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Background:Cuproptosis is a newly identified form of non-apoptotic cell death

that is associated with the progression and treatment responses in pancreatic

adenocarcinoma (PAAD). However, its impact on oncology and tumor

microenvironment (TME) remains unclear.

Methods: Hub genes were identified using least absolute shrinkage and

selection operator (LASSO) Cox regression for 25 newly reported

cuproptosis-related regulators and subjected to stepwise regression to

obtain cuproptosis-related score (CuRS). Additionally, the clinical

significance, functional status, role on TME, and genomic variation of CuRS

were further examined systematically.

Results: A CuRS model incorporating TRAF2, TRADD, USP21, FAS, MLKL,

TNFRSF10B, MAPK8, TRAF5, and RIPK3 was developed. The stability and

accuracy of this risk model as an independent prognostic factor for PAAD

were confirmed in the training and external validation cohorts. Patients in the

high-CuRS group had “cold” tumors with active tumor proliferation and

immunosuppression, whereas those in the low-CuRS group comprised “hot”

tumors with active immune function and cell killing capacity. Additionally,

patients in the high-CuRS group carried fewer genomic copy number

variations (CNVs) and greater somatic mutations. Furthermore, patients in

the low- and high-CuRS groups exhibited increased sensitivity to

immunotherapy and chemotherapy, respectively.

Conclusion: We developed and validated a robust CuRS model based on

cuproptosis to assess patients’ prognoses and guide clinical decision-

making. Overall, the findings of this study are expected to contribute to the

comprehensive understanding of cuproptosis and facilitate precise treatment

of PAAD.
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Introduction

Pancreatic adenocarcinoma (PAAD) is a malignancy with

one of the poorest prognoses, thus leading to extremely high

mortality rates. Although the incidence of pancreatic cancer is

low, it is the fourth leading cause of cancer-related deaths (Siegel

et al., 2021). One reason for unfavorable prognoses in patients

with PAAD is the insensitivity to most therapies, including

chemotherapy, radiotherapy, and immunotherapy (Schneider

et al., 2005). Therefore, currently, surgical resection is the only

feasible option. In most malignancies that respond to treatment,

responses to chemotherapy and radiotherapy are realized

through apoptosis induction in cancer cells (Schulze-

Bergkamen and Krammer, 2004). Apoptosis evasion is a

hallmark of all cancers and a plethora of molecular

mechanisms have evolved to resist apoptosis, especially in

PAAD (Hamacher et al., 2008). Despite years of extensive

research worldwide, the prognoses of patients with PAAD

remain unfavorable. Therefore, it is crucial to identify new

underlying mechanisms to improve patients’ prognoses and

develop new therapies.

Stressors, including DNA damage, protein misfolding, or

cytoskeleton disruption, can lead to cell death mediated by the

inactivation of apoptosis-related pathways (Maiuri et al., 2007).

Iron catalyzes the formation of toxic membrane lipid peroxides

to mediate a unique form of non-apoptotic cell death-ferroptosis,

as evidenced by recent findings (Kagan et al., 2017). Additionally,

copper overload can lead to a novel cell death mechanism,

namely, cuproptosis (Tsvetkov et al., 2022), mediated by

protein acylation wherein copper directly binds to the

lipidated components of the tricarboxylic acid (TCA) cycle,

leading to lipid-acylated protein aggregation and loss of iron-

sulfur cluster proteins, ultimately resulting in proteotoxic stress

and cell death (Tsvetkov et al., 2022). These findings suggest that

copper ion carriers may serve as viable therapeutic targets in

cancer cells with a high respiratory rate, abundantly expressing

acylated mitochondrial proteins. This new approach to killing

cancer cells may be particularly effective for tumors that are

naturally resistant to apoptosis (Kahlson and Dixon, 2022;

Tsvetkov et al., 2022). Thus, an in-depth evaluation of

cuproptosis can provide novel treatment options for PAAD.

In this study, a robust cuproptosis-related score (CuRS)

model was developed and validated. This model exhibited

stability and accuracy in both the training and external

validation cohorts and can be used as an independent

prognostic factor for PAAD. Patients in the high-CuRS group

had “cold” tumors with active tumor proliferation and

immunosuppression, whereas those in the low-CuRS group

exhibited “hot” tumors with active immune function and cell

killing capacity. Additionally, patients in the high-CuRS group

carried fewer genomic copy number variations (CNVs)

and greater somatic mutations. Furthermore, patients in the

low- and high-CuRS groups showed increased sensitivity to

immunotherapy and chemotherapy, respectively.

Methods

Data acquisition and pre-processing

Data from transcriptomic RNA sequencing (RNA-seq),

HumanMethylation450 array, Mutect2 mutation, CNVs, and

the corresponding patients’ clinical follow-up in The Cancer

Genome Atlas (TCGA)–PAAD cohort were acquired from

TCGA (https://cancergenome.nih.gov/). A total of 176 PAAD

specimens were included after excluding patients with

incomplete clinical information. Paired normal PAAD

specimens and RNA-seq data from the International Cancer

Genome Consortium (ICGC)–PAAD cohort (comprising

165 PAAD samples with complete clinical information) were

collected from the Genotype-Tissue Expression (GTEx) database

(https://xenabrowser.net/datapages/) and ICGC (https://daco.

icgc.org/). Additionally, dataset E-MTAB-6134 containing

288 PAAD specimens with complete clinical information was

collected from the Array Express database (https://www.ebi.ac.

uk/arrayexpress).

Raw fragments per kilobase million (FPKM) data from

TCGA–PAAD and ICGC–PAAD cohorts (RNA-seq data)

were converted to transcripts per million (TPM) format for

normalization. In addition, the microarray data were

normalized using the R package, “limma”. TCGA–PAAD was

used as the training cohort, whereas ICGC–PAAD and

E-MTAB-6134 were used as the external validation cohorts.

Subsequently, the immunotherapy cohort, IMvigor210,

comprising 298 patients with uroepithelial cancer who

underwent treatment with PD-L1 immunotherapy

(Mariathasan et al., 2018) was obtained (http://research-pub.

gene.com/IMvigor210CoreBiologies) and data were subjected

to log2 normalization to assess patients’ responses to

immunotherapy.

Construction and validation of the
cuproptosis-related score model

Twenty-five cuproptosis-related genes (CRGs) were collected

from Tsvetkov et al. (Supplementary Table S1). Additionally,

prognosis-related necrosis genes were screened by univariate

COX regression analysis. To avoid omission, only genes with

p < 0.2 were collected for further analysis. Subsequently, a LASSO

penalized Cox proportional risk model was used to identify the

optimal prognostic model, followed by five-fold cross-validation

to assess the model’s stability. Finally, CuRS was calculated using

the equation below:
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CuRS � ∑ iCoefficient(mRNAi) × Expression(mRNAi)

The consistency index (C-index) was calculated using the R

package, “survcomp”, to assess the predictive power of CuRS,

where a larger C-index indicated a higher predictive accuracy of

the model (Schröder et al., 2011). Additionally, patients were

classified into high- and low-CuRS groups according to the

median CuRS. Finally, the prognostic value of the CuRS

model in the three PAAD cohorts was systematically assessed

by Kaplan–Meier (KM) survival curves, univariate and

multivariate Cox regression, and time-dependent ROC (tROC)

curve analyses.

Functional enrichment and immune
infiltration analyses

Single-sample gene set enrichment analysis (ssGSEA) was

performed to assess the activities of biological pathways enriched

in the samples, including molecular markers for angiogenesis,

epithelial-mesenchymal transition (EMT), myeloid

inflammation, and other immune-related pathways, based on

previously published molecular markers using the R package,

“gsva” (Ayers et al., 2017; Gibbons and Creighton, 2018;

McDermott et al., 2018; Liang et al., 2020). Hypoxia-related

molecular markers were collected from Msigdb (Liberzon

et al., 2011) and detailed in Supplementary Table S2.

Additionally, GSEA was performed to assess the differences in

KEGG pathway enrichment and treatment outcomes between

the high- and low-CuRS groups; significant pathways with the

criterion of p < 0.05 were obtained.

The infiltration abundance of 22 immune cells in the

tumor samples was estimated using the R package,

“CIBERSORT” (Newman et al., 2015). The

immunoreactivity and tumor purity of the samples were

assessed using the Estimate algorithm (Yoshihara et al.,

2013). Furthermore, differences in activities among six

classical immune checkpoints (CTLA-4, LAG-3, PD-1, PD-

L1, PD-L2, and TIM3) were compared.

Finally, homologous recombination defect (HRD) scores,

proliferation, lymphocyte infiltration signature scores, TGF-β
response, indel neoantigens, and SNV neoantigens were

obtained from (Thorsson et al., 2018). The

immunophenoscores (IPS) of individual samples were

calculated based on a previous study; high IPS indicated a

stronger immune activity (Charoentong et al., 2017).

Genomic variation landscape between the
two subgroups

Mutation data were processed using the R package,

“maftools”, to compare the differences in mutation burden

between the high- and low-CuRS groups. The tumor mutation

burden (TMB) was calculated for each patient and the high-

frequency mutant genes with mutation number >5 were

identified. Subsequently, the frequency differences in high-

frequency mutant genes between the high- and low-CuRS

groups were compared by a chi-square test and visualized

using maftools (Mayakonda et al., 2018). Additionally, CNV

data were preprocessed using Gistic 2.0 on the Genepattern

website to identify the significantly amplified and deleted

chromosomal segments and assess CNV differences on the

chromosomal arms. Finally, the results for CNV events were

visualized using the R package, “ggplot2.”

Clinical value of the cuproptosis-related
score model

Four first-line drugs for PAAD (5-FU, cisplatin, gemcitabine,

and paclitaxel) were selected to predict the relevant half-maximal

inhibitory concentration (IC50) for patients using the ridge

regression function in the pRRophetic package. Next, the

predictive accuracy of the model was assessed by ten-fold

cross-validation (Geeleher et al., 2014), wherein low IC50

indicated high treatment sensitivity. Additionally, differentially

expressed genes (DEGs) between the high- and low-CuRS groups

were considered potential therapeutic targets. Subsequently, the

top 300 DEGs were imported into the CMap database (https://

clue.io/) to determine the potential small molecule compounds

targeting these genes and elucidate their mechanisms of action.

Patient responses to immunotherapy were predicted using the

tumor immune dysfunction and exclusion (TIDE) algorithm

(http://tide.dfci.harvard.edu) (Jiang et al., 2018). Further, the

unsupervised subclass mapping algorithm (https://cloud.

genepattern.org/gp/) was used to assess patient responses to

anti-PD1 and anti-CTLA-4 immunotherapies based on

transcriptomic expressions. Finally, the predictive performance

of the CuRS model was validated in the immunotherapy cohort,

Imvigor210.

Bioinformatic and statistical analyses

All statistical analyses and plotting were performed using R

software (version: 4.05). Comparisons between two groups were

conducted using the Wilcoxon test and differences in

proportions were compared using the chi-square test. KM

survival curves and time-dependent tROC curves were plotted

using the R packages, “ggsurvival” and “survivalROC”,

respectively. Univariate and multivariate Cox regression

analyses were performed using the R package, ‘survival’.

Additionally, the R package, “rms”, was used to plot the

nomogram and calibration curves, while the decision curve

analysis (DCA) was performed using the “DCA” package
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FIGURE 1
Genomic profile of CRGs in PAAD. (A) Heat map showing genomic variations and hazard ratios of CRGs in TCGA–PAAD; from left to right:
mutation and CNV frequencies of CRGs, the correlation between DNA methylation modifications of CRGs and CRG expression; univariate Cox
regression analysis showing risk ratios of FRGs. *p < 0.05, **p < 0.01, ***p < 0.001; (B) Bar chart showing CNV events in CRGs in TCGA–PAAD; (C)
Circle plot showing CNV events of CRGs on chromosomes; (D) Summary of CRG mutation events in TCGA–PAAD; (E) Correlation network of
CRGs (p < 0.01).
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(Vickers et al., 2008). Two-tailed p < 0.05 was considered

statistically significant unless stated otherwise.

Results

Genomic landscape of cuproptosis-
related genes in pancreatic
adenocarcinoma

The multi-omics profile of CRGs in the TCGA–PAAD

cohort is shown in Figure 1A. Most CRGs were upregulated

in patients with PAAD and themutation and CNV frequencies of

CRGs were low. However, CDKN2A was substantially active

with higher mutation and CNV frequencies. Additionally, only

GLS and PHDB were significantly negatively correlated with

methylation levels, suggesting that CRGs were relatively silent in

PAAD and rarely regulated by other factors. Most cuproptosis-

related biological processes were involved in PAAD progression.

Five genes, including FDX1, DLAT, ATP7A, GSS, and

TIMMDC1 were the significant risk factors for PAAD and

their levels of expression were elevated in these patients. In

contrast, five significant protective factors, including LIAS,

ISCA2, NDUFA1, NDUFA8, and NDUFB2 were markedly

FIGURE 2
Construction of the CRG-based risk model. (A) Construction of the LASSO model; (B) Construction of the optimized model incorporating
7 CRGs based on the optimal lambda; (C) C-index of the optimized model in TCGA, ICGC, and E-MTAB cohorts; (D) KM survival curves for high- and
low-CuRS groups in TCGA cohort; (E) Survival status of patients in TCGA cohort and expression of the model genes; (F) 1-, 3-, 5-, and 8-year ROC
curves for CuRS in TCGA cohort; (G) CuRS model and tROC curves of clinical characteristics in TCGA cohort.
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low in patients with PAAD. The mutation and CNV profiles of

CRGs on the chromosomes are displayed in Figures 1B,C,

respectively. Moreover, a comprehensive mutation profile of

CRGs is shown in Figure 1D. All CRGs exhibited lower

mutation frequencies except for DKN2A. In addition, the

most prevalent mutation type was the nonsense mutation.

Finally, the correlation network of CRGs was constructed. As

most CRGs were significantly positively correlated with each

other, only the pairs with p < 0.01 are shown (Figure 1E).

Construction of a cuproptosis-related
gene-based risk model

A total of 10 CRGs, including ATP7A, DLAT, FDX1, GSS, LIAS,

ISCA2, NDUFA1, NDUFA8, NDUFB2, and TIMMDC1, were

screened as candidate genes for the model based on the threshold

of p < 0.2. The Cox regression results are detailed in Supplementary

Table S3. The optimal combination of prognostic factors was

screened using the LASSO model, and the optimized model

comprising seven prognostic CRGs was obtained according to

Lambda = 0.02769202 (Figures 2A,B). This model showed good

accuracy in both the training and the external validation cohorts

(TCGA: 0.617; ICGC: 0.626; GEO: 0.576) (Figure 2C). Additionally,

the CuRS model was constructed according to the equation,

Risk Score � ∑ iCoefficient(mRNAi) × Expression(mRNAi),
and the LASSO coefficients for the model genes are listed in

Supplementary Table S4. Results of the survival analysis suggested

that patients in the high-CuRS group showed significantly lower

survival rates than those in the low-CuRS group (Figure 2D; p =

0.0014). Figure 2E illustrates the distribution of CuRS and model

genes in TCGA cohort. The 1-, 3-, and 5-year AUCs of the model

were 0.64, 0.71, and 0.81, respectively (Figure 2F). In addition, the

results of the tROC analysis suggested that CuRS was the best

predictor (Figure 2G). Subsequently, the predictive performance of

the model was verified in a validation cohort. Survival analysis

suggested significantly poorer survival among patients in the high-

CuRS group (Supplementary Figures S1A,B, p < 0.01). The

distribution of CuRS and model genes in the ICGC and GEO

cohorts are shown in Supplementary Figures S1C,D. Overall, the

CuRS model showed satisfactory predictive power in both the

external validation cohorts [ICGC: 1-, 3-, and 5-year AUCs of

0.64, 0.68, 0.70, respectively (Supplementary Figure S1E); GEO: 1-,

3-, and 5-year AUCs of 0.64, 0.59, 0.56, respectively (Supplementary

Figure S1F)].

Predictive independence of the
cuproptosis-related score model

The relationship of CuRS with clinical characteristics and

prognoses of patients was analyzed using univariate and

multivariate Cox regression analyses. Results of the univariate

Cox regression analysis suggested that CuRS could serve as an

independent prognostic indicator in both the training and

validation cohorts (p < 0.01) (Figure 3A). Additionally,

multivariate Cox regression analysis showed that CuRS

remained an independent prognostic factor for OS in both the

training and validation cohorts after correction for other clinical

characteristics (p < 0.01) (Figure 3B). Furthermore, subgroup

analysis suggested that CuRS remained a reliable prognostic

factor in different clinical subgroups (Supplementary Figure

S2). Subsequently, the nomogram was constructed to better

quantify the risk of patients with PAAD (Figure 3C). The

correction curve of the nomogram showed excellent 1-, 3-,

and 5-year stability and accuracy (Figure 3D). In addition,

tROC analysis confirmed that the nomogram was the best

predictor relative to all other clinical characteristics

(Figure 3E). Further, a DCA was conducted to assess the

decision benefit of the nomogram and the results suggested

that it could accurately predict the 1-, 3-, and 5-year risks of

patients with PAAD (Figure 3F).

Functional enrichment in cuproptosis-
related score

The correlation between CuRS andmultiple typical biological

pathways was assessed. The heat map shows the relationship

between CuRS, biological pathway activity, and clinical

characteristics (Figure 4A). Results of the correlation analysis

of CuRS with biological pathways are shown on the right side of

the heat map (Figure 5B). Hypoxia, parainflammation, APC co-

inhibition, and angiogenesis were significantly positively

correlated with CuRS and significantly upregulated in the

high-CuRS group, whereas cytolytic activity was negatively

correlated with CuRS and significantly upregulated in the low-

CuRS group. Further, GSEA showed that Notch, P53, and VEGF

signaling pathways, along with PAAD-related pathways were

significantly enriched in the high-CuRS group (Figure 4C).

Finally, GSEA suggested that patients with a high CuRS were

less resistant to cisplatin, doxorubicin, and gemcitabine but less

sensitive to radiation and gefitinib treatment (Figure 4D).

Immune landscape in the cuproptosis-
related score model

The correlation between CuRS and the immune landscape

was assessed. The heat map demonstrates the relationship

between CuRS, estimate score, immune-infiltrating cell type

abundances, and typical immune checkpoints (including PD-

1, LAG-3, CTLA-4, PD-L1, TIM-3, and PD-L2), and clinical

characteristics (Figure 5A). The corresponding results of

correlation analysis are shown on the right side of the heat

map (Figure 5B). Tumor purity was positively correlated with
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CuRS, whereas immune and estimate scores showed a negative

correlation. However, no significant differences were observed

between the two groups of patients. M0 macrophages were

significantly positively correlated with CuRS and upregulated

in the high-CuRS group. In contrast, B cells, CD8+ T cells, and

NK cells were negatively correlated with CuRS and upregulated

in the low-CuRS group. Additionally, TIM3 and PD-L2 were

positively correlated with CuRS, whereas CTLA-4, PD-1, and

LAG-3 were highly expressed in patients with a low CuRS.

Cancers with homologous recombination (HR) defects

suppress double-stranded DNA break repair. Therefore, such

patients may show better sensitivity to DNA damaging agents,

including platinum-based chemotherapy. Moreover, HRD scores

were positively correlated with CuRS and markedly elevated in

the high-CuRS group. In addition, tumor proliferation was also

significantly positively correlated with CuRS (Figures 5C,D).

However, indel and SNV neoantigens did not correlate

significantly with CuRS, and lymphocyte infiltration scores

along with the TGF-beta responses were significantly

negatively correlated with CuRS and elevated in the low-CuRS

group (Figures 5E–H). Moreover, CuRS was negatively

correlated with the IPS; the low CuRS group showed high IPS

FIGURE 3
Validation of the CuRSmodel. (A)Univariate Cox regression analysis of OS in TCGA, ICGC, and E-MTAB datasets; (B)multivariate Cox regression
analysis of OS in TCGA, ICGC, andGE datasets; (C) FRS-based nomogram; (D)Calibration curves for the nomogram; (E)Nomogram and tROC curves
for clinical characteristics; (F) 1-, 3-, and 5-year DCA curves for the nomogram.
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(Figure 5I). Overall, CuRS could distinguish between “cold” and

“hot” tumor subtypes, with lower CuRS suggesting stronger

immunoreactivity (“hot” tumor), better patient survival, and

more benefits from immunotherapy. In contrast, higher CuRS

suggested more active proliferation (“cold” tumor), DNA

damage, and benefits from chemotherapy.

Correlation between cuproptosis-related
score and somatic mutations

TMB is associated with immunotherapeutic responses,

whereby greater TMB may generate more potential

neoantigens that can be recognized by the immune system.

Antigens carrying mutant peptides, after recognition, can

activate the immune system and enhance anti-tumor

immunity (Matsushita et al., 2012; Rizvi et al., 2015; Chan

et al., 2019). Based on the clinical value of TMB, we examined

the correlation between TMB and CuRS. The results suggested

that all types of mutational burdens and non-synonymous

mutational burdens were elevated in the high-CuRS groups.

However, only non-synonymous mutations showed a positive

correlation with CuRS (Figures 6A,B). Additionally, the

differences in mutation frequencies among high-frequency

mutant genes relative to the low-CuRS group were compared.

The Forest plot suggested that the mutation frequencies of KRAS,

TP53, PCDHB7, KMT2C, FLNA, FAT2, COL6A2, and

BTBD11 were significantly higher in the high-CuRS group as

compared to those in the low-CuRS group (Figure 6C). Figure 6D

illustrates the mutation landscape in both groups. CNV caused

chromosomal variations differently. Finally, we assessed the

correlation between CuRS and CNV events. Overall, more

FIGURE 4
Functional analysis of the CRG-based risk model. (A) Heat map showing the correlation between CuRS, biological pathway activity, and clinical
characteristics; (B) Correlation analysis for CuRS and biological pathways; (C) GSEA plot showing five KEGG pathways of interest in the high-CuRS
group; (D) GSEA plot showing the responses of patients in the high-CuRS group towards chemotherapy and radiotherapy.
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CNV events were observed on the chromosomal arms in the low-

CuRS group (Figure 6E). Box plot showed significantly more

deletion and amplification events in the low-CuRS group

(Figures 6F,G).

Role of cuproptosis-related score in
clinical decision-making

The above results suggested that patients with high- and low-

CuRSs were more sensitive to chemotherapy and

immunotherapy, respectively. Differences in patient sensitivity

to commonly used chemotherapeutic agents were assessed and

those in the low-CuRS group in the TCGA cohort were found to

be more sensitive to 5-FU, cisplatin, gemcitabine, and paclitaxel

(Figure 7A). Similar results were observed in the validation

cohort (Supplementary Figures S3A,B). A total of 37 small

molecule drugs effective in patients with a high CuRS were

subsequently identified to target 23 biological pathways

(Figure 7B). Subsequently, patient responses to

immunotherapy were assessed using the TIDE algorithm.

Patients with lower CuRSs showed higher responses in both

TCGA (p = 0.003, Figure 7C) and external validation cohorts (p <
0.05, Supplementary Figures S2C,D). Additionally, subclass

mapping results suggested that patients with lower CuRSs

showed increased sensitivity to anti-PD1 therapy in both

TCGA and external validation cohorts (FDR <0.01)
(Figure 7D; Supplementary Figures S3E,F). Moreover, the

CuRS model was constructed for the immunotherapy cohort,

IMvigor210, which revealed significantly worse survival among

patients in the high-CuRS group (p = 0.0036, Figure 7E).

Subsequently, the relationship of TMB and neoantigens with

CuRS in the immunotherapy cohort was assessed. The results

suggested that neoantigen expression was significantly higher in

the low-CuRS group. However, TMB did not exhibit a significant

correlation with CuRS (Figures 7F,G). Overall, these findings

suggested that the CuRS model was a viable tool to guide clinical

treatment decisions for patients with PAAD.

Discussion

A novel CuRS model incorporating seven genes was

constructed in this study. CuRS was an independent

prognostic factor, whereby a higher CuRS predicted a worse

prognosis. Patients in the high-CuRS group showed higher

hypoxic and angiogenic activities, lower levels of immune cell

infiltration, lower immunogenicity, lower immune checkpoint

activity, higher tumor purity, and higher genomic alteration

status as compared to those in the low-CuRS

FIGURE 5
Immune landscape in the CuRS model. (A) Heat map showing the correlation between CuRS, estimate score, immune cell infiltration
abundances, immune checkpoint expression, and clinical characteristics; (B) From top to bottom: correlation analysis for CuRS with estimate score,
immune cell infiltration abundance, and immune checkpoint expression; Scatter and box plots showing the correlation of CuRS with (C)HRD score,
(D) proliferation score, (E) intratumor heterogeneity score, (F) SNV neoantigens, (G) lymphocyte infiltration score, and (H) TGF-beta response.
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group. Additionally, patients with high CuRSs exhibited

increased sensitivity to conventional chemotherapy but poorer

responses to immunotherapy.

Cell death is significantly associated with cancer progression,

metastasis, and treatment responses. Inhibition of cell death

enhances tumor metastasis and resistance to chemotherapy in

malignant cells (Su et al., 2015; Strasser and Vaux, 2020). As most

tumors are innately resistant to apoptosis, the induction of non-

apoptotic cell death has emerged as a new strategy in cancer

treatment (Tang et al., 2020). PAAD is a malignant tumor and

multiple mechanisms of resistance to apoptosis result in low

sensitivity to conventional chemotherapy and radiotherapy

regimens in these patients (Hamacher et al., 2008). Other cell

death-related mechanisms, including ferroptosis and pyroptosis,

can be targeted for PAAD treatment (Chen et al., 2021; Ye et al.,

2021; Yu et al., 2022). Cuproptosis is a novel form of cell death

and plays a role in tumors that are innately resistant to apoptosis

(Kahlson and Dixon, 2022; Tsvetkov et al., 2022). This is the first

study to focus on cuproptosis as a cell death mechanism in

PAAD. Our findings suggested that DLAT, GSS, NDUFB2M,

and TIMMDC1 were significant prognostic factors. Additionally,

the NRG-based risk model exhibited excellent predictive

performance in both the training and the external validation

cohorts.

This study confirmed significant differences in biological

pathways between the two groups. Patients in the high-CuRS

group showed significantly higher angiogenic and hypoxic

activities. Previous studies report that active angiogenesis is

essential for tumor growth and metastasis, thus resulting in

immune function suppression; therefore, angiogenesis

inhibition is a promising therapeutic option for

suppressing tumor growth (Sharma et al., 2001; Motz and

Coukos, 2011; Welti et al., 2013). Hypoxia can suppress TME

and promote PAAD progression (Liu et al., 2019; Gupta et al.,

2021; Tao et al., 2021). Cancer-related pathways such as

P53 and VEGF were enriched in the high-CuRS

group. These findings suggested that a high CuRS

indicated a higher degree of PAAD malignancy. The

elevated cell killing activity in the low-CuRS group

suggested high anti-tumor immune responses (Sivori et al.,

2021; You et al., 2021). Overall, patients in the high-CuRS

group experienced tumor growth and immunosuppression

resulting in significantly poorer survival, whereas those in the

low-CuRS group exhibited stronger anti-tumor immunity.

FIGURE 6
Genomic variation landscape for the CuRS model. (A) Correlation between CuRS and all types of mutation burdens; (B) Correlation between
CuRS and non-synonymous mutation burden; (C) Forest plot showing significant differentially mutant genes (DMGs) between groups; (D)Oncoplot
of DMGs between groups; (E) Bar chart showing CNV events on different chromosome arms in high- and low-CuRS groups (*p < 0.05); (F) Box plot
showing the differences in chromosome amplification numbers between high- and low-CuRS groups; (G) Box plot showing the differences in
chromosome deletion numbers between high- and low-CuRS groups.
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The synergistic effects of TME and immunoreactivity are

significantly associated with cancer treatment and patients’

prognoses (Bruni et al., 2020; Riera-Domingo et al., 2020). In

this study, we assessed the differences in TME and

immunoreactivity between the two groups. Patients in the

low-CuRS group exhibited higher immune scores and

immune checkpoint activity, indicating stronger immune

functions. Additionally, high CuRSs were associated with

higher M0 macrophage activity, whereas low CuRSs were

associated with higher CD8 T, B, and NK cell activities. These

findings suggested that high CuRSs may contribute to an

immune-silenced tumor phenotype, whereas low CuRSs lead

to an immune-activated phenotype with active anti-tumor

immune responses (Hamanishi et al., 2007; Thorsson et al.,

FIGURE 7
Role of CuRS in clinical decision-making. (A) Box plot showing the predicted IC50 values for four commonly used drugs between the high- and
low-CuRS groups; (B) Oncoplot showing the identified small molecule compounds, where the horizontal axis represents the name of the small
molecule inhibitor and the vertical axis represents the biological pathway targeted by the corresponding small molecule inhibitors; (C) TIDE
algorithm to predict the responses of patients in the high- and low-CuRS groups to immunotherapy; (D) Subclass mapping to predict the
sensitivities of patients in the high- and low-CuRS groups to PD1 and CTLA4 treatments; (E) KM survival curves for the high- and low-CuRS groups in
the IMvigor210 cohort; (F) Correlation between CuRS and TMB in the IMvigor210 cohort; (G) Correlation between CuRS and neoantigens in the
IMvigor210 cohort.
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2018; Bald et al., 2020), consistent with a better survival status

among patients in the low-CuRS group. Moreover, patients in the

low-CuRS group may develop “hot” tumors that are sensitive to

immunotherapy. In addition, high CuRSs represent a high HRD

score, leading to impaired double-strand break repairs, a

common driver of tumorigenesis (Nguyen et al., 2020). HRD

score is highly correlated with the clinical progression of PAAD

(Wagener-Ryczek et al., 2021). Further, high CuRS was

associated with an increased proliferation score, suggesting a

high tumor cell malignancy. Although neoantigens did not

exhibit significant differences between the two groups,

lymphocyte infiltration scores and TGF-beta responses were

significantly associated with low CuRS. Similarly, more tumor-

infiltrating lymphocytes lead to stronger anti-tumor

immunoreactivity and responses to immunotherapy

(Waldman et al., 2020; Paijens et al., 2021). TGF-beta plays a

dual role in PAAD by mediating tumor-stromal crosstalk and

regulating TME (Qian et al., 2020). These findings suggested that

low CuRS could predict immune activation in TME and the

development of immunotherapy-sensitive “hot” tumors.

TMB is a biomarker of patients’ responses to

immunotherapy, and higher TMB suggests better

immunotherapeutic outcomes (Hellmann et al., 2018a;

Hellmann et al., 2018b). In this study, patients in the high-

CuRS group exhibited high TMB but low immunoreactivity,

suggesting that high TMB was not necessarily predictive of high

immunogenicity. TMB is reportedly inefficient in predicting the

potential benefits of immunotherapy among patients with ADD

(Eso and Seno, 2020; Lawlor et al., 2021). Our results suggested

that CuRS and TMB represent different aspects of tumor

immunobiology in PAAD and the former could better identify

“hot” tumors with an immune-activated phenotype.

Immunotherapy is a novel therapeutic strategy for treating

multiple cancers including PAAD. Identifying patients who can

benefit from immunotherapy remains a great challenge. PD-1

expression, microsatellite instability, and mutation burden are

inefficient in predicting the potential benefits of immunotherapy

(Lawlor et al., 2021). In this study, the accuracy of CuRS in

predicting patients’ responses to immunotherapy was assessed by

multiple methods. TIDE and subclass mapping analyses

suggested that patients with higher CURSs were more

sensitive to anti-PD1 therapy, which was confirmed in an

external validation cohort. Evaluation of patients who received

anti-PD1 immunotherapy in the IMvigor210 cohort showed

significantly better survival among those with low CuRSs.

Additionally, patients in the low-CuRS group showed

significantly higher neoantigens. Drug sensitivity analysis

suggested that CuRS may facilitate chemotherapy. Some drugs

commonly used in PAAD treatment, such as 5-FU, gemcitabine,

and paclitaxel, were more effective among patients in the high-

CuRS group. These results suggested that cuproptosis could

affect the efficacy of chemotherapeutic agents. Furthermore,

GSEA suggested that patients in the high-CuRS group showed

reduced responses to radiotherapy. Therefore, cuproptosis-based

strategic optimization of chemotherapy, radiotherapy, and

immunotherapy proposed in this study may be effective in

treating PAAD. Previous studies have focused on the

association between pyroptosis and ferroptosis in the

treatment of PAAD. In comparison, cuproptosis shows better

efficacy in decision-making for treatment regimens, especially

chemotherapy (Yu et al., 2022).

However, this study has some limitations. First, the lack of data

resulted in only inter-patient heterogeneity being accounted for, and

not intratumoral heterogeneity. Additionally, although we have used

some algorithms to assess the accuracy of this riskmodel in predicting

patient sensitivity to chemotherapy and immunotherapy, further

validation in prospective cohort trials and clinical data is

warranted in the future. Moreover, changes in the immune

microenvironment are dynamic; however, we have only discussed

the heterogeneity of the immune microenvironment. Additional time

series experiments can better explain the dynamic interactions

between cuproptosis and the immune microenvironment. Finally,

in vivo and in vitro experiments are needed to assess the specific

biological functions of cuproptosis in PAAD.

In conclusion, a novel CuRS model was developed in this

study to predict the OS of patients with PAAD, which was

validated in the training and external validation cohorts. Low

CuRSs suggest active anti-tumor immunity and stronger

immune activation (“hot” tumors). Additionally, this model

could predict patient sensitivities to chemotherapy and

immunotherapy. Overall, the findings of this study contribute

to further understanding of cuproptosis and the development of

precise PAAD treatment.
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SUPPLEMENTARY FIGURE S1
External validation of the CuRS model. KM survival curves for patients in
the (A) ICGC and (B) E-MTAB cohorts; Survival status of patients and
expression of model genes in the (C) ICGC and (D) E-MTAB cohorts; (E)
1-, 3-, 5-, and 8-year ROC curves for CuRS in the (E) ICGC and (F)
E-MTAB cohorts.

SUPPLEMENTARY FIGURE S2
Subgroup Cox analysis for the CuRS model. Subgroup Cox regression
analysis of CuRS in (A) TCGA, (B) ICGC, and (C) E-MTAB cohorts.

SUPPLEMENTARY FIGURE S3
External validation of CuRSmodel-related treatment decisions. Predicted
IC50 values for the four commonly used drugs in the high- and low-
CuRS groups in the (A) ICGC and (B) E-MTAB cohorts; differences in
immune responses predicted by the TIDE algorithm between the high-
and low-CuRS groups in the (C) ICGC and (D) E-MTAB cohorts; Immune
response differences predicted by subclassmapping between the high-
and low-CuRS groups in the (C) ICGC and (D) E-MTAB cohorts.
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