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Background: Hepatocellular carcinoma is one kind of clinical common

malignant tumor with a poor prognosis, and its pathogenesis remains to be

clarified urgently. This study was performed to elucidate key genes involving

HCC by bioinformatics analysis and experimental evaluation.

Methods: We identified common differentially expressed genes (DEGs) based

on gene expression profile data of GSE60502 and GSE84402 from the Gene

ExpressionOmnibus (GEO) database. GeneOntology enrichment analysis (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,

REACTOME pathway enrichment analysis, and Gene Set Enrichment Analysis

(GSEA) were used to analyze functions of these genes. The protein-protein

interaction (PPI) network was constructed using Cytoscape software based on

the STRING database, and Molecular Complex Detection (MCODE) was used to

pick out two significantmodules. Hub genes, screened by the CytoHubba plug-

in, were validated by Gene Expression Profiling Interactive Analysis (GEPIA) and

the Human Protein Atlas (HPA) database. Then, the correlation between hub

genes expression and immune cell infiltration was evaluated by Tumor IMmune

Estimation Resource (TIMER) database, and the prognostic values were

analyzed by Kaplan-Meier plotter. Finally, biological experiments were

performed to illustrate the functions of RRM2.

Results: Through integrated bioinformatics analysis, we found that the

upregulated DEGs were related to cell cycle and cell division, while the

downregulated DEGs were associated with various metabolic processes and

complement cascade. RRM2, MAD2L1, MELK, NCAPG, and ASPM, selected as

hub genes, were all correlated with poor overall prognosis in HCC. The novel

RRM2 inhibitor osalmid had anti-tumor activity, including inhibiting proliferation

and migration, promoting cell apoptosis, blocking cell cycle, and inducing DNA

damage of HCC cells.
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Conclusion: The critical pathways and hub genes in HCC progression were

screened out, and targeting RRM2 contributed to developing new therapeutic

strategies for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is malignant cancer with

high morbidity and mortality, which is the fourth leading cause

of cancer-related deaths globally (Ichikawa et al., 2014; Wang and

Zhang, 2020). In recent years, there have been significant

improvements in non-drug therapies and drug therapies for

HCC patients, including hepatic resection, liver transplantation,

chemoembolization (TACE), and targeted therapy, which exhibit

notably improved survival and prognosis in patients with HCC (El-

Serag and Rudolph, 2007; Chen et al., 2020). There is an increasing

body of evidence that abnormal expression of genes and mutations

of tumor-suppressor genes are associated with mechanisms of HCC

tumorigenesis and progression, including cyclin D1 (CCND1), pre-

mRNA processing factor 3 (PRPF3), c-Myc or Ras and p53 (Choi

et al., 2001; Wang et al., 2012; Li et al., 2017a; Liu et al., 2020).

However, due to treatment resistance and post-surgical recurrence,

the therapeutic outcomes have not been effective as expected, and

the molecular mechanisms of liver carcinogenesis remain unclear

(Wong et al., 2018; Chen et al., 2019; Song et al., 2020). Thus, it is

urgent to identify novel biomarkers and therapeutic targets for early

diagnosis and individualized treatment.

Currently, genomic microarrays and high-throughput

sequencing technology have become reliable methods to explore

molecular markers, coupled with bioinformatics analysis (Liu et al.,

2019; Gao et al., 2020; Wang et al., 2020). In bioinformatics, the

public databases such as Gene Expression Omnibus (GEO), The

Cancer Genome Atlas (TCGA), Gene Expression Profiling

Interactive Analysis (GEPIA) and Human Protein Atlas (HPA)

are commonly used databases, and Kaplan-Meier plotter is a

powerful tool to analyze the prognostic value of genes. Through

these technologies, many researchers have found the hub genes

related to progression, diagnosis, and prognosis of HCC (Lin et al.,

2019; Shen et al., 2019; Song et al., 2020). Nonetheless, these studies

are only based on single analyses without experimental validation.

To overcome this disadvantage, integrated bioinformatics methods

should be combined with experiments.

In the present study, the microarray datasets GSE60502 and

GSE84402 were obtained from the GEO database, which included

32 hepatocellular carcinoma tissues and 32 adjacent non-tumorous

liver tissues. The differentially expressed genes (DEGs) were

identified using the online tool GEO2R and analyzed with

bioinformatics methods such as the Database for Annotation,

Visualization, and Integrated Discovery (DAVID), REACTOME,

and GSEA. Then, we constructed the protein-protein interaction

(PPI) network for module analysis and hub genes identification in

HCC. Expression validation, immune infiltration analysis, and

survival analysis of the hub genes were performed by GEPIA,

HPA, TIMER, and Kaplan Meier plotter. Finally, we determined

the effects of RRM2 inhibitor osalmid on proliferation, cell

apoptosis, cell cycle, migration, and DNA damage in vitro.

Materials and methods

Data collection and data processing

WeobtainedGene expression profile data of HCCpatients from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE60502 dataset contained 18 HCC tissues and 18 adjacent

non-tumorous liver tissues, while the GSE84402 dataset included

14 HCC tissues and 14 adjacent non-tumorous liver tissues. The

microarray data of GSE60502 are based on GPL96 platforms (HG-

U133A Affymetrix Human Genome U133A Array) and the

GSE84402 data are based on GPL570 platforms [HG-U133_

Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

GEO2R online tools were used to identify DEGs between

HCC tissues and normal hepatic tissues. Genes that met the

specific cut-off criteria of P-value < 0.05 and |logFC|>2 were

considered as DEGs. The intersecting genes of the two GEO

datasets were examined using the Venn diagram web tool.

Gene ontology annotation and pathway
enrichment analysis

To reveal the functions of the above genes, we conducted GO

annotation and KEGG pathway enrichment analysis via the

DAVID database (Huang et al., 2009). The GO terms

contained biological process (BP), cellular component (CC),

and molecular function (MF). We also used another online

database, REACTOME, to analyze pathways (Jassal et al.,

2020). P-value < 0.05 was considered statistically significant.

Gene set enrichment analysis

GSEA was performed to predict biological function and

related signaling pathways of genes in these two datasets

(Subramanian et al., 2005). Annotated gene sets
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c2.cp.kegg.v7.4. symbols.gmt were chosen as the reference gene

sets. p-value < 0.05 and FDR <0.25 were set as the cut-off criteria.

Construction of protein-protein
interaction network

The STRING database was used to build a protein-protein

interaction network of DEGs, and all PPI pairs with a combined

score of >0.4 were extracted (Szklarczyk et al., 2019). We used

Cytoscape to visualize the PPI network, and Module analysis was

conducted utilizingMCODE, a plug-in in Cytoscape (Shannon et al.,

2003). The rank methods of Density of Maximum Neighborhood

Component (DMNC), Maximum Neighborhood Component

(MNC), Closeness (Node connect closeness), EPC (Edge

percolated component), and Degree (Node connect degree) in

plug-in CytoHubba were utilized to determine the hub genes

(Chin et al., 2014; Yang et al., 2019; Gao et al., 2020).

Validation of hub genes

ThemRNA expression levels of the hub genes in human normal

and HCC tissues were determined using the GEPIA database,

including data of 369 tumors and 160 normal samples from the

TCGA and GTEx projects (Tang et al., 2017). For further validation

of protein expression, we utilized the immunohistochemistry (IHC)

database HPA to confirm it (Asplund et al., 2012).

Immune infiltration analysis and survival
analysis

To explore whether these genes were related to immune

infiltration, we used the TIMER database to evaluate the

correlation between prognostic gene expression and immune cell

infiltration (Li et al., 2017b). Kaplan-Meier plotter was utilized to

perform survival analysis of the previously identified hub genes, an

online database containing clinical and gene expression data

(Lánczky and Győrffy, 2021). The patient samples were split into

two groups based on the median expression of the gene, assessing

the prognostic value of a specific gene.

Cell culture and agents

The human HCC cell lines HepG2 and Hep3B were obtained

from the American Type Culture Collection (ATCC). All cells

were cultured in a DMEM medium (KeyGEN, China) contained

with 10% FBS at 37°C, 5% CO2, and they were used for

subsequent experiments in the logarithmic growth phase.

Osalmid purchased from MCE was a ribonucleotide reductase

small subunit M2 (RRM2) targeting compound (Liu et al., 2016).

Cell counting Kit-8 assay

We used a Cell counting Kit-8 (KeyGEN, China) to access

cell proliferation and viability. The HCC cells were plated in 96-

well plates at a density of 2.5 × 103 per well with 100 μl of culture

medium, treated with osalmid at different concentrations

for 48 h.

Wound-healing assay

The Hep3B cells were counted and cultured in 6-well culture

plates and put in the incubator overnight. After 24 h, the density

of cells could be close to 100%, we scratched themonolayer with a

micropipette tip and photographed it. Then we treated cells with

different doses of osalmid and put the 6-well plates back to the

incubator for 48 h. Then the images of the scratching areas were

compared.

Transwell migration assay

Cell migration ability was assessed using Transwell assay. We

added 4 × 104 Hep3B cells and 200 μl DMEM medium

supplemented with 10% FBS into the upper chamber with a

microporous (8.0 µm pores) transwell insert (Corning

Incorporated). The bottom chamber was filled with DMEM

medium containing 20% FBS. While incubation treated with

different concentrations of osalmid for 48 h, the cells in the upper

chamber migrated through the Matrigel Matrix (Corning,

356234)-coated porous membrane to the lower chamber to

some extent. Then these cells were stained with 0.1% crystal

violet for 6 min and randomly selected five fields were

photographed at a magnification of ×10.

Flow cytometry

Cell apoptosis and cell cycle were analyzed by flow cytometry.

HCC cells were seeded into 6-well at approximately 30% density

treated with different concentrations of osalmid. Cell apoptosis

was determined by an Annexin V-APC/7-AAD Detection Kit

(KeyGEN, China), by the manufacturer’s protocol. For the cell

cycle, the HCC cells were fixed with 70% ethanol at 4°C

overnight. On the next day, the cell cycle was examined using

Cell Cycle Staining Kit (KeyGEN, China) according to the

manufacturer’s instructions.

Western blot

The western blot analysis was conducted as described

previously (Yao et al., 2014). The following antibodies were
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used: β-actin, CDK2, PARP1 (Proteintech), cyclinA2 (Cell

Signaling Technology), and γH2AX (ABclonal).

Statistical analysis

All results are presented as means ± standard deviation (SD).

The student’s t-test was used to determine significant differences

between the two groups. All P values less than 0.05 were

considered to be statistically significant.

Results

Identification of differentially expressed
genes in hepatocellular carcinoma

We obtained 149 upregulated and 213 downregulated genes

following the GSE60502 dataset analysis, and 243 upregulated

and 327 downregulated genes from the GSE84402 dataset

(Figure 1A). The heatmap showed the top 100 DEGs in these

two datasets, including 50 upregulated and 50 downregulated

DEGs (Figure 1B). A total of 215 genes were identified as

common DEGs, including 71 upregulated and

144 downregulated genes (Figure 1C and Supplementary

Figure S1).

Gene ontology enrichment analysis of
differentially expressed genes

To further understand the functions and mechanisms of

these identified DEGs, we used the DAVID online tool to

conduct GO annotation enrichment analysis (Figures 2A,B).

The BP category of GO analysis results indicated that

upregulated genes were enriched in the G2/M transition of

mitotic, cell division, mitotic nuclear division, and mitotic

spindle organization, and downregulated genes were enriched

in oxidation-reduction process, epoxygenase P450 pathway,

complement activation, and exogenous drug catabolic process.

FIGURE 1
Identification of common DEGs in two cohort profile datasets (GSE60502 and GSE84402). (A) Volcano plots of the two datasets. (B) The
heatmap of the top 100 DEGs. Z-score was from −2 to 2. (C) Venn diagram of downregulated and upregulated DEGs based on the two GEO datasets.
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Moreover, upregulated genes in CC were mainly involved in the

midbody, spindle pole, and nucleoplasm, and the downregulated

genes were mainly in the extracellular region, organelle

membrane, and blood microparticle. In addition, for MF,

enrichment of upregulated genes was primarily in protein

binding, protein kinase binding, and ATP binding, and that of

downregulated genes was primarily in heme binding, oxygen

binding, and monooxygenase activity.

Signaling pathway enrichment analysis

KEGG pathway enrichment analysis showed that

upregulated DEGs were enriched in the cell cycle,

p53 signaling pathway, oocyte meiosis, and progesterone-

mediated oocyte maturation (Table 1). The downregulated

DEGs were mainly enriched in caffeine metabolism, retinol

metabolism, metabolic pathways, drug metabolism-

cytochrome P450, and complement and coagulation cascades

(Figure 2C). Also, REACTOME pathway enrichment analysis

was performed, whose result was consistent with the KEGG

enrichment analysis result (Table 2). The functions of

upregulated DEGs were closely related to cell cycle and cell

division, which was probably related to the excessive

proliferation of cancer cells. The downregulated DEGs were

associated with various metabolic processes and complement

cascade, showing an obvious alteration in HCC metabolism.

The representative gene sets in GSEA
analysis

For observing the overall functional enrichment of genes

from liver cancer tissues and corresponding normal liver tissues

respectively, the GSEA analysis was performed. As shown in

Figures 3A,B, the representative gene sets enriched in the HCC

group contained cell cycle, DNA replication, and oocyte meiosis.

Similarly, these representative gene sets enriched in the normal

group were complement and coagulation cascades, drug

metabolism P450, and metabolism of xenobiotics by

cytochrome P450 in both the GSE60502 dataset and

GSE84402 dataset. Compared with normal liver tissues,

FIGURE 2
GO and KEGG pathway enrichment analyses. GO enrichment analysis of upregulated (A) and downregulated (B) DEGs consisting of biological
process (BP), molecular function (MF), and cellular component (CC). (C) Bubble plot of KEGG pathway enrichment analysis of downregulated DEGs.

TABLE 1 KEGG pathway enrichment analysis of upregulated DEGs.

Pathway Name Count P Value Genes

hsa04110 Cell cycle 7 1.32E-06 CDC20; CCNB1; CHEK1; CDK1; MCM4; TTK; MAD2L1

hsa04115 p53 signaling pathway 5 4.34E-05 CCNB1; RRM2; CHEK1; CDK1; GTSE1

hsa04114 Oocyte meiosis 5 3.11E-04 CDC20; CCNB1; CDK1; MAD2L1; AURKA

hsa04914 Progesterone-mediated oocyte maturation 3 0.028416 CCNB1; CDK1; MAD2L1
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upregulated genes were primarily associated with cell cycle and

cell division in these two datasets, while downregulated genes

were mainly related to substance metabolism and the

complement cascade.

Protein-protein interaction network
analysis of differentially expressed genes

We constructed the PPI network by Cytoscape software

on the basis of the STRING database, which consisted of

170 nodes and 1056 edges (Figure 4A). Next, two important

modules were obtained from the network using MCODE in

Cytoscape. Module 1 contained 36 nodes and 607 edges with

a score of 34.686 (Figure 4B); Module 2 contained 18 nodes

and 90 edges with a score of 9.412 (Figure 4C). Surprisingly,

genes in module 1 were all upregulated, while these in

module 2 were downregulated. KEGG pathway enrichment

analysis of DEGs from two modules showed that the DEGs in

module 1 were mainly enriched in cell cycle, p53 signaling

pathway, oocyte meiosis, and progesterone-mediated oocyte

maturation (Table 3), and DEGs in module 2 were mainly

enriched in retinol metabolism, drug metabolism-

cytochrome P450, metabolism of xenobiotics by

cytochrome P450, chemical carcinogenesis, linoleic acid

metabolism (Table 4). The results indicated that module

1 DEGs were significant in the entire PPI network.

Similarly, DEGs from module 2 occupied an important

position in all downregulated DEGs. Then, RRM2,

MAD2L1, MELK, NCAPG, and ASPM were selected as

hub genes, which scored in the top 20 by all five methods

in CytoHubba (Figure 4D). Remarkably, these upregulated

TABLE 2 REACTOME pathway enrichment analysis of DEGs.

Term Description Count P Value Genes

Upregulated

R-HSA-69278 Cell Cycle, Mitotic 25 1.11E-16 TOP2A; GMNN; NCAPG; MCM10; HMMR; FOXM1; CENPA; AURKA;
CDC20; CCNB1;. . .

R-HSA-1640170 Cell Cycle 28 1.11E-16 TOP2A; GMNN; HJURP; NCAPG; MCM10; HMMR; FOXM1; CENPA;
AURKA; CDC20;. . .

R-HSA-453279 Mitotic G1 phase and G1/S transition 9 3.75E-12 TOP2A; CCNB1; RRM2; GMNN; CDK1; MCM4; MCM10; MYBL2; KIF23

R-HSA-69275 G2/M Transition 11 6.70E-10 TPX2; CCNB1; CDK1; IGF2BP3; KIF23; MYBL2; NEK2; HMMR; FOXM1;
GTSE1; AURKA

R-HSA-453274 Mitotic G2-G2/M phases 11 7.49E-10 TPX2; CCNB1; CDK1; IGF2BP3; KIF23; MYBL2; NEK2; HMMR; FOXM1;
GTSE1; AURKA

R-HSA-69620 Cell Cycle Checkpoints 14 1.89E-09 MCM10; KIF23; CENPA; NDC80; CDC20; CCNB1; CHEK1; CDK1; CENPM;
BIRC5; MCM4;. . .

R-HSA-69206 G1/S Transition 7 3.29E-08 CCNB1; RRM2; GMNN; CDK1; MCM4; KIF23; MCM10

R-HSA-453276 Regulation of mitotic cell cycle 7 1.14E-07 CDC20; CCNB1; CDK1; KIF23; NEK2; AURKA; MAD2L1

R-HSA-174143 APC/C-mediated degradation of cell cycle
proteins

7 1.14E-07 CDC20; CCNB1; CDK1; KIF23; NEK2; AURKA; MAD2L1

R-HSA-1538133 G0 and Early G1 3 1.53E-07 TOP2A; CDK1; MYBL2

Downregulated

R-HSA-166658 Complement cascade 13 1.41E-09 FCN2; FCN3; CFP; C8A; C6; IGKC; C7; C9; CFHR4; IGLV1-44; CFHR5;
IGLC1; MASP2

R-HSA-5661231 Metallothioneins bind metals 6 6.29E-08 MT1M; MT1F; MT1G; MT1H; MT1X; MT1E

R-HSA-211897 Cytochrome P450 - arranged by substrate
type

12 1.02E-07 CYP39A1; CYP2C9; CYP2A7; CYP26A1; CYP2A6; CYP2C8; CYP2B6;
CYP1A2; CYP4A11;. . .

R-HSA-211945 Phase I - Functionalization of compounds 15 2.25E-07 ADH1C; ADH1B; CYP4A11; CYP4A22; FMO3; CYP3A4; CYP39A1; CYP2C9;
CYP2A7;. . .

R-HSA-5660526 Response to metal ions 6 3.06E-07 MT1M; MT1F; MT1G; MT1H; MT1X; MT1E

R-HSA-211859 Biological oxidations 20 3.30E-07 NNMT; ADH1C; ADH1B; CYP4A11; CYP4A22; ACSM5; GLYAT; FMO3;
CYP3A4; CYP39A1...

R-HSA-9006931 Signaling by Nuclear Receptors 11 3.62E-07 CETP; CYP26A1; ADH1C; APOC2; APOC4; RDH16; RDH5; FOSB; FOS;
PCK1; ESR1

R-HSA-211999 CYP2E1 reactions 5 4.00E-05 CYP2C9; CYP2A7; CYP2A6; CYP2C8; CYP2B6

R-HSA-2142753 Arachidonic acid metabolism 8 4.67E-05 CYP2C9; CYP2C8; CYP1A2; PON1; CYP4A11; CYP4A22; CYP1A1; PTGS2

R-HSA-1430728 Metabolism 54 0.001759957 CDA; VIPR1; CYP4A22; STAB2; ACSM5; DBH; GBA3; GYS2; ACADL; TDO2;
HGFAC; SDS;. . .
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genes were all in module 1, implying that these five genes may

play a pivotal role in HCC development.

Validation of the expression of 5 hub
genes in hepatocellular carcinoma

The GEPIA database was used to validate the mRNA

expression levels of the above five hub genes in HCC, and the

results revealed that all hub genes were highly expressed in HCC

tissues compared with normal liver tissues (Figures 5A–E), which

were consistent with the obtained microarray data. Then, we

explored the protein expression levels of these genes by using the

HPA database. As shown in (Figures 5F–J), the protein

expression levels of RRM2, MAD2L1, MELK, and NCAPG in

HCC tissues were higher than those in normal liver tissues. The

high protein expression level of ASPM was observed in normal

liver tissues, and that in liver cancer tissues was medium. Overall,

the mRNA and protein expression levels of these genes were

overexpressed in cancer tissues compared with corresponding

normal liver tissues.

Immune infiltration analysis and survival
analysis of hub genes

We used the TIMER database to evaluate whether

expression levels of these genes could affect immune cell

infiltration. As shown in Supplementary Figures S2A–E, the

expression levels of these five genes were positively

associated with the infiltration of B cells, CD8+ T cells,

CD4+ T cells, macrophage cells, neutrophil cells and

dendritic cells. However, all five hub genes did not

correlate with purity. Furthermore, overall survival (OS)

analyses of the five genes were conducted using Kaplan-

Meier plotter. As shown in Figure 6, high expression of

RRM2, MADAL1, MELK, NCAPG and ASPM were

associated with poor OS for liver cancer patients.

FIGURE 3
Enrichment plots from GSEA. Six representative functional gene sets enriched of HCC in GSE60502 (A) and GSE84402 (B), including cell cycle,
DNA replication, oocyte meiosis, complement and coagulation, drug metabolism cytochrome P450, andmetabolism of xenobiotics by cytochrome
P450.
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FIGURE 4
PPI network construction and analyses. (A) The whole PPI network contained 170 DEGs (54 upregulated DEGs labeled in red and
116 downregulated DEGs labeled in blue). (B) PPI network of module 1. (C) PPI network of module 2. (D) Hub genes ranked by five CytoHubba
methods. Bold gene symbols were the overlapped genes in the top 20 by five ranking methods.

TABLE 3 KEGG pathway enrichment analysis of Module 1 genes function.

Term Description Count P Value Genes

hsa04110 Cell cycleact 7 8.11E-08 CDC20; CCNB1; CHEK1; CDK1; MCM4; TTK; MAD2L1

hsa04115 p53 signaling pathway 5 7.65E-06 CCNB1; RRM2; CHEK1; CDK1; GTSE1

hsa04114 Oocyte meiosis 5 5.67E-05 CDC20; CCNB1; CDK1; MAD2L1; AURKA

hsa04914 Progesterone-mediated oocyte maturation 3 0.013036882 CCNB1; CDK1; MAD2L1

TABLE 4 KEGG pathway enrichment analysis of Module 2 genes function.

Term Description Count P Value Genes

hsa00830 Retinol metabolism 5 1.01E-07 CYP2C9; CYP2B6; CYP1A2; CYP1A1; CYP3A4

hsa00982 Drug metabolism - cytochrome P450 5 1.29E-07 CYP2C9; CYP2B6; CYP1A2; FMO3; CYP3A

hsa00980 Metabolism of xenobiotics by cytochrome P450 5 1.82E-07 CYP2C9; CYP2B6; CYP1A2; CYP1A1; CYP3A4

hsa05204 Chemical carcinogenesis 4 2.95E-05 CYP2C9; CYP1A2; CYP1A1; CYP3A4

hsa00591 Linoleic acid metabolism 3 2.55E-04 CYP2C9; CYP1A2; CYP3A4

hsa00140 Steroid hormone biosynthesis 3 0.001025554 CYP1A2; CYP1A1; CYP3A4

hsa01100 Metabolic pathways 5 0.010872421 CYP2C9; CYP2B6; CYP1A2; CYP1A1; CYP3A4

hsa00380 Tryptophan metabolism 2 0.03439785 CYP1A2; CYP1A1
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RRM2 inhibitor osalmid inhibited
proliferation and migration, promoted cell
apoptosis, triggered cell cycle arrest, and
induced DNA damage of hepatocellular
carcinoma cells.

In many malignant tumors, the expression level of RRM2 is

increased to promote rapid proliferation of cancer cells, and

RRM2 inhibition has gradually became a practical cancer

treatment strategy (Shao et al., 2013; Aye et al., 2015). As a

novel RRM2 inhibitor, osalmid repressed RRM2 activity by

competitive binding to RRM2 hydrogen bond active site. Its

unique molecular structure could enhance the binding affinity to

RRM2, so as to forming more specific RRM2 inhibitor (Liu et al.,

2016). It was 10 times more active than hydroxyurea in inhibiting

ribonucleotide reductase activity by targeting RRM2, and

inhibited HBV genomic DNA and the viral covalently

closedcircular DNA (cccDNA) synthesis. Furthermore, it has

been proven that osalmid has minimal cytotoxicity to be a

superior RRM2 inhibitor (Liu et al., 2016).

Firstly, a CCK-8 cell viability assay was used to evaluate the

cytotoxic effect of osalmid on HCC cells, and the results

suggested that osalmid dose-dependently inhibited HCC cell

viabilities (Figures 7A,B). We conducted a wound-healing and

Transwell migration assay to investigate whether osalmid could

affect the migration of HCC cells. The wound assay revealed that

the migration ability of Hep3B cells was significantly suppressed

following osalmid treatment for 48 h (Figure 7C). This was

further verified by the Transwell migration experiment in

which the amount of migrated Hep3B cells markedly

decreased in a concentration-dependent manner (Figure 7D).

Next, we further explored whether osalmid had an impact on

HCC cell death and cell cycle distribution. As shown in

Figure 8A, osalmid increased cell apoptosis in a dose-

dependent manner. And poly (ADP-ribose) polymerase 1

(PARP1) protein was activated when HepG2 and Hep3B cells

were treated with different dose of osalmid (Figures 8C,D). The

analysis of the cell cycle showed that the percentage of S phase

dose-dependently increased after osalmid treatment (Figure 8B).

Further, western blot demonstrated that the expression of

S-phase cyclinA2 and CDK2 were inhibited, which was

consistent with flow cytometry results (Figures 8C,D). As a

small subunit of ribonucleotide reductase, RRM2 is required

for DNA synthesis, then we detected expression of γH2AXwhich

is the hallmark of DNA damage. As expected, the expression of

γH2AX was activated by osalmid in a dose-dependent manner

FIGURE 5
Validation of the mRNA expression levels of (A) RRM2, (B)MAD2L1, (C)MELK, (D) NCAPG, (E) ASPM in HCC tissues compared with normal liver
tissues using GEPIA. (F–J) Immunohistochemistry (IHC) validation about these genes in HCC tissues and liver tissues.
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(Figures 8C,D). To summarize, RRM2may be a novel therapeutic

target for HCC patients.

Discussion

Hepatocellular carcinoma is a highly aggressive malignancy

with rapid development, low rate of early diagnosis, and dismal

prognosis, whose risk factors include hepatitis B and C infection,

liver cirrhosis, aflatoxin exposure, etc (Lin et al., 2017; Lou et al.,

2018; Jiang et al., 2020). Though many related studies on HCC

have been conducted, early diagnosis, therapeutic effects, and

prognosis have not been well resolved. Further understanding of

the molecular mechanisms resulting in occurrence and

development is critical for diagnosis and treatment. With the

development of high–throughput sequencing technology, the

usage of bioinformatics tools to recognize biological markers

has been prevalent.

In this study, we initially analyzed the expression of genes in

two microarray datasets and identified 215 common DEGs

(71 upregulated and 144 downregulated). Next, a series of

bioinformatics analyses were performed to explore these

DEGs deeply. Enrichment analyses revealed that the

upregulated DEGs were mainly associated with DNA

replication, cell cycle, and cell division, which could account

for the excessive proliferation of cancer cells reasonably. The

functions of downregulated DEGs were closely related to various

metabolic processes and the complement cascade, suggesting that

the metabolic process of HCC cells had changed. This was

possible because tumor cells may not have normal metabolic

functions. A PPI network of DEGs was constructed subsequently

to determine potential “key” genes, we identified five key genes

for the occurrence and development in HCC, including RRM2,

MAD2L1, MELK, NCAPG, and ASPM. It has been reported that

immune cell infiltration is associated with proliferation and

progression of cancer cells (Li et al., 2020a; Chen and Zhang,

2020). The TIMER database was used to explore the correlation

between the five genes and immune cell infiltration. There was a

merely weak partial correlation with diverse immune cells,

including B cells, CD8+ T cells, CD4+ T cells, macrophage

cells, neutrophil cells, and dendritic cells, and all five hub

genes were not associated with purity. Hence, the relationship

FIGURE 6
The OS analysis of 5 hub genes in the HCC tissues by Kaplan–Meier plotter. (A) RRM2; (B) MAD2L1; (C) MELK; (D) NCAPG and (E) ASPM.
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between these genes and immune cells needs to be further

explored. Finally, we found that the high expression levels of

these five genes were related to poor overall survival in HCC

patients based on the Kaplan-Meier plotter.

As a new oncogene, MAD2L1 had been studied in detail in

oncogenic contexts (Li et al., 2017c; Li et al., 2020b; Ding et al.,

2020). Lin et al. (2017) reported that MAD2L1 was

significantly higher expressed in combined hepatocellular

and intrahepatic cholangiocarcinoma tissues. Li et al.

(2017c) found that MAD2L1 promoted HCC cell viabilities,

while suppressing MAD2L1 expression by miR-200c-5p could

inhibit the proliferation, migration, invasion and induce

apoptosis and cell cycle arrest of HCC cells. It was reported

that the expression level of MELK in HCC was extremely

higher than that in in other types of cancer (Hiwatashi et al.,

2016). Xia et al. (2016) reported that cell growth, invasion,

stemness and tumorigenicity of HCC cells could be inhibited

by silencing MELK, suggesting that MELK was an oncogenic

kinase involved in the pathogenesis and recurrence of HCC.

Furthermore, drug inhibition on MELK could also suppress

tumor growth, implying this kinase will be a therapy target

(Chlenski et al., 2019). NCAPG was involved in the

pathogenesis of a variety of tumors, including prostate

cancer, renal cell carcinoma, multiple myeloma, melanoma

and HCC, leading to inferior survival of patients (Gong et al.,

2019; Xiao et al., 2020). In HCC, the overexpression of

NCAPG could activate the PI3K/AKT/FOXO4 pathway,

promoting cell proliferation and reducing cell apoptosis

(Gong et al., 2019). Meanwhile, NCAPG could be a

prognostic biomarker for vascular invasion, and high levels

of NCAPG expression was linked to poor survival outcomes

(Guo and Zhu, 2021). Lin et al. demonstrated that the

overexpression of ASPM in HCC was a reliable marker for

early tumor recurrence, contributing to distant metastasis and

FIGURE 7
The effect of RRM2 inhibitor osalmid on proliferation and migration of HCC cells. (A,B) CCK-8 assay analysis of the cell viabilities in HepG2 and
Hep3B cells treated with different concentrations of osalmid for 48 h. Scratch test (C) and Transwell experiment (D) showed that Hep3B cell
migration ability was inhibited with different doses of osalmid after 48 h. Scale bar = 200 μm. Error bars, mean ± SD. ns, non significant. *, p < 0.05; **,
p < 0.01; ***, p < 0.001.
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poor prognosis (Lin et al., 2008). Our results showed that these

four genes were all upregulated DEGs and resulted in poor

prognosis of patients, which were consistent with the above

researches. Nevertheless, no further research has been done on

these genes in our study. Subsequent studies can explore the

role of these genes in HCC.

RRM2, a rate-limiting enzyme functioning in the

formation of ribonucleotides into deoxyribonucleotides, is

FIGURE 8
Osalmid promoted cell apoptosis, triggered cell cycle S phase arrest, and induced DNA damage of HCC cells. After treatment with osalmid for
48 h, the cell apoptosis rate (A) and cell cycle distribution (B)were analyzed by flow cytometry in HCC cells. (C,D)Western blot analyses of the protein
expression of PARP1, cyclinA2, CDK2, and γH2AX in HepG2 and Hep3B cells, respectively. β-Actin was used as the internal reference. The
experiments were repeated three times. The bands were quantified using ImageJ software. Error bars, mean ± SD. *, p < 0.05; **, p < 0.01; ***,
p < 0.001.
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very important for DNA replication (Koppenhafer et al.,

2020), which is overexpressed in various tumor

progression, leading to poor prognoses (Li et al., 2018;

Mazzu et al., 2019; Jin et al., 2020). Lu et al. (2012)

established that RRM2 expression was relevant to depth of

invasion, poor differentiation, and tumor metastasis in

colorectal cancer. Studies have shown that RRM2 could

regulate anti-tumor immune response, and

RRM2 knockout could improve the anti-tumor efficiency

of PD-1 blocker in renal cancer, implying that RRM2 may be

a promising therapeutic target for renal cell carcinoma

(Xiong et al., 2021). It has been widely recognized that

DNA replication can precisely replicate the genetic

information of cells and transmit it to offspring cells.

RRM2, as a hub gene in HCC, was a key enzyme of DNA

replication to regulate cell proliferation and cell cycle. But

the detailed molecular role in HCC remains unclear. So

biological experiments were performed to further explore

the mechanism of RRM2 in HCC. We used a specific

RRM2 inhibitor osalmid to inhibit RRM2 expression and

then evaluated its effect on HCC progression. The

experimental results indicated that osalmid could inhibit

proliferation and migration, promote cell apoptosis, block

cell cycle and induce DNA damage to HCC cells.

Nevertheless, our research still had some limitations: 1)

the sample size was not large enough; 2) sample specificity

was not considered; 3) whether RRM2 was related to the

sensitivity of HCC to chemotherapy drugs has been unclear;

4) more detailed molecular mechanisms needed to be

elucidated.

Conclusion

Using a variety of bioinformatics, we identified some

critical signaling pathways and five hub genes (RRM2,

MAD2L1, MELK, NCAPG, and ASPM) related to the

pathogenesis and progression of HCC. With the

RRM2 inhibitor osalmid, the biological effects of silencing

RRM2 expression on HCC were determined through

biological experiments, thus proving that targeting

RRM2 may become a new strategy for the treatment of

HCC patients.
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