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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease

characterized by excessive activation of T and B lymphocytes and breakdown

of immune tolerance to autoantigens. Despite several mechanisms including the

genetic alterations and inflammatory responses have been reported, the overall

signature genes inCD4+ T cells and how they affect the pathological process of SLE

remain to be elucidated. This study aimed to identify the crucial genes, potential

biological processes and pathways underlying SLE pathogenesis by integrated

bioinformatics. The gene expression profiles of isolated peripheral CD4+ T cells

from SLE patients with different disease activity and healthy controls (GSE97263)

were analyzed, and 14 co-expressionmoduleswere identifiedusingweightedgene

co-expression network analysis (WGCNA). Some of these modules showed

significantly positive or negative correlations with SLE disease activity, and

primarily enriched in the regulation of type I interferon and immune responses.

Next, combining time course sequencing (TCseq) with differentially expressed

gene (DEG) analysis, crucial genes in lupus CD4+ T cells were revealed, including

some interferon signature genes (ISGs). Among these genes, we identified

4 upregulated genes (PLSCR1, IFI35, BATF2 and CLDN5) and 2 downregulated

genes (GDF7 and DERL3) as newfound key genes. The elevated genes showed

close relationship with the SLE disease activity. In general, our study identified

6 novel biomarkers in CD4+ T cells that might contribute to the diagnosis and

treatment of SLE.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic

autoimmune disease which affects diffuse connective tissues

and organs, including skin, joints and kidneys. SLE is

characterized by excessive activation of T and B lymphocytes

and breach of immune tolerance to autoantigens, which trigger

the production of autoantibodies and lead to the immune-

complex related inflammation in multiple organs and tissues

(Tsokos, 2011). Genetic factors and environmental triggers are

believed to play important roles in the pathogenesis and

progression of SLE (Goulielmos et al., 2018; Dorner and

Furie, 2019). Nevertheless, the pathogenic mechanisms of SLE

have not been fully understood yet. Thus, the time-course of

disease flares, remission and progression is unpredictable

(Obermoser and Pascual, 2010). Besides, SLE is also a highly

heterogeneous disease in terms of diverse clinical manifestations

and severity, which presents a challenge to the clinicians and

researchers. It would therefore be of great value to explore the

molecular signatures underlying different clinical phenotypes, as

it could aid in accurate diagnosis, disease activity assessment and

clinical management of SLE.

The mutation and abnormal expression of many vital genes

also confer a predisposition to SLE, indicating the value of

diagnosis or prognosis (Teruel and Alarcon-Riquelme, 2016;

Luo et al., 2020). However, peripheral blood mononuclear

cells (PBMCs) consist of a mixture of lymphocytes and

monocytes, and rarely show a good enough discrepancy on

transcriptomic profiles. Among the major peripheral immune

cells in lupus, the autoreactive and pro-inflammatory CD4+

T cells stimulate the differentiation, proliferation and

maturation of B cells to enhance the production of

autoantibodies, playing a key role in the pathogenesis and

progression of SLE (Moulton and Tsokos, 2011; Zhao et al.,

2018; Jang et al., 2021). The alterations in the signaling

physiology and gene transcription lead to abnormalities in the

phenotype of these cells (Mak and Kow, 2014; Yuan et al., 2022).

Most of all, the peripheral blood cells of lupus patients

demonstrated overexpression of the gene profiles induced by

type I interferon (IFN), also known as interferon signature genes

(ISGs) (Feng et al., 2015; Ronnblom, 2016; Postal et al., 2020).

However, how these molecular signatures correlate with SLE

activity awaits further characterization. The transcriptomic or

translational profiles of lupus CD4+ T cells can lead to a better

understanding of pathogenic mechanisms of SLE, and aid in

potential therapeutic targets identification in an unbiased

manner.

Weighted gene co-expression network analysis (WGCNA) is

a well-known method of systems biology for exploring and

identifying the potential functional pathways and biomarkers

for diagnosis and prognosis of complex diseases at the level of the

genome (Langfelder and Horvath, 2008). This powerful

bioinformatic tool has been widely used in various diseases,

including SLE and other autoimmune diseases (Yan et al.,

2018; Sun et al., 2019). Using WGCNA, Liu et al. found

overexpressed small RNAs encoded by human endogenous

retrovirus K in PBMCs that might be involved in the immune

regulation and progression of SLE (Liu et al., 2021). Similarly,

IFI27 may be closely related to pathogenesis of SLE (Zhao et al.,

2021). In lupus nephritis (LN), the potential gene expression

biomarkers for diagnosis and prognosis were developed by

integrating multiple differentially expressed gene (DEG)

identification methods (Yao et al., 2020; Chen et al., 2021;

Shen et al., 2021). In this study, through integrated

bioinformatics analysis of high-throughput sequencing data,

we well-characterized the gene expression profiles in CD4+

T cells obtained from healthy controls (HC) and lupus

patients, and identified crucial genes correlated with the

severity of SLE. These findings could improve our

understanding of the disease pathogenesis and provide new

insights in identification of potential diagnostic and

therapeutic molecular targets of SLE.

Materials and methods

Data acquisition and processing

We obtained the gene expression dataset GSE97263 with

corresponding clinical information from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97263),

which was performed with the platform of Illumina HiSeq 2500.

This dataset contained isolated blood CD4+ T cells from 14 HC,

14 active and 16 inactive SLE patients (Buang et al., 2021). The

Systemic Lupus Erythematosus Disease Activity Index

(SLEDAI score) was used for clinical classification. Inactive

SLE was defined as a SLEDAI <4 and active SLEDAI >6.
Processing and analysis of these collected data were

conducted with the R software. The Ensemble IDs were

converted into gene symbols with the bitr function in

clusterProfiler (Wu et al., 2021), and the genes with average

raw reads value less than 1 were removed. After data processing,

16,623 genes were matched, and all these genes were used for

the following WGCNA after normalized with log transformed

(in detail, log(edgeR:cpm(counts+1)).

WGCNA

A sample clustering tree map was first constructed to detect

and eliminate outliers. Then, the “WGCNA” R package

(Langfelder and Horvath, 2008) was used to construct the

gene network with the dataset GSE97263. In detail, scale

independence and mean connectivity were identified via the

soft threshold power (β value) setting of 1–20. Meanwhile,

soft threshold power was selected as the degree of scale
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independence reached 0.85. Based on the selected soft threshold,

the adjacency matrix was converted to topological overlap matrix

(TOM) to construct the network. Then, we performed module

identification using cutreeDynamic function with

minClusterSize = 100, and the gene dendrogram and module

color were established using the degree of TOM-based

dissimilarity(1-TOM). Next, MergeCutHeight function was

used for cutting the dendrogram in the process of module

merging with the a 0.25 MEDissThres value, and 14 modules

were finally harvested.

Identification of clinically significant
modules

The Pearson correlation coefficient between the module

eigengene (ME) and sample traits was calculated to find out

the highly relevant module (hub module) associated with the

development of SLE. Modules with top 2 corresponding

correlation with p < 0.05 were identified. Then the

correlationship between Module Membership (MM, the

correlation of the module eigengene and the gene

expression profile) and Gene Significance (GS, the

correlation between the gene and the clinical phenotypes)

in these modules was calculated and visualized with the

“WGCNA” R package (Langfelder and Horvath, 2008). The

significantly correlation GS and MM implied that hub genes of

the modules tend to be highly correlated with clinical

phenotypes.

Functional enrichment analysis

In order to identify the function of the selected genes in the

pathogenesis and development of SLE, Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO)

enrichment analysis of gene functions in hub modules were

performed using the “clusterProfiler” R package (Wu et al.,

2021) with the default parameters.

Identification of DEGs in HC, inactive and
active SLE

The “DESeq2” R package was used to identify DEGs among

the three groups with the threshold of |log2FC| >1 and p < 0.05.

Besides, the “TCseq” R package “timeclust” function was used to

characterize the gene expression patterns in three groups

following the manuscript (DOI: 10.18129/B9.bioc.TCseq). The

clusters that showed positive or negative relations with SLE

activity were selected.

Identification of key genes

The Jvenn web tool was used to identify the overlapped

intersection of the genes identified by WGCNA, time course

sequencing (TCseq) and DEG analysis. These key genes were

selected to perform principal component analysis (PCA) and

heatmap analysis for validation.

Identification of potential biomarkers
of SLE

First, we analyzed the key genes identified above with the

“clusterProfiler” R package (Wu et al., 2021), and identified the

genes that participated in regulation of top GO terms related to

the development of SLE. Then, we compared the gene expression

between HC and SLE patients with different disease activity and

identified the potential biomarkers of diagnostic and therapeutic

value for SLE.

Statistical analysis

All the statistical process and analysis in this manuscript were

performed with R software, and p < 0.05 was considered as

statistically significant.

Results

Gene expression profiles in HC, inactive
and active SLE

Herein, 44 isolated CD4+ T cells samples obtained from the

dataset GSE97263 were processed. A total of 41,092 Ensemble

IDs were converted into gene symbols. As the genes with average

raw reads less than 1 were removed, 16,623 genes were selected

for the following analysis. After data processing, we examined the

gene expression differences in CD4+ T cell isolated from HC and

SLE patients with different disease activity (Figure 1). According

to the PCA results, the gene signatures of these three groups

could not be clearly separated (Figure 2A). Next, we analyzed the

differences between HC and active SLE group, and found

834 upregulated genes and 252 downregulated genes, with the

cut-off criteria of p < 0.05 and |log2FC| > 1 (Figure 2B). Similarly,

the volcano plots showed the difference of DEGs between HC

and inactive SLE (Figure 2C), and inactive and active SLE group

(Figure 2D). Next, the genes with the largest variance of gene

expression were selected for heatmapping, as shown in the

Supplementary Figure S1, indicating dynamic changes in gene

expression during the development of SLE.
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Identification of hub modules through
WGCNA

With no outlier samples, we calculated the optimal soft

threshold power (β value) was 8, which was verified by scale-

free topology analysis with R2 = 0.85 (Supplementary Figures

S2A,B). After merging similar modules with the cut-off

value = 0.25, 14 modules from the weighted co-expression

network were identified based on all the 16,623 genes

(Supplementary Figures S2C,D). The gene numbers and

detailed symbols in each module were shown in

Supplementary Figure S2E and Supplementary Table S1,

respectively. In order to explore the relationships among

the above-mentioned modules, we quantified the module

similarity by eigengene correlation, and the TOM heatmap

showed strong correlation within the module groups

(Supplementary Figures S2F).

Correlation between modules of interest
and clinical traits

Next, identifying modules most associated with the

disease activity is of great biological significance for

biomarker development. According to the module-trait

relationships in Figure 3A, the MElightcyan and

MEsalmon modules were negatively related to disease

activity (Cor = −0.45, p = 0.002 for MElightcyan, and

Cor = −0.43, p = 0.004 for MEsalmon), while the MEcyan

and MEbrown modules displayed positive relationship with

disease activity (Cor = 0.7, p = 1*10–7 for MEcyan, and Cor =

0.69, p = 3*10–4 for MEbrown). Thus, these modules were

selected for downstream analysis. As shown in Figures

3B–E, GS and MM were highly correlated, illustrating

that genes significantly associated with disease activity

were also the central elements of modules highly

associated with this trait.

Functional analysis of hub modules

To investigate the correlated biological processes, GO

enrichment analysis was carried out on all matched genes

in these modules (Supplementary Table S2). In the salmon

module, the enriched biological processes were mainly

associated with nuclear-transcribed mRNA catabolic

process (nonsense mediated decay), cotranslational protein

targeting to membrane, SRP-dependent cotranslational

protein targeting to membrane and translational initiation.

In the cyan module, the biological processes were mainly

enriched in the regulation of type I IFN production and

response to IFN-α (Figure 3F).

FIGURE 1
Study design and the workflow of this study.

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2022.941221

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941221


Identification of gene sets related to SLE
disease activity

The above WGCNA results showed that the gene

expression patterns of hub modules were significantly

correlated with disease activity. To further clarify the gene

sets closely related to SLE, TCseq analysis was used to analyze

CD4+ T cells from SLE patients with different disease activity.

The detailed gene symbols in different clusters were listed in

Supplementary Table S3. The results showed that the

Cluster2 was positively correlated with SLE disease

activity, while the Cluster3 was negatively related to the

disease activity (Figure 4A). In KEGG enrichment analysis,

we found that genes in the Cluster2, which were upregulated

in SLE patients, were enriched in the pathways of cell cycle,

necroptosis and p53 signaling. The GO analysis showed that

these genes were enriched in T cell activation, DNA

replication, regulation of innate immune response, type I

IFN production, response to type I IFN and T cell migration

(Figure 4B). In the Cluster3, the KEGG analysis showed that

the downregulated genes were enriched in multiple signaling

pathways, including Wnt and transforming growth factor-

beta (TGF-β) signaling pathways. The GO analysis also

revealed that these genes were related to positive

regulation of cell projection organization, canonical Wnt

signaling pathway, positive regulation of growth and

positive regulation of protein binding (Figure 4C).

Based on combined analysis of WGCNA, TCseq and DEG,

146 genes showed positive correlation with disease activity

and 51 genes showed negative correlation with disease activity

in patients (Figures 5A,B). Therefore, these 197 genes could be

used to distinguish active and inactive SLE patients (Figures

FIGURE 2
The DEG analysis showed the differences of gene expression profiles in HC, inactive and active SLE patients. (A) The PCA result of the gene
expression of CD4+ T cells in HC, inactive and active SLE patients. (B–D) The volcano plot of DEGs between HC and active SLE (B), HC and inactive
SLE (C), and inactive SLE and active SLE (D).
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FIGURE 3
Main findings in the module-trait correlations through WGCNA. (A)Module-trait associations. Each row corresponded to a module eigengene
(ME), while each column corresponded to a trait. Each cell contained the corresponding correlation and p value. The cells were color-coded by
correlation according to the color legend. (B–E) The scatterplots of Gene Significance (GS) for disease activity vs. Module Membership (MM) in the
lightcyan (B), salmon (C), cyan (D) and brownmodule (E), which represented significant correlations between GS and MM in these modules. (F)
The dot plot of GO enrichment analysis of the genes in different modules.
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FIGURE 4
Identification of gene sets related to SLE disease activity. (A) Clustering of the gene expression patterns in CD4+ T cells from HC, inactive and
active SLE patients by TCseq analysis. A total of 9 clusters were obtained and the Cluster 2 and 3 were found significantly correlated with SLE disease
activity. (B) KEGG (left) and GO (right) analysis of genes in the Cluster 2. (C) KEGG (left) and GO (right) analysis of genes in the Cluster 3.
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5C,D). We furtherly analyzed the biological functions of these

identified genes and found that they were enriched in the

response to type I IFN, IFN-β production, negative regulation

of T cell proliferation and immune system process

(Figures 5E,F).

Identification of the potential biomarkers
for SLE

The genes upregulated in SLEpatientsmainly focused on type I IFN

response. We found 24 ISGs (RSAD2, IFIT3, APOBEC3A, IFIT2,

FIGURE 5
Identification of the candidate key genes. (A,B) The venn diagram (A) and bar plot (B) showed the number of genes in the salmon-lightcyan and
cyan-brown modules, Cluster 2 and 3, upregulated and downregulated DEGs gene sets. (C,D) The PCA (C) and heatmap (D) analysis of the selected
genes in HC, inactive and active SLE patients. (E,F)Dot plot (E) and network plot (F) of enriched terms of the candidate key genes throughGO analysis.
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PARP9, DTX3L, PLSCR1, IFI35, ISG15, CMPK2, HERC5, GBP1, IFI27,

STAT1, MX1, IRF7, OAS1, OAS2, OAS3, OASL, IFIH1, SIGLEC1,

LGALS9 and BST2) which were significantly associated with SLE

disease activity (Figures 6A,B, Supplementary Figure S3). Among

them, PLSCR1 and IFI35 were identified as the newfound crucial

ISGs. Besides, BATF2 and CLDN5 were also identified as key genes

(Figure 6C). The expression levels of the above genes were significantly

upregulated, especially in those active SLE patients. On the other hand,

the expressionofGDF7 andDERL3 showed significantdecrease in active

or inactive SLE, compared with that in HC group (Figure 6D). The

relevant research in other diseases also pointed that the 4 upregulated

genes (PLSCR1, IFI35, BATF2 and CLDN5) and 2 downregulated genes

(GDF7 and DERL3) exhibited immunoregulatory functions. Therefore,

these 6 newfound genes may serve as potential biomarkers of SLE.

Discussion

It has been reported that lupus CD4+ T cells had altered

signaling and function, and the hyperactivation of these cells was

FIGURE 6
The expression levels of potential key genes in HC and SLE patients. (A,B) The expression levels of candidate ISGs in CD4+ T cells from HC,
inactive and active SLE patients. (C,D) The expression levels of upregulated BATF2 and CLDN5 (C) and downregulated GDF7 and DERL3 (D) in CD4+

T cells from HC, inactive and active SLE patients. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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an important molecular feature of SLE patients. In this study, we

analyzed the expression patterns of CD4+ T cell in HC, inactive

and active SLE through multiple analysis methods, and explored

the molecular indicators for potential diagnostic biomarkers and

therapeutic targets of SLE.

From methodology aspect, DEG analysis focuses on the

differentially expressed genes among different groups, while

WGCNA focuses on the correlations between the co-expression

modules and the phenotypic and clinical traits, not merely the

differences in gene expression profiles. TCseq can be applied for

differential analysis between different time points and temporal

pattern analysis and visualization of sequencing data. These

three bioinformatical tools are complementary to one another

to describe key relevant patterns to expanding our capacity for

identifying novel biomarkers. In this study, through WGCNA

analysis, we established gene expression module-disease

activity relationship and found the main functional

enrichment in the cyan module included regulation of type I

IFN production and the IFN response. This observation is

consistent with the current knowledge that ISGs are highly

related with SLE disease activity (Crow, 2014; Gkirtzimanaki

et al., 2018; Buang et al., 2021). From the perspective of

treatment, monoclonal antibodies such as Anifrolumab

(Anderson and Furie, 2020; Tanaka and Tummala, 2021)

and Sifalimumab (Greth et al., 2017), which block the

activation of type I IFNs, have demonstrated significant

effectiveness in achieving the composite endpoints in active

SLE patients. The medical researchers have also tried to treat

lupus by inhibiting type I IFNs in a variety of ways, such as

glucocorticoids (Kirou and Gkrouzman, 2013), nicotinamide

riboside (Wu et al., 2022) and mTOR inhibitor (Murayama

et al., 2020). On the other hand, the salmon module was

enriched in biological processes of translational initiation

and cotranslational protein targeting to membrane, showing

that the expression level negatively correlated with disease

activity. The major consequence of perturbing

cotranslational targeting for disease progression is so far

largely unexploited. We speculate that it may be involved in

T cell differentiation, which accompanied by the expression and

secretion of a large number of cytokines, as well as

communication between cells.

Furtherly, by combining the TCseq with DEG analysis, we

identified the presence of 197 genes as closely correlated with

disease activity in patients, that may play an integral role in the

development of SLE. GO analysis showed that DEGs were mainly

involved in negative regulation of immune system process, the

response to type I IFN, IFN-β production and negative regulation
of T cell proliferation. A total of 24 ISGs showed significant

upregulation in SLE patients, especially in those who presented

with higher disease activity. The results are consistent with the

phenomenon of over-activated IFN response in lupus patients,

and further confirm that ISGs play a vital role in the pathogenesis

of SLE. Among these ISGs, we identified PLSCR1 and IFI35 as the

newfound crucial genes. PLSCR1 is a member of the

phospholipid scramblases protein family and involved in

regulating phospholipid movements within the plasma

membrane. Several reports found that significant

hypomethylation of differentially methylated sites in SLE was

associated with PLSCR1(Yeung et al., 2017; Joseph et al., 2019; He

et al., 2022). Besides, elevated expression of PLSCR1 was found in

monocytes from SLE patients (Suzuki et al., 2010), and it was also

involved in the modulation of the phagocytic process in

differentiated macrophages (Herate et al., 2016). IFI35 reflects

the type I IFN activity induced through the JAK-STAT

phosphorylation (De Masi et al., 2021). Elevated expression

levels of IFI35 were found in serum of LN patients, which

promoted LPS-caused inflammatory response and cell

apoptosis (Zhang et al., 2021). IFI35 also showed regulatory

effects on multiple immune cells by activating macrophages and

dendritic cells and promoting naïve T cell differentiation into

Th1 and Th17 cells (Xiahou et al., 2017; Jing et al., 2021). A

significant elevation in IFI35 expression in active SLE was also

found in our study, indicating that IFI35 may be associated with

the dysregulation of host IFN production and immune cell

function in SLE.

Besides, we also explored upregulated BATF2 and CLDN5

as critical genes in SLE. BATF2 was significantly induced and

involved in gene regulation of IFN-γ-activated classical

macrophages (Roy et al., 2015), and inhibited

Th17 responses by suppressing IL-23a expression (Kitada

et al., 2017; Kayama et al., 2019). In SLE, in vitro

experiments indicated BATF2 may be involved in the

impairment of translational and proliferative responses to

mitogens in T cells (Ge et al., 2021). CLDN5 encodes tight

junction protein and plays a role in C5a/C5aR1 signaling, which

was reported to be related to the impaired brain-blood-barrier

(BBB) in SLE with neurological complications (Mahajan et al.,

2015). These abnormal expression patterns may eventually

disturb immune function with CD4+ T cells activation and

proliferation. Among these downregulated genes, we identified

GDF7 and DERL3 as key genes. GDF7 encodes a secreted ligand

of the TGF-β superfamily of proteins. Recent research showed

that GDF7 can exhibit positive regulatory effects on Tregs via

increasing the expression of FOXP3 and CTLA4 (Ding et al.,

2021). Thus, the downregulation of GDF7 in CD4+ T cells may

lead to impaired suppressive functions of lupus Tregs. DERL3

encodes proteins belong to the derlin family, which resides in

the endoplasmic reticulum (ER). Recent reports usingWGCNA

or RNA-seq suggested that the function of DERL3 may

correlate with plasma cells (Gao et al., 2022; da Silva et al.,

2020). Since CD4+ T cells act as main helper cells for plasma cell

production and cytokines secretion, we suggest that the

decreased expression of DERL3 in lupus CD4+ T cells may

contribute to the pathogenesis of SLE. Taken together, our data

indicated the potential diagnostic and therapeutic value of

GDF7 and DERL3 in SLE.
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There are still several limitations in this study. First of all,

the diagnostic or prognostic value of these key genes require a

large number of blood samples for validation. Secondly, we did

not further clarify the molecular mechanisms of the identified

genes. Finally, although we have performed a detailed

bioinformatics analysis, some vital genes in the pathogenesis

and progression of SLE may still be missed. Thus, further

analysis and detailed experiments are needed to definitely

establish the predictive biomarkers and explicitly evaluate

the performance.

In summary, based on integrated bioinformatical analysis, we

found gene sets highly related to SLE disease activity. Besides,

some crucial genes mediating the development of SLE were

identified, including some previously reported ISGs. In

particular, we found 4 upregulated genes (PLSCR1, IFI35,

BATF2 and CLDN5) and downregulated expression of GDF7

and DERL3 in SLE patients. Therefore, our findings identified

6 novel potential biomarkers in lupus CD4+ T cells, which

provided new insights into the development and treatment of

SLE. The underlying mechanisms of these genes are still need to

be further explored.
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