E) Clone formation rate of H1975 cells. (F)Wound healing assay image. (G)Wound closure rate of A549 cells. (H)Wound closure rate of
H1975 cells. (I) Flow cytometry for cell apoptosis in H1975. (J) Quantitative results of apoptosis.
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comprehensively analyzed m6A-related genes, including

8 “writer” genes, 9 “reader” genes, and 2 “eraser” genes (Gu

et al., 2020) in TCGA LUAD dataset. SETD2 was positively

related to “writer” and “reader” genes (r > 0.4 & p < 0.01):

METTL14, ZC3H13, RBM15, YTHDF1, YTHDF2, YTHDF3,

YTHDC1, and YTHDC2 (Figure 7A, Supplementary Figure

FIGURE 7
SETD2was linked to favorable prognosis whose effect was negatively affected by the interaction of m6A-related genes RBM15 and YTHDF3. (A)
Correlations between SETD2 and m6A-related genes. (B) Kaplan-Meier survival curves of SETD2 in the Kmplot database. (C) Visualization of
interaction effect of RBM15 onCox regression coefficient of SETD2. (D) Visualization of interaction effect of YTHDF3 onCox regression coefficient of
SETD2.
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S12). SETD2 was linked to a favorable prognosis in multiple

LUAD datasets (Figure 7B). However, the landmark analysis

showed that patients with high SETD2 expression changed from

favorable prognosis to unfavorable prognosis after more than

50–80 months. We next investigated the interaction effects of

m6A-related genes with SETD2 on prognosis. Using multivariate

Cox regression with interaction terms (Survival ~ SETD2 +

SETD2 *m6A gene + age + gender + stage), we identified that

RBM15 (interaction term HR = 1.15, p = 0.02) and YTHDF3

(interaction term HR = 1.06, p = 0.18) interacted with SETD2

(Supplementary Tables S3, S4). The protective effects of

SETD2 on prognosis were enhanced with the reduction of

RBM15 or YTHDF3 (Figures 7C,D). The prognostic effects of

SETD2 may be explained with low microsatellite instability and

frequency of mutations (Liu et al., 2015; Zeng et al., Forthcoming

2022).

4 Discussion

Our work demonstrated that SETD2 as a radiosensitivity

signature positively regulated DDR-related transcriptional

patterns. Possibly due to inhibition of DDR,

SETD2 knockdown upregulated the radiosensitivity of LUAD

cells. Clinically, SETD2 was a promising epigenetic biomarker for

prognosis and radiotherapy in LUAD.

Previous studies identified radiosensitivity-related genes

based on regression. Torres-Roca et al. (2015) identified

10 genes associated with SF2 by linear regression models

(Eschrich et al., 2009). Tang et al. (2017b) identified

65 radiosensitivity-related genes by logistic regression

models in soft tissue sarcoma. In this study, we

implemented a novel gene identification pipeline. Through

pattern analysis of radiation time-associated transcriptomes,

machine learning algorithms, and 4-omics networks, we

successfully identified SETD2 as a key gene for

radiosensitivity, which was validated in other omics datasets

and cell experiments. Our novel pipeline can provide a case for

other gene identification related studies.

Poly (ADP-ribose) polymerase (PARP) inhibitors targeted

DNA damage repair, induced further DNA damage, and had a

synthetic lethal effect in DNA repair-deficient tumors (Slade,

2020). PARP inhibitors improved progression-free survival in

recurrent ovarian cancer patients with BRCA1/2 mutation and

platinum-sensitive by 13.6 months (Pujade-Lauraine et al., 2017).

PARP inhibitors also had a higher response rate in BRCAmutant

triple-negative breast cancer (Pahuja et al., 2014). In addition to

BRCA, other DNA repair-related genes also affected PARP

inhibitor responses, such as RAD51 (Liu et al., 2017). Due to

the important roles of SETD2 in homologous recombination

repair (Skucha et al., 2019), the application of PARP inhibitor in

SETD2-deficient tumors may achieve favorable curative effects,

which needed to be confirmed by further studies.

SETD2 also played important roles in m6A RNA

modification (Huang et al., 2019), which was related to

prognosis and radioresistance. Li et al. (2020) found that low

expression of FTO and METTL14 and high expression of

METTL3, HNRNPA2B1, and YTHDF3 were related to the

poor prognosis of osteosarcoma. The m6A “writer”

METTL3 was demonstrated to promote radioresistance in

pancreatic cancer (Taketo et al., 2018), hypopharyngeal

squamous cell carcinoma (Wu et al., 2021), and glioma stem-

like cells (Visvanathan et al., 2018). Radiosensitization caused by

SETD2 knockdown may be related to both DDR and m6A.

LUAD and LUSC were highly heterogeneous for radiotherapy.

Previous studies found that LUSC shrunk faster than LUAD after

stereotactic body radiotherapy (Miyakawa et al., 2013). However,

the local control rates of LUAD were not inferior to LUSC

(Miyakawa et al., 2013; Hörner-Rieber et al., 2017; McAleese

et al., 2019; Katagiri and Jingu, 2021). Moreover, LUSC was

more likely to relapse locally, while LUAD was more likely to

metastasize after radiation (McAleese et al., 2019; Katagiri and Jingu,

2021). For the overall survival of LUAD and LUSC after

radiotherapy, there was some seemingly contradictory evidence

(Nakayama et al., 1997; Holgersson et al., 2011), possibly due to

the heterogeneity of the included populations. Despite the

controversy, based on current evidence, the radiocurability of

LUAD was not inferior to that of LUSC.

In the bulk transcriptome, SETD2 was associated with a

favorable prognosis. However, it was unclear whether the

favorable prognosis of SETD2 in LUAD was determined by the

tumor or microenvironmental cells. Previous studies found that

SETD2 histological staining scores of tumor cells were linked to

good survival in gastric cancer (Chen et al., 2018) and nonmetastatic

clear-cell renal cell carcinoma (Liu et al., 2015), possibly because lack

of SETD2 increased microsatellite instability and frequency of

spontaneous mutations (Liu et al., 2015; Zeng et al., Forthcoming

2022). Moreover, we collected 7 LUAD single-cell-derived

metastasis-associated genes (PRSS3, GPI, CCL20, KRT18, TCN1,

SLCO1B3, and GNPNAT1) from a previous study (He et al., 2021).

However, in GSE131907, the results of GSVA analysis showed no

significant difference in the scores of 7 metastasis-associated genes

between SETD2-positive and negative tumor cells (Supplementary

Figure S13). We expected further clinical studies to investigate the

prognostic implications of SETD2 in cancer.

There were still some open issues. One focus was to identify

genomic signatures associated with radioresistance and explore

their mechanisms. Although acquired small deletion mutations

were suggested as possible causes of radioresistance (Kocakavuk

et al., 2021), further studies were required to investigate the

complexity of tumor heterogeneity. The landmark analysis

showed that the protective effects of SETD2 were reversed at

more than 50–80 months, however the mechanism was not clear.

Moreover, SETD2 also plays important roles in RNA splicing

(Bhattacharya et al., 2021). Other mechanisms by which

SETD2 affected therapeutic effectiveness also remained to be
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investigated. In addition, preclinical studies investigating the

toxicity and efficacy of interventions targeting SETD2 were

lacking.

In this study, we mainly analyzed various genomics data

supplemented by a limited amount of in vitro cell data. This study

had some limits: 1) Since SETD2 expression was not high in

various cells, we expected further studies to confirm the

implications of SETD2 over-expression in LUAD; 2) The role

of SETD2 regulated m6A in radiosensitivity remains unclear; 3)

More clinical evidence was needed to use SETD2 as a prognosis

and radiotherapy marker.

5 Conclusion

Our comprehensive analysis pipeline demonstrated that

SETD2 was a key radiosensitivity signature. SETD2 enhanced

chromatin accessibility and gene transcription which focused on

DDR, DNA damage repair, and histone modification.

Knockdown of SETD2 attenuated the proliferation and

migration of LUAD cells, and enhanced cell apoptosis and

radiosensitivity in vitro. Furthermore, SETD2 was a positively

prognostic factor whose effects were negatively affected by the

interaction of m6A-related genes RBM15 and YTHDF3.
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