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Background: Cellular senescence plays a critical role in the occurrence and

development, and immune modulation of cancer. This research primarily

investigated the role of senescence-associated genes (SAGs) in the survival

and tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC).

Methods: From the Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) database, the gene expression profiles and clinical

data of PDAC samples were downloaded. SAGs in the TCGA cohort were used

to build a novel prognostic model and validated in the ICGC cohort. The

relationship of signature with the immune landscape, tumor mutational

burden (TMB), as well as the sensitivity of different therapies, was explored.

Moreover, a nomogram was developed to predict the overall survival of PDAC

patients.

Results: A prognostic signature was constructed on basis of three SAGs, and

patients in the low-risk score group had a longer survival time. The accuracy of

the signature to distinguish different score groups was confirmed through

principal component analysis (PCA) and the Receiver operator curves curve.

The mRNA expression of the three signature genes was also verified in normal

pancreatic and PDAC cell lines by RT-qPCR. The signature could independently

predict the prognosis of PDAC patients and had broad applicability. Meanwhile,

the nomogram predicted that 1- and 3-years survival rates were in good

agreement with the observed overall survival rates. Low-risk patients had

lower tumor mutational burden, and low-TMB patients had a better

prognosis. Low- and high-risk patients exhibit distinct immune cell

infiltration and immune checkpoint changes. By further analyzing the risk

score, patients in the low-risk group were more responsive to

immunotherapy and a variety of commonly used chemotherapeutic drugs.

Conclusion: The prognostic signature canwell predict the prognosis and assess

the possibility of immunotherapy in personalized PDAC treatment.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly

malignant gastrointestinal tumor and is projected to become

the second-leading cause of cancer-related mortality by 2030

(Mizrahi et al., 2020; Siegel et al., 2022). Due to the influence of

pancreatic anatomy and its biological characteristics, PDAC is

prone to invade surrounding tissues and organs and develop

distant metastasis in the early stage. In addition, there are no

obvious and specific symptoms and signs in the early stage. Most

patients are diagnosed in the advanced stage and have a very poor

prognosis (Mizrahi et al., 2020). Surgical resection is still the only

cure for PDAC, but only 15%–20% of PDAC patients currently

have the opportunity to seek curative treatment through surgery,

and most patients rely mainly on adjuvant systemic

chemotherapy to improve their prognosis (Mizrahi et al.,

2020). However, even a combination of surgery, systemic

chemotherapy, and radiotherapy benefits only a small

proportion of patients with PDAC (Narayanan et al., 2021).

Therefore, it is particularly important to find new and feasible

molecular pathological markers and therapeutic targets for early

identification and appropriate management.

Intratumor heterogeneity in tumors results from distinct

genetic aberrations, immune microenvironments, metastatic

capacity, and senescence (Kim et al., 2017). Among them,

senescence is an important regulatory mechanism. Senescence

refers to a cellular state characterized by stable cell cycle arrest in

response to various stresses (Hernandez-Segura et al., 2018).

Senescent cells have the dual role of promoting and alleviating

cancer. In response to various stresses, they enter persistent cell

cycle arrest to inhibit proliferation, thereby inhibiting

tumorigenesis of precancerous cells. Senescent cells can

exhibit a variety of features, including elevated reactive oxygen

species (ROS), cell cycle regulators, and a senescence-associated

secretory phenotype (SASP) (Prieto and Baker, 2019). However,

SASPs produced by senescent cells can also disrupt the

surrounding environment for tumor growth, recurrence, and

metastasis (Ruhland et al., 2016; Demaria et al., 2017). SASP

promotes senescence of immune cells, including macrophages, in

an autocrine manner, thereby evading tumor cell surveillance

and clearance of senescent cells (Behmoaras and Gil, 2021). In

addition, the accumulation of senescent cells will promote the

release of SASP factors and promote the growth of tumor cells

(Prieto and Baker, 2019). These observations suggest that tumors

are heterogeneous in their senescence status. Therefore,

personalized treatment is the hot spot for the treatment of

PDAC and it is also an urgent task at current.

In recent years, gene expression signatures based on SAGs

have been reported to predict the prognosis of various cancers,

including lung adenocarcinoma, glioma, and colorectal cancer

(Lin et al., 2021; Luo et al., 2021; Yue et al., 2021). However,

PDAC patients lack such a prognostic signature associated with

senescence. In present research, we established a novel

prognostic model for patients based on SAGs to predict OS in

PDAC patients and guide individualized treatment.

Materials and methods

Data source

The RNA transcriptome dataset and related clinical

information of 178 PDAC patients and 4 normal samples

were downloaded from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/). Due to the lack of normal

pancreatic tissue data in the TCGA database, we downloaded

Genotype-Tissue Expression (GTEx, https://www.gtexportal.org/

home/datasets) data from 167 normal pancreatic samples to

identify the DEGs between normal and tumor tissues. TCGA

data filtering criteria are as follows: 1. Complete prognostic

information; 2. Survival time is more than 1 month; 3.

Remove duplicate samples and normal samples. Following

then, a total of 170 PDAC patients were included in the

studies. In addition to this, the gene expression profiles and

clinical information of 82 PDAC samples were downloaded from

the International Cancer Genomics Consortium (ICGC, https://

dcc.icgc.org/). The data of 170 PDAC patients in TCGA were

used as the training set to build a prognostic model, and the

ICGC dataset (82 patients) was used as an external validation

cohort. In addition, 279 senescence-associated genes were

collected from the CellAge database (https://genomics.

senescence.info/cells/signatures.php).

Development of a senescence-associated
signature and a nomogram

To identify the prognostic SAGs, we performed univariate

analysis in the training set. Then, LASSO regression analysis was

applied to narrowing down candidate genes using the R package

“glmnet”. Subsequently, multivariate Cox regression analysis was

performed to build a signature. The following formula was

employed to calculate the risk scores of PDAC samples:

Risk score � ∑
n

i�1Coef(xi) × Exp(xi)

“Coef” represents the non-zero regression coefficient and “Exp”

represents the expression level of genes in the signature. The
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samples were equally classified into testing and training sets.

Patients were categorized into high- and low-risk score groups

according to the median value of risk scores. Kaplan-Meier

analysis was performed in the high and low-risk groups with

the “survival” and “survminer” packages.

Receiver operator curves (ROC) were drawn with

“timeROC” package to assess the signature’s accuracy in

predicting survival time. We also verified whether the

signature could distinguish between different risk score groups

based on PCA analysis. The risk state diagram and survival state

diagram were plotted. Univariate and multivariate regression

analyses were performed to confirm if the signature could be

considered an independent predictor signature. The nomogram

was constructed with “rms” package combined with

clinicopathological variables. The same method was used to

calculate the ICGC cohort’s risk score and perform risk

grouping to verify the predictive power of the signature.

Assessment of immune cell infiltration and
the tumor microenvironment in different
risk groups

To explore the differences in the tumor immune

microenvironment between the high- and the low-risk group,

we calculated the proportion of infiltrating immune cells in the

PDAC samples according to the CIBERSORT algorithm. The

ESTIMATE algorithm was employed to investigate the stromal,

immune and ESTIMATE score between the two groups.

Investigation of differences in
immunotherapy and chemotherapeutic
efficacy

The expression of immune checkpoints in high- and low-risk

groups was analyzed, and Tumour Immune Dysfunction and

Exclusion (TIDE) algorithm was employed to estimate the

response to immunotherapy (Jiang et al., 2018). The response

of each sample to anti-CTLA4 and anti-PD-1/PD-

L1 immunotherapy was assessed using TIDE algorithm based

on the gene expression profiles. In addition, the IC50 of

chemotherapeutic drugs in PDAC was calculated with the

“pRRophetic” package.

Relationship between risk score and
tumor mutational burden

We calculated the mutation frequency and the number of

variants in each sample and assessed the mutation status of the

genes in the high- and low-risk subgroups. The difference

between somatic mutation and TMB was compared between

different risk groups. Patients with PDAC were classified into the

low-TMB and the high-TMB group. Based on TMB survival

analysis to explore the survival differences in different TMB

groups. Next, risk score and tumor mutation load were combined

to perform survival analysis to determine if there are differences

in patients between different groups.

Cell culture and qRT-PCR

The RNA transcriptome data of PDAC patients and normal

samples from TCGA and GTEx databases were used to investigate

the expression level of signature genes in PDAC tissues and normal

pancreatic tissues. In addition, the normal pancreatic cell line

hTERT-HPNE and two human PDAC cell lines (PANC-1, SW

1990) were purchased from the American Type Culture Collection

(ATCC) and the Type Culture Collection of the Chinese Academy of

Sciences (Shanghai, China). Cell lines were cultured using RPMI-

1640 or DMEM (HyClone, Logan, UT, United States ) containing

10% fetal bovine serum (FBS, Gibco, United States ) and 1%

penicillin-streptomycin (P/S) (Gibco, United States ). Cell lines

were grown in a sterile and humidified cell culture incubator at

37°C and 5% CO2.

Total RNAs from PDAC cell lines were isolated using TRIzol

reagent (Invitrogen, United States ), and cDNA was generated

with Prime ScriptTM RT Master Mix (Takara, Japan). This was

followed by the performance of RT-qPCR with TB Green®

Premix Ex Taq™ II (Takara, Japan) using Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as an internal control. The

2−ΔΔCt method was performed to calculate the mRNA relative

expression of genes.

Results

Establishment of a senescence-associated
prognostic signature

A total of 112 prognostic SAGs were identified by univariate Cox

analysis (Figure 1A) and were subject to LASSO Cox regression

analysis to avoid overfitting, and 5 SAGs were chosen as the

appropriate candidates for constructing a risk signature

(Figure 1B). Subsequently, multivariate Cox regression analysis

obtained 3 genes (CDK6, CENPA, and MXD4) to build a

prognostic signature (Figure 1C). The risk score under the

prognostic model was next calculated according to the gene

expressions and optimal coefficients. The risk formula was

0.5011*expression (CDK6) + 0.5567* expression (CENPA)—

0.9247* expression (MXD4). Patients were divided into high- and

low-risk groups according to the median value of the training

group. Compared with the low-risk group, the prognosis of

patients in the high-risk group was poor (Figure 1D). PDAC

patients were ranked based on the risk scores, and their
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distribution was shown in Figure 1E. The scatter plot showed that the

survival status of PDAC patients was related to the risk score, and as

the risk score increased, the mortality of the patients increased

(Figure 1E). PCA analysis revealed that there was a clear division

between low- and high-risk score groups (Figure 1F). The area under

the curve (AUC) of ROC curves showed that the risk score had good

prediction accuracy (Figure 1G). Furthermore, we compared our

signature with 9 previously developed models of pancreatic cancer.

Except for the prognostic signature constructed byCai et al., theAUC

value of our signature is higher than that of most prognostic models,

indicating that our model has better predictive ability

(Supplementary Figure S1). To explore the clinical value of the

signature, we further investigated the association between the risk

score and each clinical characteristic. The results demonstrated that

risk score was linked to grade (p = 0.027) and pathologic T stage (p =

0.042; Figures 2A,B). To confirm the prognostic signature whether

can be used as an independent prognostic indicator for PDAC

patients or not, Cox regression analysis was performed and two

forest plots were drawn. The result showed that risk score, age, and

surgery type were independent prognostic indicators (Figures 2C,D).

We also built a nomogram based on clinicopathological features and

risk scores (Figure 2E), which could predict PDACpatients’ 1- and 3-

years survival rates. At the same time, one PDAC patient was

randomly selected for scoring, the results of which were shown in

Figure 2E. The ROC curve revealed the high accuracy of the

nomogram for 1-year (AUC = 0.747) and 3 -year (AUC = 0.725)

survival rates (Figure 2F). Compared to the TNM stage, our model

predicted amore accurate prognosis at the 1- and 3-years time points

(Supplementary Figure S2). Also, we confirmed the good agreement

between nomogram predictions of 1- and 3-years survival and

observed OS rate using calibration curves (Figure 2G).

To prove the applicability of the risk score, we conducted external

validation. In the ICGC set, the signature still had good predictive

performance. The survival rate of PDAC patients with high-risk was

significantly lower than that of patients with low-risk (Figure 3A).

The distribution of risk score, survival status, and OS time of the two

groups is shown in Figure 3B. PCA demonstrated overt separation of

both subgroups (Figure 3C). AUC showed that the risk score had

high prediction accuracy (Figure 3D).

Tumor microenvironment characteristics
in the different risk groups

To better investigate the relationship between risk score and

immune characteristics, CIBERSORT algorithms were used to

FIGURE 1
Establishment of a senescence-associated prognostic signature in the training cohort (n = 170). (A) The prognostic SAGs were selected by
univariate Cox regression analysis. (B) 10-fold cross-validation in the LASSO signature. (C) The presentation of three independent prognosis genes in
multivariate Cox regression analysis. (D) Survival analysis between low- and high-risk subgroups. (E) Survival status and risk score distribution. (F) PCA
analysis displayed an obvious difference in transcriptomes between two risk groups. (G) ROC curve. The accuracy of the signature in predicting
1- and 3-years survival of PDAC patients was evaluated.
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calculate the enrichment scores of various immune cells. As is shown

in Figures 4A–F, the risk score was found to be negatively correlated

with CD8+ T cells, resting memory CD4+ T cells, M1 macrophages,

and naive B cells and positively correlated withM0macrophages and

M2 macrophages. We further explored differences in immune

infiltrating cells between low- and high-risk groups. The results

showed that B cells naive, CD8+ T cells, Monocytes, Macrophages

M0, Macrophages M1, and Macrophages M2 were significantly

different between the low-risk group and the high-risk

group. B cells naive, CD8+ T cells, Monocytes, and Macrophages

M1 cells infiltrated more in the PDAC samples from low-risk score

group. Meanwhile, the infiltrations of Macrophages M0 and

Macrophages M2 cells were higher in the high-risk score group

(Supplementary Figure S3). In addition, we found that the immune,

stromal, and ESTIMATE score of high-risk patients were

significantly lower than those of low-risk patients (Figures 4G–I).

Immune therapeutic evaluation of and
chemotherapeutic drug selection

Considering the relevance of ICIs in treating PDAC, we

investigated the potential role of the signature in assessing the

immunotherapy efficacy of ICIs in PDAC patients by analyzing

the association between the signature and prevalent ICIs targets.

PD-L1 (CD274) was highly expressed in high-risk score group,

while the CTLA4 and PD1 (PDCD1) were highly expressed in

low-risk score group (Figure 5A). Furthermore, we applied the

TIDE algorithms to evaluate the effectiveness of the signatures in

forecasting ICIs responsiveness in PDAC. Patients with high-risk

scores had a lower TIDE score compared with those with low-risk

scores (Figure 5B). Taken together, patients with high-risk scores

can predict the benefit of PDAC immunotherapy. Distinct PDAC

subgroups should guide clinical treatment. To identify PDAC

patients with drug-sensitive, the sensitivity of the different risk

score groups to the drugs was further investigated. Gemcitabine,

Lapatinib, Paclitaxel, and Epothilone B had lower IC50 in the

high-risk group (Figures 5C–F), and Phenformin and Pazopanib

had higher IC50 in the high-risk group (Figures 5G,H).

Mutation landscape of different risk score
groups

Differences in gene mutation frequencies were analyzed in

different risk score groups. There was a marked difference in

mutation frequency between the two groups. The mutation rate

in the high-risk group was 91.14% (Figure 6A), whereas 62.07%

was in the low-risk group (Figure 6B). From the waterfall charts,

it can be seen that the mutated genes in two risk subgroups were

mainly KRAS, CDKN2A, SMAD4, and TP53. Somatic mutation

count and TMB were higher in the high-risk group (Figures

FIGURE 2
Correlation analysis and nomogram construction (n = 161). (A) The relationship between risk score and tumor grade. (B) The relationship
between risk score and pathologic T stage. (C,D) Forest plots of univariate (C) and multivariate (D) Cox regression analysis, including risk scores and
clinicopathological variables. (E) The nomogram of combined risk score and clinical parameters. (F) ROC curve was used to evaluate the accuracy of
nomogram. (G) Calibration plots for predicting OS rates at one and 3 years.
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6C,D), and TMB was positively associated with risk score

(Figure 6E), suggesting that immunotherapy was more

effective in high-risk patients. In addition, we found that low

TMB patients have a better prognosis (Figure 6F). Stratified

survival analysis demonstrated that the effectiveness of the

risk score in predicting survival in PDAC was not influenced

by TMB (Figure 6G). This indicated that the risk score could be

regarded as an independent predictor.

Validation of the expression of signature
genes in pancreatic ductal
adenocarcinoma

We analyzed the expression level of three signature genes in

PDAC tissues and normal pancreatic tissues. Compared with

normal pancreatic tissues, CDK6 and CENPA were up-regulated

in PDAC tissues, while MXD4 was down-regulated in PDAC

tissues (Supplementary Figure S4A). To further validate the

clinical practicability of the signature, we compared the

expression levels of three signature genes in two PDAC cell

lines (PANC-1, SW 1990) and a normal pancreatic cell line

(hTERT-HPNE) by qRT-PCR. As shown in Supplementary

Figures S4B–D, the expression of CDK6 and CENPA in both

PANC-1 and SW1990 cell lines was higher than that in the

hTERT-HPNE cell line, while the expression of MXD4 in both

PANC-1 and SW1990 cell lines was lower than that in the

hTERT-HPNE cell line.

Discussion

PDAC is a disease with a dire prognosis and one of the few

cancers with a rising incidence (Gheorghe et al., 2020). Growing

FIGURE 3
Validation of senescence-associated signature in ICGC cohort (n = 82). (A) Kaplan-Meier analysis of OS among different subgroups. (B) Survival
status among two risk subgroups and risk score distribution. (C) PCA analysis distinguished between high- and low-risk score groups. (D) ROC curve
evaluates the prediction accuracy of risk score.
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evidence suggests that its malignant behavior is largely influenced

by the associated strong immunosuppression, relatively low

mutational burden, and desmoplastic microenvironment

(Cortesi et al., 2021). During the early stages of tumorigenesis,

cancer cells must shed the effects of cellular senescence, which

slows proliferation and promotes immune-mediated clearance of

precancerous cells. However, recent evidence has revealed that

senescent cells promote the senescence of macrophages by

secreting SASP factors. Subsequently, senescence-associated

macrophages may affect other immune cells to escape tumor

cell surveillance and senescent cell clearance (Prieto and Baker,

2019). SASP is a double-edged sword that recruits and activates

immune cells as well as neighboring cells, resulting in pro-tumor

and anti-tumor effects (Toso et al., 2015). Therefore, modeling

PDAC has important implications for deciphering whether

molecular determinants of senescence remodel the TME and

FIGURE 4
Immune landscape between two risk subgroups (n = 170). (A–F) Immune cell infiltration among different subgroups. (G–I) Immune, stromal,
and ESTIMATE scores among different subgroups.
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whether this modification has an impact on prognosis and

immunotherapy response in patients with PDAC.

In our study, TCGA and ICGC datasets serve as the training

and validation cohorts, respectively. We refined LASSO and Cox

regression analyses on the extracted prognostic genes in the

training cohort to build a prognostic signature. The signature

contained three SAGs: CDK6, CENPA, and MXD4. Beyond that,

the validation of expression levels of three genes in the signature

by RT-qPCR further demonstrated the feasibility of the signature

in clinical application. CDK6 is a key component of the cell cycle

machinery, driving the G1 to S phase transition of the cell cycle

by phosphorylating and inactivating retinoblastoma protein (RB)

(Gao et al., 2020). Dysregulation of CDK6 activity affects various

aspects of cancer cell proliferation, senescence, migration,

FIGURE 5
Immune therapeutic evaluation of and chemotherapeutic drug selection (n = 170). (A) Differences in immune checkpoint among different risk
subgroups. (B) Comparison of TIDE score between low- and high-risk groups. (C–H) Comparison of potential therapeutic drug susceptibility of
different risk subgroups assessed by IC50.
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apoptosis, and angiogenesis (Nebenfuehr et al., 2020). Dual CDK4/

6 inhibitors have achieved great success in the treatment of hormone-

receptor-positive breast cancer and have shown promising results in

several solid tumors and hematological malignancies (Fassl et al.,

2022). Rencuzogulları et al. (2020) revealed that Palbociclib, a

selective CDK4/6 inhibitor, restricted cell survival and epithelial-

mesenchymal transition (EMT) in PANC-1 and MIAPACA-2

pancreatic cancer cells. Ruscetti et al. (2020) indicated that a

combination of CDK4/6 inhibitors and MEK could inhibit PDAC

proliferation by inducing RB protein-mediated senescence. Senescent

cells produce SASP to promote tumor vascularization, which in turn

enhances drug delivery and efficacy. Furthermore, SASP-mediated

endothelial activation stimulates CD8+ T cell recruitment into

otherwise immunologically “cold” tumors, thereby sensitizing

tumors to PD-1 checkpoint blockade (Ruscetti et al., 2020).

CENPA has been reported to be an oncogene in various

malignancies, including PDAC (Furukawa et al., 2006; Zhang

et al., 2020; Han et al., 2021; Wang et al., 2021). Wang et al.

FIGURE 6
Mutation landscape of different risk score subgroups (n= 137). (A,B)Waterfall plots show highermutation frequency genes in high- (A) and low-
risk groups (B). (C) Boxplot for differences in somatic mutation count between two risk subgroups. (D) Boxplot for differences in TMB between two
risk subgroups. (E) Correlation analysis between TMB and risk score. (F) Survival curves of PDAC patients in H-TMB and L-TMB groups. (G) Survival
curves. The risk score and TMB were combined to perform survival analysis.

Frontiers in Genetics frontiersin.org09

Zhu et al. 10.3389/fgene.2022.941389

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941389


(2021) revealed that CENPA overexpression promotes the

proliferation and metastasis of clear cell renal cell carcinoma by

activating the Wnt/β-catenin signaling pathway. MXD4, also known

as MAD4, is the most abundant in the human brain and

overexpression of MAD4 in human fibroblasts induces replicative

senescence (Marcotte et al., 2003). Yang et al. (2012) observed that

MAD4 exhibits stable steady-state expression in glioblastoma cell

lines, and its proteins are involved in regulating c-Myc and E2F

transcription factors and inducing cellular replicative senescence.

PDAC patients were categorized into two risk score groups, with

high-risk scores being associated with poor prognosis. Interestingly,

mortality of PDAC increases with increasing risk scores. The

accuracy of the signature was demonstrated by using ROC and

PCA analysis. In addition, the signature was externally validated in

the ICGC dataset and still had a good predictive performance. Most

importantly, we found that the risk score can be considered an

independent predictor of PDAC prognosis. To better predict the

prognosis of patients, we combined the surgery type and age to

construct a nomogram, which improved the predictive performance

of the risk score. Then, the relationship of risk scores with clinical

features was further investigated. Risk scores were higher in patients

with advanced T stage and tumor grade. To sum up, the model we

constructed may be effective in determining prognosis, thereby

facilitating the implementation and evaluation of the model in

future clinical practice.

Highly heterogeneous cell subsets are characteristic of

PDAC. This complex structure of cancer cells and stromal

and immunosuppressive cells thus alters the efficacy of

immunotherapy (Sarantis et al., 2020). The TME of PDAC is

essentially immunosuppressive and includes regulatory tumor-

associated macrophages (TAM), Treg cells, and myeloid-derived

suppressor cells (MDSC). In this study, we analyzed the

relationship between risk score and TME and found that the

high-risk group presented a typical tumor immunosuppressive

microenvironment. The risk score was positively associated with

M2 macrophages and negatively associated with CD8+ T cells,

resting memory CD4+ T cells, and M1 macrophages, indicating

that the signature may contribute significantly to modulating

immune cell infiltration. M2 macrophages have

immunosuppressive properties that promote tumor

progression (Lee et al., 2019). It has been reported that

resident M2 macrophages were identified as highly

proliferative and immunosuppressive, contributing to PDAC

progression (Cortesi et al., 2021). Studies have shown that

high M2 macrophage density was associated with worse OS in

PDAC patients (Cortesi et al., 2021). Also, the StromalScore,

ESTIMATEScore, and ImmuneScore of high-risk patients were

significantly lower than those of low-risk patients.

Recently, immunotherapy has been known to play a significant

role as a method to eradicate tumor cells based on ICIs among a

subset of PDACpatients (Carpenter et al., 2021). In our study, a novel

senescence-based signature was developed to investigate the

relationship between ICIs and risk score as a predictor of

immunotherapy response. PD-L1 (CD274) was highly expressed

in high-risk score group, while the CTLA4 and PD1 (PDCD1) were

highly expressed in low-risk score group, suggesting that high-risk

patients may benefit more from anti-PD-L1 therapy. Furthermore,

we found that high-risk patients had a lower TIDE score than those

with the high-risk score. A lower TIDE score indicates a lower

possibility of tumor immune evasion and may benefit from

immunotherapy, which further explains the favorable prognosis of

low-risk patients in our study. Evidence has indicated that patients

with a higher TMB are more likely to benefit from immunotherapy

owing to the existence of a greater number of neoantigens (Fusco

et al., 2021). By TMB analysis, we found that TMB was significantly

associated with prognostic signature and that the low-risk group had

lower TMB and better prognosis. Stratified survival analysis revealed

that risk score predicted the prognosis of PDAC patients completely

independent of TMB. These results suggest that the signature can

predict the benefit of PDACC immunotherapy. Finally, we identified

potential chemotherapeutic drugs for PDAC patients. Patients with

high-risk scores seem to be more responsive to Gemcitabine,

Lapatinib, Paclitaxel, and Epothilone B, while low-risk patients

were more sensitive to Phenformin and Pazopanib. The

combination of chemotherapy and immunotherapy can provide

precise and individualized therapy for patients with different risk

scores.

Conclusion

This study proposed a novel senescence-associated prognostic

signature that will predict the prognosis of PDAC patients and

provide a basis for the personalized treatment of PDAC patients.
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