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Background: CD8+ T cells, a critical component of the tumor immune

microenvironment, have become a key target of cancer immunotherapy.

Considering the deficiency of robust biomarkers for head and neck

squamous cell carcinoma (HNSCC), this study aimed at establishing a

molecular signature associated with CD8+T cells infiltration.

Methods: Single-cell RNA sequencing data retrieved from the Gene Expression

Omnibus (GEO) database was analyzed to obtain the different cell types. Next,

the cell proportions were investigated through deconvolution of RNA

sequencing in the Cancer Genome Atlas (TCGA) database, and then the

immune-related genes (IRGs) were identified by weighted gene co-

expression network analysis (WGCNA). LASSO-Cox analysis was employed to

establish a gene signature, followed by validation using a GEO dataset. Finally,

the molecular and immunological properties, and drug responses between two

subgroups were explored by applying “CIBERSORT”, “ESTIMATE”, and single

sample gene set enrichment analysis (ssGSEA) methods.

Results: A total of 215 differentially expressed IRGs were identified, of which

45 were associated with the overall survival of HNSCC. A risk model was then

established based on eight genes, including DEFB1, AICDA, TYK2, CCR7,

SCARB1, ULBP2, STC2, and LGR5. The low-risk group presented higher

infiltration of memory activated CD4+ T cells, CD8+ T cells, and plasma cells,

as well as a higher immune score, suggesting that they could benefit more from

immunotherapy. On the other hand, the high-risk group showed higher

abundance of activated mast cells and M2 macrophages, as well as a lower

immune score.

Conclusion: It was evident that the 8-gene signature could accurately predict

HNSCC prognosis and thus it may serve as an index for clinical treatment.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

seventh most common malignancy worldwide (Siegel et al.,

2020). Despite the effective and aggressive treatment

strategies involving surgery combined with radio- and

chemotherapy, patients with advanced stage HNSCC only

have a 50% five-year survival rate (Vigneswaran and

Williams, 2014). In recent years, immunotherapy involving

checkpoint inhibitors blocking programmed cell death

protein 1 (PD-1) or programmed death ligand-1 (PD-L1)

has been approved for clinical use, with preliminary results

showing that the strategy significantly improves the overall

survival of recurrent or metastatic HNSCC patients.

However, several clinical trials have demonstrated that

anti-PD-1/PD-L1 therapy is only beneficial to a few

patients (Ferris et al., 2016; Siu et al., 2019). Studies have

suggested that CD8+ T lymphocytes substantially express PD-

1 and may play an important role in the efficacy of

immunotherapy (Jia et al., 2020). It is worth noting that

high dense infiltration of CD8+ T cells in HNSCC patients is

generally associated with a good prognosis (Fridman et al.,

2017). Moreover, PD-1+ CD8+ T cells showed excellent anti-

tumor effect in an anti-PD1-resistant murine HNSCC model

(Xu et al., 2020). Therefore, there is an urgent need to explore

the molecular mechanisms associated with CD8+ T cells

infiltration.

Single-cell RNA sequencing (scRNA-seq) has been the

subject of rapid technological developments in the last decade,

thereby resulting in significant improvements in describing and

defining the tumor heterogeneity at a single-cell level (Qi et al.,

2019). Besides, application of scRNA-seq to characterize the

tumor microenvironment (TME) may provide valuable

insights into immune landscapes and even effective

immunotherapy strategies (Kurten et al., 2021). Similarly, the

gene signature identified based on immune molecular

characteristics might be a strong predictor of clinical outcome

and immunotherapy response (Song et al., 2022). However, the

predictive potential of the molecular mechanisms describing

immunophenotypic features in HNSCC have not yet been

elucidated.

This study explored the mechanism associated with

infiltration of CD8+ T cells through integrating bulk and

scRNA sequencing. Specifically, a LASSO-Cox regression risk

model was built and verified based on the hub immune-related

genes (IRGs) identified by weighted gene co-expression network

analysis (WGCNA) (Langfelder and Horvath, 2008). Next, we

comprehensively represented the various immune features of an

8-gene signature using “ESTIMATE” (Yoshihara et al., 2013),

“CIBERSORT” (Newman et al., 2015), single sample gene set

enrichment analysis (ssGSEA) approaches, and

immunophenoscore (IPS) data. It is expected that the

identified risk score will not only be used as an efficient

indicator for HNSCC prognosis, but also as a potential

therapeutic target.

Materials and methods

The study design is illustrated using a flow diagram

(Figure 1).

Data acquisition

The single cell RNA-sequencing profile of

GSE103322 dataset (Puram et al., 2017), comprising

5,902 single cells of 18 patients, was downloaded from

the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) (accessed date 13 October

2021). HNSCC RNA-sequencing, clinical and mutation

data were downloaded from The Cancer Genome Atlas

(TCGA) database using the GDC Data Portal (https://

portal.gdc.cancer.gov/ (accessed date 13 October 2021).

The Fragments per Kilobase per Million (FPKM) values

were first converted to transcripts per million kilobase

FIGURE 1
Flow chart schematic of this study.

Frontiers in Genetics frontiersin.org02

Zhang et al. 10.3389/fgene.2022.938611

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.938611


(TPM) values. To validate the prognostic power of the

model, the transcriptome and clinical files of the

GSE65858 dataset, containing 270 HNSCC samples, were

obtained from the GEO database (Wichmann et al., 2015).

Notably, a total of 2,720 IRGs were obtained from the

ImmPort (https://www.immport.org/home) and InnateDB

(https://www.innatedb.com/) databases (accessed date

13 October 2021).

FIGURE 2
Identification of the HNSCC-associated cell subtypes. (A) t-SNE plot classified cell clusters based on scRNA sequencing data. (B) t-SNE plot
identified the various cell subtypes. (C–E) Kaplan-Meier survival analysis of three cell subtypes using the deconvolved TCGA data. (C) CD8+ T cells:
p = 0.011, (D) Mast cells: p = 0.001, (E) Treg cells: p = 0.002. (F) Univariate analysis of ten cell subtypes.
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Processing of single-cell and bulk RNA-
seq files

The “Seurat” (version 4.1.1) package in R (version 4.1.2)

was applied to group 5,902 cells into appropriate clusters, with

the resolution set to 0.8. Results were presented by employing

the T-distributed stochastic neighbor embedding (t-SNE) for

dimension reduction. Next, diverse cell types, B/plasma cells,

endothelial cells, regulatory T cells (Treg cells), mast cells,

CD8+ T cells, epithelial cells, dendritic cells, macrophages,

fibroblasts, and CD4+ T cells were identified based on their

specific markers. The “Cellchat” (version 1.1.3) package was

used to analyze the cell–cell communication, and then

deconvolution was performed using the “BisqueRNA”

FIGURE 3
(A) The heatmap depicting marker genes associated with ten cell subtypes. (B) GSVA enrichment analysis of the cell subtypes. (C,D) Cell-cell
communication network of ten cell subtypes.
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(version 1.0.5) method (Jew et al., 2020) to calculate the cells

fractions of TCGA bulk profiles. Based on the TCGA RNA-seq

profiles, differentially expressed genes (DEGs) were identified

with FDR < 0.05 and |log2FC| > 1 set as the cutoff values.

Determination of immune-related
candidate genes

The differential IRGs were determined by overlapping

DEGs and IRGs, and then used to screen the hub genes by

WGCNA (version 1.7.0). First, Pearson correlation

coefficient was determined for every gene, and a suitable

soft threshold β was automatically selected through the pick

Soft Threshold function. Next, gene expression similarity

matrix was transformed into an adjacency matrix using a

network type of signed and soft powers β = 3, followed by

employing TOM (topological overlap measure) to cluster

genes into network modules. The 1-TOM (dissimilarity

TOM) was then applied as the input for hierarchical

clustering and the “DynamicTreeCut” algorithm was

employed to detect modules (clusters of highly

interconnected genes) as branches of the dendrogram.

Finally, we identified and selected a module (215 genes)

that significantly correlated with CD8+ T cells content.

Kaplan–Meier (KM) survival and univariate Cox analysis

were utilized to determine the hub genes associated with

survival at a threshold of p < 0.05.

Development of a prognostic signature in
TCGA (n = 498)

LASSO-Cox analysis was performed using “glmnet” package

to determine the optimal prognostic gene set. The risk score of

each HNSCC patient was determined as the sum of normalized

gene expression values weighted by their LASSO-Cox coefficients

in accordance with the following formula:

risk score � ∑
n

i�1
Coefp

i Expi

Where Coefi indicates the calculated regression coefficient of

each gene in the LASSO-Cox model and Expi represents the

mRNA expression value. Kaplan-Meier (KM) analysis,

receiver operating characteristic (ROC) curves, and

univariate and multivariate Cox regression analyses were

employed to validate the independent prognostic factors in

TCGA-HNSC and GSE65858 datasets. For better clinical

prediction of HNSCC patient survival probabilities, a

nomogram was constructed using the “rms” R package

based on multivariate Cox analysis results. The

concordance index (C-index) of the nomogram was

calculated to assess the discriminative ability.

Immune features and therapy prediction
in distinct risk groups

“CIBERSORT” (version 1.03) and “ESTIMATE” (version

1.0.13) analyses were applied to determine the abundance of

22 immune cells and immune infiltration scores. The ssGSEA

approach was employed via the “GSVA” (version 1.42.0) package

to compute the enrichment scores of 29 immune features

(Hänzelmann et al., 2013). To predict the susceptibility of

eight common chemotherapeutic drugs (5-Fluorouracil,

bleomycin, cetuximab, cisplatin, docetaxel, methotrexate,

rapamycin, and sunitinib) for HNSCC, the “pRRophetic”

(version 0.5) method was performed to evaluate the half-

maximal inhibitory concentration (IC50) of patients in

distinct groups (Geeleher et al., 2014). The

immunophenoscore (IPS) of HNSCC patients, which is a

scoring scheme that characterizes the determinants of tumor

immunogenicity (Charoentong et al., 2017), were downloaded

from The Cancer Imaging Archive (TCIA) database (https://tcia.

at/home, accessed date 15 November 2021). To predict the anti-

CTLA4 and anti-PD1 responses, patients with different IPS were

further compared between the two risk groups. Finally, the

“Maftools” (version 2.10.05) (Mayakonda et al., 2018) package

was used to determine the tumor mutational burden (TMB) and

identify the driver genes.

Enrichment analysis

The reference gene sets of Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway (c2. cp.kegg.v7.5.1. symbols.gmt)

were obtained from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb, accessed date 15 November 2021).

GSEA software (version 4.2.3) and Gene Set Variation

Analysis (GSVA) were conducted to determine the KEGG

pathways with FDR < 0.05.

Results

Cell typing in head and neck squamous
cell carcinoma scRNA-seq and
deconvolution in the Cancer Genome
Atlas-HNSC

We first collected the Smart-seq2 profile data of 5,902 cells in

the GSE103322 dataset. Principal component analysis (PCA) and

t-SNE analysis identified 27 cell clusters (Figure 2A). According to

expressions of marker genes, 10 distinct cell clusters were

identified, including CD8+ T cells, macrophages, CD4+ T cells,

fibroblasts, endothelial cells, B/plasma cells, mast cells, Treg cells,

epithelial cells, and dendritic cells (Figures 2B, 3A). GSVA results

showed that “MYC_TARGETS_V2” and “MYC_TARGETS_V1”
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were activated in epithelial cells, whereas “HYPOXIA” was

abundant in fibroblasts (Figure 3B). Results obtained after

applying the “CellChat” method showed that there was a strong

connectivity between different cell types (Figures 3C,D). Next, the

BisqueRNA approach was performed to calculate proportions of

the 10 cell types by deconvoluting the TCGA bulk profiles.

Supplementary Table S1 shows proportion of the 10 cell types

in 497 samples. Survival analysis demonstrated that mast cells (p =

0.001), CD8+ T cells (p = 0.011), and Treg cells (p = 0.002) were

significantly associated with HNSCC outcome (Figures 2C–E).

Moreover, univariate Cox analysis indicated that Treg cells were

associated with good outcome (p = 0.018), whereas mast cells were

intimately linked to poor prognosis (p = 0.019) (Figure 2F).

Construction and validation of a gene risk
signature associated with CD8+ T cells

First, 9,244 DEGs were obtained from the TCGA-HNSC dataset

comprising 501 tumor and 44 normal samples (Figure 4A).

Subsequently, 2,720 IRGs from ImmPort and InnateDB

databases were matched with DEGs, from which

840 differentially expressed IRGs were obtained for further

analysis (Figure 4B). Based on the 840 IRGs and proportions of

the 10 cell types in TCGA, the weighted gene co-expression network

was generated using the soft-thresholding power β = 3, which

resulted in identification of 10 modules (Figures 5A,B). To

further explore the features of CD8+ T cells infiltration, we

selected the turquoise module (215 genes) which had the

strongest correlation with CD8+ T cells (r = 0.86, p = 1e-17).

Univariate Cox analysis demonstrated that 45 of the 215 hub

genes were closely associated with HNSCC survival (Figure 5C).

Therefore, the 45 genes were subjected to LASSO regression analysis

to identify the optimal penalty coefficient (Figures 5D,E). The

survival analysis identified eight genes, including DEFB1, AICDA,

TYK2, CCR7, SCARB1, ULBP2, STC2, and LGR5, which were

significantly associated with HNSCC prognosis (Figures 6A–H).

The eight risk regression coefficients were then employed to

compute individual risk score of HNSCC patients according to

the following formula:

Risk score � (−0.097)pDEFB1 + (−0.444)pAICDA
+ (−0.175)pTYK2 + (−0.071)pCCR7
+ 0.020pSCARB1 + 0.079pULBP2 + 0.161pSTC2

+ (−0.128)pLGR5

Next, the 498 HNSCC patients were stratified into high- and

low-risk groups based on the median risk score. KM survival

analysis results indicated that the high-risk group patients

showed poorer outcomes compared to the low-risk group (p <
0.001, Figure 6I). Consistently, similar results were observed in

the GSE65858 dataset (p = 0.005, Figure 6J).

Validation in the Cancer Genome Atlas-
HNSC andGSE65858 cohorts, and scRNA-
seq data

The risk score, survival status distributions of HNSCC

patients, and correlation analysis are displayed in Figure 7.

Results demonstrated that survival reduced with rising risk

score, and there was a significant correlation between risk

FIGURE 4
The heatmap (A) and Venn diagram (B) identified the differentially expressed genes (DEGs) and immune-related DEGs between tumor and
normal samples in TCGA.
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score and survival in TCGA cohort (r = -0.2, p = 6.4e-06). Time-

dependent ROC and calibration curves at one-, three-, and five-

years were then constructed (Figures 8A,B). In the TCGA cohort,

the areas under the ROC curves (AUCs) were 0.679, 0.703, and

0.644 for 1-, 3-, and 5-years survival, respectively. In both the

TCGA and GSE65858 cohorts, univariate and multivariate Cox

analyses demonstrated that the risk score was an independent

predictor for prognosis (Figures 8C–F). To determine the cells

that these eight genes were enriched, the distribution plots for

expressions of the eight genes in the 10 cell types identified in the

GSE103322 dataset were generated and are shown in Figures

9A–I. Results showed that the expression levels of DEFB1 and

ULBP2 were higher in epithelial cells, whereas TYK2 and CCR7

levels were abundant in dendritic cells. In addition, the

endothelial cells had higher expressions of SCARB1 and STC2,

and LGR5 was highly expressed in both dendritic cells and

FIGURE 5
Development of an 8-gene signature. (A) The Cluster dendrogram of co-expression network modules obtained by WGCNA. (B) Correlation
heatmap among ten co-expressionmodules and the levels of cell subtypes. The turquoise module had the greatest correlation with CD8+ T cells (r =
0.86, p = 1e-17). (C) Univariate analysis of 45 immune-related hub genes. (D) LASSO coefficient profiles of 45 immune-related genes. (E) Tuning
parameter selection in the LASSO model using ten-time cross-validation.
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fibroblasts. Based on proportions of the 10 cell types obtained

after deconvolution, correlation analysis was performed to

evaluate the association among proportion of CD8+ T cells

and risk score. Obtained results revealed that fractions of

CD8+ T cells declined as the risk score increased (r = −0.41,

p < 2.2 e-16, Figures 9J,K).

Construction of a nomogram for clinical
practice

A heatmapwas generated to depict the changes in expression of

the eight genes between different clinical subgroups (Figure 10A).

The performance of the risk score was then explored in different

clinicopathological subgroups, including clinical stage (stage I-III

and stage IV), age (<=60 and >60), grade (G1-2 and G3-4), T stage

(T0-2 and T3-4), N stage (N0-1 and N2-3), and gender (female and

male). According to the survival analysis results, HNSCC patients

with high-risk scores consistently had a poorer outcome in all

subgroups (Figures 10B–G). Next, the three remarkable variables in

the multivariate analysis, including age, N stage, and risk score,

were selected and used to build a nomogram (C-index: 0.676) for

estimating the 1-, 3-, and 5-year survival rate (Figure 11A). By

drawing a vertical line to the axis points, we could estimate patient

survival based on total points. Overall, the calibration curves and

the AUC’s (1-, 3-, and 5-year: 0.733, 0.749, and 0.691, respectively)

suggested that the risk model could accurately predict the HNSCC

survival rate (Figures 11B,C).

FIGURE 6
Survival analysis of eight genes in risk signature. (A) ULBP2: p < 0.001. (B) SCARB1: p = 0.003. (C) STC2: p < 0.001. (D) DEFB1: p < 0.001. (E)
AICDA: p = 0.003. (F)CCR7: p < 0.001. (G) TYK2: p < 0.001. (H) LGR5: p < 0.001. (I,J) Survival analysis of the 8-gene signature in TCGA (p < 0.001) and
GSE65858 cohorts (p = 0.005).
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The immune landscape of the two risk
groups

To elucidate the biological characteristics activated in distinct

risk groups, KEGG pathway enrichment analysis was performed

using GSVA and GSEA methods. By setting the adjusted p value

(FDR) < 0.05, a total of 51 and 16 pathways were obtained in

GSVA and GSEA, respectively (Figures 12A,B). Several

overlapping immunoregulatory processes were enhanced in the

low-risk group, including “hematopoietic cell lineage”, “T cell

receptor signaling pathway”, “antigen processing and

presentation” and “natural killer cell-mediated cytotoxicity”. To

describe the patterns of immune infiltrations, CIBERSORT and

ESTIMATE methods were implemented for calculating the cell

fractions and immune-related scores of HNSCC samples (Figures

13A,B). The low-risk group showed more significant infiltrations

of CD8+ T cells, M1 macrophages, follicular helper T cells, plasma

cells, regulatory T cells, andmemory activated CD4+ T cells, as well

as a higher immune score. With regard to the high-risk group,

abundant infiltrations of activated mast cells, M2 macrophages,

resting NK cells, and low immune score were observed. The

ssGSEA approach was then applied to estimate the scores of

specific immune functions and cells. Results revealed significant

differences of most immune cells and functions between high- and

low-risk groups (Figure 13C). Besides, 15 immune checkpoint

molecules (IFNG, GZMB, HAVCR2, CD274, CD8A, PDCD1,

FIGURE 7
The relationship between risk score and HNSCC survival. (A–D) Distribution of risk score and survival status of 8-gene signature in TCGA (A,C)
and GSE65858 (B,D) cohorts. (E,F) The correlation analysis between overall survival (OS) and risk score in TCGA (E) and GSE65858 (F) cohorts.
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TBX2, IDO1, GZMA, LAG3, CXCL10, CTLA4, PRF1, CXCL9,

and TNF) were selected and their expressions were compared

between the two risk groups (Figure 13D). Based on the correlation

analysis results, it was evident that the expressions of CD274 and

CTLA4 in the two groups were significantly different (CD274: p =

0.0006; CTLA4: p = 2.5e-14), and decreased as the risk score rose

(CD274: r = −0.18, p = 3.6 e-05; CTLA4: r = −0.43, p < 2.2 e-16)

(Figures 13E–H). Next, the pRRophetic algorithm was applied to

predict the IC50 of eight common chemotherapeutic drugs

between the two groups. Patients with a high-risk score showed

an increased susceptibility to bleomycin (p = 0.00014), cisplatin

(p = 3.2e-05), and methotrexate (p = 0.039). On the other hand,

low-risk group patients showed increased sensitivity to rapamycin

(p = 5.6e-06) (Figures 14A–H). To forecast the response to anti-

PD1 and anti-CTLA4 immunotherapy, the IPS scores of HNSCC

patients were used to compare the two risk groups (Figure 14I–L).

Results indicated that patients in the low-risk group exhibited

higher IPS scores and showed greater response to anti-PD1

therapy and anti-PD1 plus anti-CTLA4 therapy

(ips_ctla4_neg_pd1_pos: p = 0.0054, ips_ctla4_pos_pd1_pos:

p = 1.6e -05) relative to patients in the high-risk group. Given

the important role of TMB in prognosis, the intrinsic connection

FIGURE 8
Validation of the 8-gene signature in TCGA and GSE65858 cohorts. (A,B) The ROC and calibration curves for determining the accuracy of
model. (C–F) Univariate and multivariate analysis of clinical features and risk score.
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between TMB and risk score was explored to assess genetic

signature. It was found that the high-risk group exhibited

higher TMB (Figure 15A). A significant correlation was

observed between TMB and risk score (r = 0.22, p = 1.3e-06,

Figure 15B). Survival curve suggested that a low TMB/low risk

group showed a great outcome compared with the other groups

(p < 0.001, Figure 15C). The top 20 driver genes with the highest

alteration frequency were analyzed (Figures 15D,E) and four genes

(TP53, PKHD1L1, DNAH9, FAT1) were significantly different

between high- and low-risk groups (Supplementary Table S2).

FIGURE 9
Verification using single-cell sequencing data. (A–H) Colors indicating the localization of the expression of eight genes: AICDA, CCR7, DEFB1,
LGR5, SCARB1, STC2, TYK2, and ULBP2. (I)Heatmap depicting expressions of the eight genes in the cell subtypes. (J) The levels of CD8+ cells in TCGA
deconvoluted data between low- and high-risk groups (p= 1.4 e-13). (K)Correlation analysis betweenCD8+ T cells levels and risk score (r = −0.41, p <
2.2 e-16).
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FIGURE 10
The relationship between risk signature and the clinical characteristics. (A) The heatmap depicting eight gene expressions among distinct
clinical patterns. (B–G) Kaplan-Meier survival analysis according to the 8-gene signature stratified by clinicopathological factors. (B) age<=60: p =
0.011, age>60: p < 0.001. (C) Female: p = 0.001, Male: p < 0.001. (D)G1-2: p = 0.002, G3-4: p < 0.001. (E)N0-1: p < 0.001, N2-3: p = 0.009. (F) Stage
I-III: p = 0.004, Stage IV: p = 0.001. (G) T0-2: p = 0.006, T3-4: p < 0.001.
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Discussion

Immunotherapy has been successful used to treat cancer

patients in the advanced tumor stage. Nevertheless, clinical

application of the strategy is hampered by several limitations,

including low response rates, development of serious side effects,

and drug resistance (Sacco et al., 2021). One of the key reasons for

these limitations is the paucity of potential predictive markers. In

the present study, we calculated the proportion of CD8+ T cells,

and selected IRGs-related to CD8+ T cells infiltration by

integrating scRNA and bulk sequencing profiles. As a result,

215 differential IRGs were identified by WGCNA, of which

45 genes were significantly associated with HNSCC survival.

Subsequently, we developed and validated an 8-gene risk model

which may be useful for predicting prognosis and

immunotherapeutic effect.

The eight critical genes, including DEFB1, AICDA, TYK2,

CCR7, SCARB1, ULBP2, STC2, and LGR5, play essential roles in

tumor progression and immune-modulatory effects. For

example, DEFB1, the human antimicrobial peptide defensin β

1, is considered as a potential tumor suppressor gene and has

been shown tomediate PI3K/mTOR signaling, thereby leading to

death of tumor cells (Sun et al., 2006; Lee et al., 2015).DEFB1was

also found to be theoretically useful as a prognostic biomarker for

HNSCC (Han et al., 2014). Moreover, DEFB1 was commonly

detected in epithelial cells, which is consistent with our results.

UL16-binding protein 2 (ULBP2), a ligand of the activating NK

cell receptor NKG2D, was found to be engaged in target

recognition by NK cells (Textor et al., 2011). A previous study

confirmed that the soluble ULBP2 secreted by cancer cells

contributed to the immune escape (Waldhauer and Steinle,

2006). Herein, we observed that ULBP2 was upregulated in

epithelial cells. Meanwhile, ULBP2 has been shown to be a

prognosis indicator for several cancers, such as lung cancer

and pancreatic cancer (Chang et al., 2011; Yamaguchi et al.,

2012). The activation-induced cytidine deaminase (AICDA) is an

essential enzyme of the adaptive immune system. A recent study

found that elevated expression of AICDA regulates the function

of B cells in regional lymph nodes and significantly improves

prognosis of HNSCC patients (Pylaeva et al., 2021). Tyrosine

kinase 2 (TYK2), a member of the Janus kinase (JAK) family, has

emerged as both a promising biomarker and a target for anti-

cancer therapies (Borcherding et al., 2021). It has been reported

that high expression of TYK2 is associated with better prognosis

of HNSCC (Fang et al., 2021). A recent review concluded that CC

motif chemokine receptor (CCR7) is correlated with good

outcomes of HNSCC patients (Korbecki et al., 2020).

However, if located on cancer cells, CCR7 and its ligands

(CCL19/CCL21) is a vital axis for carcinogenic properties,

such as epithelial-mesenchymal transition (EMT) tumor

invasion and migration (Chen et al., 2020; Korbecki et al.,

2020). Notably, the present study found that CCR7 was

predominantly expressed in dendritic cells. SCARB1 has been

demonstrated to be involved in cholesterol metabolism, thereby

facilitating cancer progression (Gutierrez-Pajares et al., 2016). In

addition, stanniocalcin-2 (STC2) exerted a significant role in a

wide variety of signaling pathways in HNSCC apoptosis and

autophagy (Li et al., 2020). Studies have revealed that

FIGURE 11
Construction of a nomogram for predicting survival of HNSCC patients. (A) Nomogram using two clinical traits (N stage and age) and the risk
score. (B,C) The calibration and ROC curves for determining the reliability of the nomogram to predict one-, three-, and five-year survival rates.
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downregulated expression of STC2 can suppress growth of

HNSCC cells (Li et al., 2019; Li et al., 2020). Moreover, the

leucine-rich repeat-containing G protein-coupled receptor LGR5

participated in Wnt signaling and was intimately linked to the

severity of HNSCC (Dalley et al., 2015).

Given the important role of immune cell infiltrations in the

diagnosis and treatment of diseases, we further explored the

immune landscape in different HNSCC groups. Based on the

degree of immune cell infiltrations, particularly CD8+ T cells,

the tumor phenotypes can be defined as two major patterns,

FIGURE 12
Functional enrichment characteristics of the risk signature. (A)Different activities of KEGG pathway scored byGSVA between high- and low-risk
groups. (B) GSEA analysis showing the sixteen KEGG functional pathways enriched in low-risk group.
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“hot” and “cold”, which are associated with good and poor

antitumor immune responses, respectively (Galon and Bruni,

2019). This study explored the abundance of immune cells and

functions using CIBERSORT, ESTIMATE, and ssGSEA methods.

According to the obtained results, the low-risk group exhibited

more infiltration of CD8+ T cells, memory activated CD4+ T cells,

and plasma cells, as well as higher immune score, and thus can be

categorized as “hot” tumor phenotype. On the other hand, the high-

FIGURE 13
Patterns of immune cells infiltration in two risk groups. (A) The box plot showing the fractions of 22 infiltrating immune cells and immune-
related scores based on CIBERSORT and ESTIMATE algorithms. (B) A heatmap presenting the 22 immune cells in the two risk score subgroups with
different immune-related scores. (C) The ssGSEA scores for 29 immune gene sets. (D)Differential expressions of the 15 immune checkpoint-related
genes. (E) CD274 expression difference among the high- and low-risk groups (p = 0.0006). (F) The spearman correlation plot between
CD274 expression and risk score (r = −0.18, p = 3.6 e-05). (G) CTLA4 expression difference among the high- and low-risk groups (p = 2.5 e-14). (H)
The spearman correlation plot between CTLA4 expression and risk score (r = −0.43, p < 2.2 e-16). pp < 0.05; ppp < 0.01; pppp < 0.001; ns: no
significance.
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FIGURE 14
Drug response prediction between the two risk groups. (A–H) The IC50 of eight common chemotherapeutic agents (5-Fluorouracil,
Bleomycin, Cetuximab, Cisplatin, Docetaxel, Methotrexate, Rapamycin, and Sunitinib) and correlation analysis with risk score. (I–L) The difference of
immunophenoscore (IPS) scores among high- and low-risk groups.
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risk group showed greater abundance of activatedmast cells, resting

NK cells, and M2 macrophages, and lower immune score,

suggesting the “cold” tumor phenotype. Furthermore, the

immune checkpoint-related genes exhibited relatively high

expressions in the low-risk group, including IFNG, PRF1,

GZMA, GZMB, CXCL10, CXCL9, CD8A, CD274 (PD-L1),

HAVCR2, IDO1, LAG3, CTLA4, and PDCD1. Studies have

confirmed that infiltration of M2 macrophages is associated with

tumorigenic chronic inflammation with secretion of

protumorigenic factors, such as IL-6, VEGF, and TGFβ (Ruffell

and Coussens, 2015). Accumulating evidence suggests that

preexisting CD8+ T cells and PD-L1 expression are generally

correlated with improved efficacy of immunotherapy (Farhood

et al., 2019; Gavrielatou et al., 2020). Consistently, our results

suggested that patients with low-risk score, as a consequence of

higher IPS scores, had more vigorous immune responses to anti-

PD1 therapy and anti-PD1 plus anti-CTLA4 therapy. Moreover,

patients in the two groups exhibited varying sensitivity to four

common chemotherapeutic drugs, including bleomycin, cisplatin,

methotrexate, and rapamycin (Cramer et al., 2019). Notably,

previous studies have verified the therapeutic safety and

effectiveness of chemotherapy in combination with PD-L1

blockade (Burtness et al., 2019; Cohen et al., 2019). Nevertheless,

different sensitivities to 5-Fluorouracil, cetuximab, docetaxel, and

sunitinib were not observed in this study. TMB level was considered

to be an indicator of immunotherapy response (Rizvi et al., 2015).

We then examined the relationship between TMB and the risk

score. The alteration frequency of TP53, PKHD1L1, DNAH9 and

FIGURE 15
(A) TMB difference among the high and low risk groups. p = 0.00028. (B) The Spearman correlation analysis between risk score and TMB. r =
0.22, p = 1.3e-06. (C) K-M survival analysis stratified by both TMB and risk scores. p < 0.001. (D,E) Distribution of the top 20 variant mutated genes
among high (D) and low (E) risk groups. The waterfall plot showing the genetic alterations types.
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FAT1was significantly different between high- and low-risk groups.

TP53 is one of the most frequently mutated genes in HNSCC and

TP53 mutations play a critical role in tumorigenesis and

progression (Nathan et al., 2022). Understanding the DNAH9

and FAT1 mutations may contribute to cancer surveillance and

treatment (Huang et al., 2021; Yang et al., 2022). Investigation of the

mutational signatures may allow for an improved selection of

immunotherapies in individual patients.

However, this study was limited by the fact that it lacked

experimental and clinical pathology studies to validate the function

of the eight genes. Therefore, further clinical trials are needed to

confirm the predictive potential of the risk signature.

Conclusion

In conclusion, by comprehensively analyzing the single-cell

and bulk RNA sequencing of HNSCC, this study developed and

externally validated a novel and robust model based on eight

CD8+ T cells-related genes. It is expected that the 8-gene

signature will facilitate understanding of HNSCC immune

characteristics, predict prognosis of HNSCC patients, and

guide the clinical use of immunotherapy.
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