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Bladder cancer (BC) is the most common malignancy of the urinary system.
Pyroptosis is a host programmed cell death. However, the effects of pyroptosis-
related IncRNAs (PRLs) on BC have not yet been completely elucidated. In this
study, a prognostic PRLs model and two ceRNA networks were established
using sufficient bioinformatics analysis and preliminary RT-gPCR validation
in vitro. 6 PRLs were identified to construct a prognostic model. Then, the
prognostic model risk score was verified to be an effective independent factor
(Training cohort: Univariate analysis: HR = 1.786, 95% Cl = 1.416-2.252, p <
0.001; multivariate analysis: HR = 1.664, 95% Cl = 1.308-2.116, p < 0.001; testing
cohort: Univariate analysis: HR = 1.268, 95% Cl = 1.144-1.405, p < 0.001;
multivariate analysis: HR = 1141, 95% Cl = 1.018-1.280, p = 0.024).
Moreover, ROC and nomogram were performed to assess the accuracy of
this signature (1-year-AUC = 0.764, 3-years-AUC = 0.769, 5-years-AUC =
0.738). Consequently, we evaluated the survival curves of these 6 IncRNAs
using Kaplan—Meier survival analysis, demonstrating that MAFG-DT was risk
INcRNA, while OCIAD1-AS1, SLC25A25-AS1, SNHG18, PSMB8-AS1 and TRM31-
AS1 were protective IncRNAs. We found a strong correlation between PRLs and
tumor immune microenvironment by Pearson’s correlation analysis. As for
sensitivity of anti-tumor drugs, the high-risk group was more sensitive to
Sorafenib, Bicalutamide and Cisplatin, while the low-risk group was more
sensitive to AKT.inhibitor.VIIl, Salubrinal and Lenalidomide, etc. Meanwhile,
we identified [(ncRNA OCIAD1-AS1/miR-141-3p/GPM6B and IncRNA
OCIAD1-AS1/miR-200a-3p/AKAP11 regulatory axes, which may play a
potential role in the progression of BC.
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Introduction

Bladder cancer (BC) is the most common malignancy of the
urinary system with the highest incidence (Lenis et al., 2020), which
originates from transitional cells of bladder urothelium (Martinez
Rodriguez et al, 2017). Though many biomarkers have been
discovered to predict the prognosis of BC (Tan et al,, 2018; Zhang
et al,, 2018), they still exist many deficiencies (Shi and Tian, 2019).

Pyroptosis is a host cell death pathway stimulated by a series of
microbial infections and non-infectious stimuli (Bergsbaken et al., 2009).
It is relevant to inflammasome-related diseases and compounds (Frank
and Vince, 2019; Tsuchiya, 2020). Pyroptosis differs from other cell
death forms in morphology and mechanism; caspase-1 dependence is a
defining characteristic (Bergsbaken et al,, 2009). In recent years, a large
number of studies have found a close relationship between pyroptosis
and human cancer. For example, PD-L1 promotes cancer cell
pyroptosis by mediating the expression of gasdermin C (Hou et al,
2020). Polyphyllin VI induces caspase-1-mediated pyroptosis in lung
cancer (Teng et al, 2020). a-NETA induces pyroptosis by target
regulating GSDMD)/caspase-4 signal way in epithelial ovarian cancer
(Qiao et al,, 2019). However, it is currently unclear in bladder cancer.

LncRNA is a new-found functional ncRNA. Plenty of studies
have confirmed that IncRNAs play roles in the development of BC.
For example, IncRNA CASCI11 promotes the proliferation of bladder
cancer cells by sponging miRNA-150 (Luo et al,, 2019), and exosomal
IncRNA LNMAT2 promotes lymphatic metastasis in bladder cancer
(Chen C. et al., 2020). Besides, IncRNA CCAT1 accelerates bladder
cancer cell migration, proliferation, and invasion (Zhang et al., 2019).
Recently, the regulation of IncRNAs on pyroptosis has been
extensively studied. A study showed that the interference of
IncRNA XIST inhibits lung cancer progression by stimulating the
pyroptosis (Liu et al,, 2019). Additionally, IncRNA SNHG?7 inhibits
NLRP3-dependent pyroptosis by regulating the miR-34a/SIRT1 signal
pathway in liver cancer (Chen Z. et al, 2020). However, the
involvement of pyroptosis-correlated IncRNAs in BC is unclear.

Materials and methods
Data collection

Transcriptional data and mutation data for BC were obtained
from TCGA (https://portal.gdc.cancer.gov/), copy number
variation (CNV) data from the UCSC Xena website (http://
xena.ucsc.edu/) and clinical characteristics of BC patients
from GEO (https://www.ncbi.nlm.nih.gov/geo/).

Identification of pyroptosis-correlated
genes

52 pyroptosis-correlated genes were identified based on
previous reports(Xu et al, 2021; Dong et al, 2021; Li et al,
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2021; Shen et al., 2021). 29 mRNAs were selected (*p < 0.05, **p <
0.01 and ***p < 0.001) by R software. A PPI network of the
29 differentially expressed genes (DEGs) was established by
STRING (https://string-db.org/) with the interaction score set
as 0.9. In addition, the network was visualized through Cytoscape
software 3.7.2.

KEGG and GO enrichment analysis

The GO (http://www.geneontology.org/) and the KEGG
(http://www.genome.jp/kegg/)  enrichment analyses were
conducted. The GO database and KEGG were used to identify
the biological
pyroptosis-correlated genes.

characteristics and signaling pathway of

Construction and clinical meaning of the
model

LncRNAs of these differentially expressed genes were
identified (|R|>0.3 and p < 0.001). The included cases (n =
406) were classified into training and validation cohorts.
Pyroptosis-correlated IncRNAs were selected using LASSO
Cox algorithm. Using the regression coefficient (f), the risk
score = f}*Expression;+f,*Expression, + ... +
Bn*Expression,,. Moreover, survival curves of these IncRNAs
were plotted using Kaplan-Meier survival analysis. p <
0.05 was considered statistically significant. Univariate and
multivariate Cox regressions were used to identify the clinical
meaning of the prognostic model. A nomogram was constructed
using clinical factors and patient’s risk score, and shows risk
scores of 1, 3, and 5 years survival rates.

The construction of PCA and GSEA
analysis

PCA was performed to converge BC patients according to
the expression patterns of pyroptosis-correlated genes. In
addition, the distribution of patients was visualized by 3D
scatter plots. GSEA analyzed the differences of biological
pathways.

Analyses of immune cells and immune-
related pathways

Single-sample gene set enrichment analysis (ssGSEA) was
performed to assess the infiltration fractions of immune cells and
the activities of immune-related pathways using the “gsva” R package.
Moreover, ssGSEA was performed to assess the correlation between the
risk model and immune cells infiltration, as well as PRLs and immunity.
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FIGURE 1
Schematic diagram of the study.

Analyses of potential drug candidates
for BC

Potential drug candidates were selected using the “pRRophetic”
package. We obtained some drugs that may become candidates for
the treatment of BC according to the expression matrix of patients.

Construction of competing endogenous
RNA network

To identify the molecular mechanism of pyroptosis-correlated
IncRNAs in BC, we established a ceRNA network. Mircode (www.
mircode.org) and LncRNABase database (http://starbase.sysu.edu.
cn/mirLncRNA.php/) were used to predict the miRNA. And we
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explored its downstream mRNA targets to construct the miRNA-
mRNA axis. TargetScan (http://www.targetscan.org/vert_72/),
Mircode (http://www.mircode.org/), and miRDB databases
(http://mirdb.org/) were utilized to predict mRNA targets
calculated the
expression and prognostic value of these miRNA and mRNA

interacting with miRNAs. Moreover, we

targets. p < 0.05 was considered statistically significant.

RT-qPCR analysis

Total RNA was isolated from cultured cells using TRIzol
(Invitrogen). ¢cDNA was obtained by reverse transcription using
SuperScript III First-Strand ¢cDNA System (Invitrogen, Thermo
Fisher Scientific, Inc, USA). The GPM6B sense primer was 5'-
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FIGURE 4

Co-expression network construction. (A,B): LASSO Cox algorithm to establish a prognosis model; 13 PRLs were good candidates for
constructing the prognostic model; (C): 6 IncRNAs were selected. (D): The co-expression structure between PRLs and genes. (E): Sankey diagram of
the co-expression network. (F=K): Kaplan—Meier survival analyzed the overall survival of 6 IncRNAs, OCIAD1-AS1, MAFG-DT, SLC25A25-AS1,

SNHG18, PSMB8-AS1 and TRIM31-AS1. PRL, pyroptosis-related IncRNA.
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Construction of the risk model. (A,B): The risk score in the training cohort and validation cohort. (C,D): The survival status of BC patients. Green
survival, the red: death. The higher the risk score, the more intensive of death status. (E,F): The heatmap of 6 pyroptosis-related IncRNAs. (G,H): The
Kaplan-Meier analysis in the two risk groups, and high-risk patients had worse overall survival than low-risk patients.

TGAGCGAGGTGATACAACTGATGC-3', and the antisense primer
was 5'-GCCACTCCAAGCACATAGGTGAG-3". The AKAP11 sense
primer was 5'-CACGTTACACCAGAATTGCCTA-3/, and the
antisense primer was 5 -TGGTCTCAGACACTCGGAAC-3". RT-
qPCR was performed using a 7900HT fast Real-time PCR system
(Life Technologies, Carlsbad, CA). The RNA expression data were
calculated using the comparative threshold cycle (2724“%) method.
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Statistical analysis

One-way analysis of variance and the t-test were used.
SPSS 26.0 software and GraphPad Prism 9.3.0 were used to
analyze data. All data are presented as mean + SD. All
experiments were repeated three times. p < 0.05 was
statistically significant.
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Prognosis value of model IncRNAs in BC. (A,D): Univariate analysis. (B,E): Multivariate analysis. Panel (C,F): The ROC curves (Training cohort:
AUC = 0.756; Testing cohort: AUC = 0.706). (G) Nomogram of 1-, 3- and 5-years survival. (H) Calibration curve. (I) The results of ROC curves in
predicting of BC survival rates at 1-, 3- and 5- years (1-year-AUC = 0.764, 3-years-AUC = 0.769, 5-years-AUC = 0.738). ROC, receiver operator
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Results

The expression of pyroptosis-related
genes in BC

The expression levels of 52 genes with regard to pyroptosis were
compared between BC and tissues, and 29 pyroptosis-related genes
were identified as DEGs. Compared with normal tissues, 23 genes
(AIM2, BAKI1, BAK, CASP3, CHMP7, CASP5, CASP6, IL-6,
CASP8, CHMP2A, CHMP4A, CHM4B, CHMP4C, CYCS, GPX4,
GSDMD, TP63, HMGBI, IL1A, TP53, PYCARD, PLCG1, GSDMB,
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NLRP2, NLRP7) were detected to be up-regulated, while 6 genes
(CHMP3, ELANE, NLRP3, NLRP1) were down-regulated in BC
group (Figure 2A). PPI presented the interaction with the interaction
score set as 0.9 (Figure 2B), and the hub genes are shown in
Figure 2C. In addition, Figure 2D shows the relationship network
between all pyroptosis-related genes in another way, and both
confirmed the highly complex specific interaction patterns among
these pyroptosis-related genes (Figures 2C,D). Interestingly, it can be
seen from the waterfall chart of mutations in all 29 pyroptosis-
correlated genes that TP53 had the highest mutation frequency
(Figure 2E). Most of the 29 DEGs show a trend that the frequency of
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PCA analyses and important pathways of the risk model. The PCA visualized the different distribution patterns of patients in (A,B): all pyroptosis-
related genes, IncRNAs and (C) 6 pyroptosis-related IncRNAs using 3D scatterplot. PCA analyses show the risk model could clearly distinguish the
two risk groups (high and low) of patients. (D—G): GSEA analysis showed important pathways in gene expression of two risk groups. PCA, principal

component analysis; GSEA, Gene Set Enrichment Analysis.

copy number “gain” was greater than the frequency of “loss”,
especially in AIM2, TP63, and GSDMB (Figures 2F,G).

Biological functional research of
pyroptosis-related genes

GO analysis showed these genes were enriched in “regulation

of cysteine-type endopeptidase activity”, “regulation of
interleukin-1 production”, “interleukin-1 production” and
“midbody abscission” in biological processes (BP). These
genes were enriched in “ESCRT III complex”, “inflammasome
complex”, “multivesicular body” and “late endosome” in the
cellular component (CC). These genes in molecular function

» o«

(MF) were enriched in “protease binding”, “cytokine receptor
binding”, ‘peptidase regulator activity” and “endopeptidase
activity cysteine-type involved in apoptotic process” (Figures
3A-C). Meanwhile, KEGG analysis showed these genes were
“lipid
“salmonella infection” and ‘influenza A’ (Figures 3D-F).

involved in “necroptosis”, and atherosclerosis”,
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Co-expression network construction

The included cases (n = 406) were classified into training
(n=203) and validation (n = 203) cohorts. LncRNAs related to
29 pyroptosis-related genes were screened out using Pearson
correlation method. Then, we used the univariate Cox
regression analysis and LASSO Cox algorithm and found
13 PRLs (Figures 4A,B). Total 6 IncRNAs, including
OCIAD1-AS1, MAFG-DT, SLC25A25-AS1, SNHGI1S,
PSMBS8-AS1 and TRIM31-AS1, were selected, and the
global p-value = 5.9676e-7 (Figure 4C). The co-expression
network was presented in Figure 4D. Among these 6 PRLs,
MAFG-DT was identified as risk IncRNA, while OCIADI1-
AS1, SLC25A25-AS1, SNHGI18, PSMB8-AS1 and TRIM31-
AS1 were identified as 5 protective IncRNAs (Figure 4E). In
addition, Figures 4F-K indicated that high-expression level of
5 IncRNAs (OCIAD1-AS1, SLC25A25-AS1, SNHGIS,
PSMB8-AS1 and TRIM31-AS1) tended to better overall
survival compared to the low-expression groups. However,
the contrary result was observed in IncRNA MAFG-DT.
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a negative correlation between T cells CD4 memory activated and IncRNAs SNHG18. (E,F): Plasma cells contained a positive correlation with IncRNA
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T cells follicular helper and 3 IncRNAs (PSMB8-ASI, TRIM31-ASland SLC25A25-AS1) presented a positive correlation distribution.

Construction of the risk model in BC
patients

The risk score = OCIAD1-AS1x(-0.509,246)+MAFG-
DTx0.031927 + SLC25A25-AS1x(-0.315,655)+SNHG18x(-
0.015526)+PSMB8-AS1x0.090197 + TRIM31-
AS1x0.215,654. BC patients were divided into two groups
on the basis of median risk score (Figures 5A-D). The
expression degrees of 6 IncRNAs were presented by
heatmap (Figures 5E,F). Moreover, patients of high-risk
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had worse overall survival by Kaplan-Meier (p < 0.05)
(Figures 5G,H).

Prognosis value of model IncRNAs in BC

Our risk model was an independent factor in BC (Training
cohort: Univariate analysis: HR = 1.786, 95% Cl = 1.416-2.252,
p < 0.001; multivariate analysis: HR = 1.664, 95% Cl = 1.308-
2.116, p < 0.001; testing cohort: Univariate analysis: HR = 1.268,
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FIGURE 10

Difference analysis of anti-tumor drug sensitivity between high and low risk groups. (A—H): The low-risk group was more sensitive to Sorafenib,
Bicalutamide, Cisplatin, etc. (I-P): The high-risk group was more sensitive to Camptothecin, Lenalidomide, Methotrexate, etc.

95% CI = 1.144-1.405, p < 0.001; multivariate analysis: HR =
1.141, 95% Cl = 1.018-1.280, p = 0.024) compared with other
clinical factors (Figures 6A,B,D,E). Moreover, the risk score is
more accurate than other clinical features (Training cohort:
AUC = 0.756; Testing cohort: AUC = 0.706) (Figures 6C,F).
For internal validation, the prediction nomogram shows that the
overall survival rate can be predicted relatively well in
comparison with the ideal model. The nomogram could be
used to examine potential associations between clinical
features and patient prognosis. (Figures 6G,H). Meanwhile,
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the risk model had a high sensitivity and efficacy (1-year-
AUC = 0.764, 3-years-AUC = 0.769, 5-years-AUC = 0.738)
(Figure 61).

PCA analyses and important pathways of
the risk model

Different distribution patterns of patients in all pyroptosis-

correlated genes, all pyroptosis-correlated IncRNAs and
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6 pyroptosis-correlated IncRNAs were visualized by a 3D
scatterplot of PCA, respectively (Figures 7A-C). These
outcomes show that the risk model could clearly distinguish
the two risk groups (high and low) of patients. Moreover, GSEA
analysis was performed to search important pathways in gene
expression of two risk groups between high and low. It was
suggested that gene expression of the two risk groups was
immune-related

differentially ~ related  to

(Figures 7D-G).

pathways

Analysis of immune activity in different
groups

The ssGSEA algorithm was performed to compare
16 different immune cell types in BC, 6 of these immune cell
types were differentially expressed (p < 0.05) (Figure 8A).
Moreover, there were a different immune-score among these
two groups (Figure 8B). Furthermore, the relationship of
immune cells is showed in Figures 8C-]. There was a negative
correlation between the survival outcome of BC patients and the
high degrees of CD8 T cells, B cells, T cells follicular helper,
Tregs, and plasma cells. Interestingly, we discovered that some
immune cells (B cells memory and T cells CD4 memory
activated) were significantly associated with the overall
survival of BC patients (Figures 8K,L).

Correlation analysis of 6 pyroptosis-
related IncRNAs and immunity

Figure 9A shows the degrees of infiltration of various
immune cells in different BC samples, suggesting that the
distributions of immune cells were widespread. In addition,
the relationship between 6 PRLs and infiltration of immune
cells is described in Figures 9B-], revealing that T cells follicular
helper and 3 IncRNAs (PSMB8-ASI, TRIM31-ASland
SLC25A25-AS1) presented a positive correlation distribution.
In addition, there was a positive correlation between T cells
CD4 memory activated and IncRNA PSMB8-ASI, while there
was a negative correlation between T cells CD4 memory activated
and IncRNAs SNHG18. Besides, plasma cells contained a positive
correlation with IncRNA SNHGI18 and a negative correlation
with IncRNA PSMB8-ASI. Furthermore, T cells CD8 is positively
correlated with IncRNA PSMBS-ASI.

Difference analysis of anti-tumor drug
sensitivity between high and low risk
groups

Studies on the sensitivity of anti-tumor drugs could enhance
the development of future clinical treatment. The results
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indicated that the high-risk group was more sensitive to
Sorafenib, Bicalutamide, Cisplatin, etc., as shown in Figure 10.
Moreover, the low-risk group was more sensitive to
AKT.inhibitor.VIII, Salubrinal, Lenalidomide, etc., as shown in
Figure 10. These results are instructive for us to select specific
drugs based on anti-tumor drug sensitivity.

Construction of a regulatory axis of
LncRNA-miRNA-mRNA

According to LncRNABase and Mircode databases, we found
IncRNA OCIAD1-ASI bound 10 miRNAs, which were miR-7,
miR-7ab, miR-125a-5p, miR-141(miR-141-3p/5p), miR-200a
(miR-200a-3p/5p), miR-375, miR-351, miR-125b-5p, miR-
4319, and miR-670 (Figure 11A). MiR-141-3p and miR-200a-
3p were reported to be highly expressed in bladder cancer
(Ghorbanmehr et al.,, 2019, Tan S. et al., 2021), which was
contrary to the expression of the target IncRNA OCIAD1-ASI
(Figures 11C,D). Surprisingly, we found that IncRNA OCIAD1-
AS1 was concentrated in the cytoplasm compared with other
subcells (Figure 11B). 14 mRNAs and 4 mRNAs were identified
as downstream targets in miR-141-3p and miR-200a-3p
respectively from miRDB, Mircode and TargetScan database
(Figures 11EJF). We finally found that GPM6B and
AKAP11 were down-regulated bladder cancer tissues
compared to normal tissues using the GEPIA database
(Figures 11G,H), which was consistent with the results of RT-
qPCR (Figures 11L]). In addition, the correlation analysis
showed that GPM6B and AKAPIl were related to the
expression of miR-141-3p and miR-200a-3p, respectively, in
BC tissues. In other words, miR-141-3p and miR-200a-3p
were highly-expressed, but GPM6B and AKAPI1 were low-
expressed in cancer tissues (Figures 11L,M). Thus, two ceRNA
networks of IncRNA OCIAD1-AS1/miR-141-3p/GPM6B and
IncRNA OCIAD1-AS1/miR-200a-3p/AKAPI11 regulatory axes
may play an indispensable role in the progression of BC
(Figure 11N).

Discussion

Our study systematically identified PRLs in BC. In the
waterfall chart of mutations in these pyroptosis-correlated
genes, TP53 had the highest mutation frequency. Mutations in
TP53 elicit intratumoral T cell responses, which suggests that this
protein is a candidate for anti-cancer immunotherapy (Chasov
et al,, 2021). In addition, the gene expression in these two risk
groups was confirmed differentially related to immune-related
pathways by GSEA analysis. Besides, we analyzed the difference
in anti-tumor drug sensitivity between the two risk groups,
founding that the high-risk group was more sensitive to
Sorafenib, Bicalutamide, and Cisplatin. In contrast, the other
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group was more sensitive to AKT.inhibitor.VIII, Salubrinal, and
Lenalidomide, etc.And we predicted and established two
networks of IncRNA-miRNA-mRNA, which identified the
signal axes of IncRNA OCIADI-AS1/miR-141-3p/GPM6B and
IncRNA OCIADI1-AS1/miR-200a-3p/AKAP11.

A number of models have been developed for prognostic
prediction according to pyroptosis-related genes and clinical
factors. For example, Xie et al. constructed a prognosis model of
melanoma based on pyroptosis related genes. Cao et al.
established a signature of pyroptosis-related genes of uveal
melanoma, which can accurately guide the prognosis. On the
other hand, numerous studies have confirmed the important
role of IncRNAs in pyroptosis of different malignant cells. For
example, Tan et al. reported that IncRNA HOTTIP could
inhibit cell pyroptosis in ovarian cancer (Tan C. et al.,, 2021).
Liu et al. discovered that IncRNA H19 mitigates oxidized low-
density lipoprotein induced pyroptosis via caspase-1 in raw
264.7 cells (Liu et al., 2021). Liu et al. identified that IncRNA
XIST could promote non-small cell lung cancer growth (Xu
et al, 2020). Meanwhile, predictive models of pyroptosis-
related IncRNAs have also been a hot research topic. For
example, Liu et al. established a predictive model in uterine
corpus endometrial carcinoma (Liu et al, 2022). And we
established a predictive model using 6 pyroptosis-related
IncRNAs, including SNHG18, SLC25A25-AS1, OCIADI1-AS],
MAFG-DT, TRIM31-AS1 and PSMB8-AS1. Meaningly, Li et al.
found that the IncRNA SLC25A25-AS1 could significantly
restrain proliferation and aggregation of colorectal cancer
(CRQ) cells, manifesting that IncRNA SLC25A25-AS1 played
a biomarker role in prognosis (Li et al., 2016). Moreover,
IncRNA SLC25A25-AS1 has also been reported in lung
cancer (Chen et al, 2021) and prostate cancer (Wang Y.
2021). IncRNA OCIADI-ASI was
identified as a protective factor in BC patients with HR < 1
(Wang J. et al, 2021). LncRNA SNHGI8 could facilitate the
development of glioma cells (Zheng et al., 2019), which is the

et al, In addition,

opposite of what we found in this project. Tong et al. revealed
that the epithelial mesenchymal transition-related IncRNA
PSMB8-AS1 was referred to as a prognostic marker and
protective effector in bladder cancer (Wang Y. et al, 2021).
In addition, we analyzed the difference in anti-tumor drug
sensitivity between high-risk and low-risk groups, which
would guide us to select specific drugs.

The IncRNA-correlated ceRNAs play a role in the
development of cancers, but the IncRNA-related ceRNA is
obscure in bladder cancer. Therefore, the novel network of
IncRNA-miRNA-mRNA was constructed by using biological
tools and the regulatory axes of IncRNA OCIADI1-AS1/miR-
141-3p/GPM6B and IncRNA OCIADI1-AS1/miR-200a-3p/
AKAP11 were predicted. In fact, some studies discovered
that miR-141-3p and miR-200a-3p could promote bladder
cancer progression (Liu et al., 2020). These reports supported
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our experimental results that the high expression of miR-141-
3p and miR-200a-3p in BC. Our study predicted that IncRNA
OCIAD1-AS1 might interact with miR-141-3p and miR-200a-
3p. In addition, He et al. identified that GPM6B inhibited the
malignant development of prostate cancer (Lin et al., 2020).
We found that GPM6B and AKAP11 showed low expression
levels in bladder cancer tissue compared to the normal group,
supported by RT-qPCR. What’s more, we predicted that these
two mRNAs were targeted by miR-141-3p and miR-200a-3p
from 3 databases and were negatively correlated in BC. Thus,
we predicted that IncRNA OCIAD1-AS] might interact with
miR-141-3p/miR-200a-3p to regulate GPM6B/AKAPI11 to
participate in mechanisms in bladder cancer. A large
number of subsequent experiments should be conducted to
confirm this conclusion.

Unfortunately, there are still many shortcomings in our
study. We preliminary predicted that two networks of IncRNA
OCIADI1-AS1/miR-141-3p/GPM6B and IncRNA OCIAD1-AS1/
miR-200a-3p/AKAP 11 may play potential roles in BC. However,
more trials are still needed for verfication.

Conclusion

In general, we identified 6 pyroptosis-correlated IncRNAs
OCIAD1-AS1, MAFG-DT, SLC25A25-AS1, SNHG18, PSMB8-
AS1 and TRIM31-AS1.And a predictive model was established
for BC patients. At the same time, the correlation between
pyroptosis-correlated IncRNAs and immune infiltration was
elucidated. As for sensitivity of anti-tumor drugs, the high-
risk group was more sensitive to Sorafenib, Bicalutamide and
Cisplatin, while the low-risk group was more sensitive to
AKT.inhibitor.VIII, Salubrinal and Lenalidomide, etc. Our
study predicted the network of IncRNA OCIADI-AS1/miR-
141-3p/GPM6B IncRNA  OCIAD1-AS1/miR-200a-3p/
AKAP11, which may play a potential role in BC. However,

and

more trials are still needed for verfication, which is also the
focus of our future study.
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