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Background: The identification of the causal SNPs of complex diseases in large-

scale genome-wide association analysis is beneficial to the studies of

pathogenesis, prevention, diagnosis and treatment of these diseases.

However, existing applicable methods for large-scale data suffer from low

accuracy. Developing powerful and accurate methods for detecting SNPs

associated with complex diseases is highly desired.

Results: We propose a score-based two-stage Bayesian network method to

identify causal SNPs of complex diseases for case-control designs. This method

combines the ideas of constraint-based methods and score-and-search

methods to learn the structure of the disease-centered local Bayesian

network. Simulation experiments are conducted to compare this new

algorithm with several common methods that can achieve the same

function. The results show that our method improves the accuracy and

stability compared to several common methods. Our method based on

Bayesian network theory results in lower false-positive rates when all correct

loci are detected. Besides, real-world data application suggests that our

algorithm has good performance when handling genome-wide

association data.

Conclusion: The proposed method is designed to identify the SNPs related to

complex diseases, and is more accurate than other methods which can also be

adapted to large-scale genome-wide analysis studies data.

KEYWORDS

Bayesian network, GWAS, two-stage method, epistasis, complex disease

1 Introduction

Recently, the development of high throughput technology provides the possibility of

genome-wide association studies (GWAS), and the investigation of associated single

nucleotide polymorphisms (SNPs) is common. The original idea of GWAS is to genotype

individuals from the case group and control group, respectively, compare the distributions of

SNPs between these two groups and identify the SNPs associated with the disease (Barrett
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et al., 2014). But this method can only estimate a single locus at a

time, which is not suitable for complex diseases. Different from the

simple Mendelian disorder, there are always mass factors that

influence complex diseases such as gene-gene interactions and

gene-environment interactions. In many cases, the effects of

genes are multi-locus and indeterminate. In such situations,

single-locus analysis methods are likely to leave out some

epistatic interactions. However, in the face of the epistatic

interaction problem, dealing with all the possible combinations of

SNPs can be an extremely time-consuming task. Therefore,

designing robust and effective methods for multi-locus analysis is

highly desired. Under the circumstances, we proposed a score-based

two-stage Bayesian network (STS-BN) method for detecting causal

SNPs, which is more accurate and stable compared to other existing

methods.

Traditional methods for multi-locus analysis include a series of

statistical approaches. A commonly used method is logistic

regression, which has the advantage of model interpretability. But

considering the model complexity, it’s impractical to deal with the

high-dimensional covariates and interactions. Moreover, with the

exponential increase of possible combinations, more samples are

needed to ensure the stability of the estimation of interaction effects

(McKinney et al., 2006). In this situation, Park and Hastie proposed

a new logistic regression method with a penalization on the size of

the L2-norm of the coefficients to improve the adaptability of logistic

regression methods for the SNP data (Park and Hastie, 2008).

However, the time-consuming parameter estimation process is

still a significant limitation (Han et al., 2010). The predictor-

based design also makes this method easy to include false

positives (Han and Chen, 2011). To speed up the computational

process, BOOST combined the likelihood ratio test with a Boolean

operation-based and multi-stage design (Wan et al., 2010). But this

method can only detect the interaction between two loci, which

limits its practical value. Multifactor dimensionality reduction

(MDR) is also a popular method which constructs a contingency

table for every possible SNPs combination (Ritchie et al., 2003).

However, MDR-based methods with single-objective function

might not yield favorable results due to potential model

preferences and disease complexities. Therefore, a multiobjective

MDR (MOMDR) method was proposed to improve detection

success rates (Yang et al., 2018). Apart from these, some

Bayesian methods were also developed. Early in 2004, Wacholder

et al. mentioned that when analyzing a SNP, Bayesian methods

could help us reduce the false positives due to the strategy of

declaring statistical significance based on a p-value alone

(Wacholder et al., 2004). Furthermore, Bayesian approaches can

incorporate prior knowledge and quantify all information and

uncertainties in the form of posterior distributions. Then

considering the epistasis interaction, Zhang and Liu proposed the

BEAM (Bayesian epistasis association mapping) algorithm (Zhang

and Liu, 2007). This algorithm contains a Bayesian epistasis

inference tool implemented via Markov chain Monte Carlo

(MCMC) and the B statistic for evaluating statistical significance.

The combination of two statistical tools from different schools of

statistics gives users a comprehensive and complementary

perspective. In addition, Bayesian methods have been further

extended to more complex analyses, such as GWAS meta-

analysis (Sun et al., 2022).

An alternative idea is to use machine learning methods. Chen

et al. proposed four support vector machine (SVM) based

algorithms to solve feature selection problems when detecting

gene-gene interactions: SVM-RFA, SVM-RFE, SVM-Local, and

SVM-GA (Chen et al., 2008). The first two approaches adopt the

greedy search strategy. They build a set of nested feature subsets by

adding or removing one gene at a time, based on the prediction

accuracy at each iteration. SVM-local keeps searching the

neighborhood of the current solution set to choose the best

feature set. But this usually only reaches a local optimum (Chen

et al., 2008). SVM-GA introduces genetic algorithms to complete the

search process. In most cases, the determination of the optimal

solution of machine learning methods is based on the prediction

accuracy. But this cannot guarantee that the association is true (Han

et al., 2010). Sometimes the addition of more loci is inclined to

improve the accuracy of prediction, but leads to a higher false

positive rate. Therefore, some approaches will perform statistical

tests after themachine learning sections. For example, in themethod

proposed by Jiang et al. (2009), the B statistic is adopted to declare

the statistical significance that the candidate SNPs are associated

with the disease.

Utilizing network structure to estimate the relationship

between variables is also a feasible idea (Han et al., 2010; Han

and Chen, 2011; Yilmaz et al., 2019). Especially, Bayesian

network is a common-used tool with a relatively strict

theoretical basis. It is proposed by Pearl (1985). Then in the

late 1980s, Pearl (1988) and Neapolitan (1990) summarized the

relevant properties of Bayesian network and made it a new

research field. In recent years, the application of Bayesian

network has become more popular with many successful

examples, such as analyzing gene expression data, predicting

protein-protein interactions, and so on (Su et al., 2013; Lyu et al.,

2021). Currently, several Bayesian network methods have been

developed to detect epistatic interactions from GWAS data (Han

et al., 2010; Han and Chen, 2011; Peng et al., 2021). For example,

Han et al. adopted this concept into their algorithm, DASSO-MB,

to investigate the Markov blanket of the disease in the Bayesian

network and infer the associated loci (Han et al., 2010).

Numerical experiments have shown that their method can

reduce the rate of false positives. A similar idea was also used

in the MBRFS algorithm (Li et al., 2016). Their research indicates

that G2 statistic used in DASSO-MB stratifies the conditioned

SNPs already selected in Markov blanket, which means that the

addition of SNPs into the Markov blanket leads to the

exponential growth of the number of stratifications. Hence,

they adopt a repeated-fishing strategy to make sure the G2

statistic can always hold a relative high power. But the

structure learning method used in DASSO-MB relies on the
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independence test and makes the algorithm sample-consuming.

Thus, when the sample size is insufficient, the stability of the

algorithm may be affected to some extent. Later, a score-based

Bayesian network approach, bNEAT, was designed to deal with

the small sample data (Han and Chen, 2011). This method has

shown its excellent performance when managing the small

sample data. What’s more, it has higher accuracy compared

with previous methods. However, given the computational

complexity, the vast number of SNPs makes this algorithm

hard to be applied to real GWAS data. In other words, these

methods cannot meet both the accuracy and scalability

requirements for genome-wide association studies. In addition

to these typical approaches, some Bayesian network approaches

for specific scenarios are also interesting. For example, BNOmics

software can deal with heterogeneous datasets containing many

data types, such as genetic data, epigenetic data, transcriptome

data, epidemiological data and so on (Gogoshin et al., 2016).

Zhang et al. studied whether and to what extend exploiting public

GWAS statistics can be used to infer private information about

general population by Bayesian network (Zhang et al., 2019).

Considering the difficulties in parameter estimation of the

traditional methods and the high false positive rate of machine

learning methods, Bayesian network methods seem more

appropriate for detecting associated SNPs. But when learning

the network structure, the stability of the constraint-based

methods is affected by sample sizes, and the score-and-search

methods are hard to use in high dimensional GWAS datasets. In

this article, we proposed a Bayesian network method with a

combination of constraint-based method and score-and-search

method. First, we use the constraint-based method to get a

smaller candidate set. After that, a score-and-search method is

used to determine the final parent node set. Both computational

feasibility and accuracy are taken into consideration in our

algorithm. In simulation experiments, we compared our

method with BEAM, BOOST, MOMDR, SVM, DASSO-MB

and bNEAT. From the results, we can see both our method

and bNEAT have good performance in terms of accuracy.

However, bNEAT cannot handle the large volume of data in a

real genome-wide association study, and our method is more

robust than bNEAT when we randomly disturb the input SNPs

sequence. In addition, we applied our algorithm to the real data

from the Stanley Medical Research Institute Online Genomics

Database (SMRIDB) and the UK Biobank, and finally found

several SNPs associated with corresponding diseases.

2 Methods

2.1 Bayesian network

Bayesian network is a probabilistic graphical model and its

structure is a directed acyclic graph (DAG),G � (V, E), where
the nodes set V � (X1, X2, . . . , Xn) represents random

variables, and the edges set E represents the dependence

relationships between the variables. There are several

properties that form the core of Bayesian network methods.

Definition 1. (Faithfulness) A Bayesian network G and a joint

probability distribution P are faithful to each other if and only

if every conditional independence relationship in G also exists

in P.

Definition 2. (Markov blanket) The Markov blanket of variable

T, MB(T), is the minimal set satisfying the following condition:

∀X ∈ U\MB(T)\{T}, X ⊥ T |MB(T)

All the variables out ofMB(T) are conditionally independent
of T given MB(T), and the Markov Blanket of T can shield it

from the rest of the nodes in the network. That is, the Markov

Blanket of a variable has all the necessary information to predict

this variable. In Bayesian Network, the Markov Blanket of T

contains the parent and the child nodes of T, and other parents of

the children of T (Han et al., 2010).

Theorem 1. (local Markov property) A variable is conditionally

independent of its nondescendant nodes given its parent nodeset.

That is:

∀Y ∈ NonDes(X)\Pa(X), X ⊥ Y |Pa(T)
whereNonDes(X) represents the nondescendant nodes set ofX,

and Pa(X) represents the parent nodes set of X. According to

this property, the joint probability distribution of the Bayesian

network can be defined as:

P(X1, . . . , Xn) � ∏n

i�1P(Xi|Pa(Xi))

where Xi is the node in the network and Pa(Xi) means the

parents set of Xi.

Theorem 2. Based on the assumption of faithfulness, X and Y

are adjacent if and only if there is not a set Z that X ⊥ Y |Z and

X, Y ∉ Z.

Theorem 2 is an important foundation of our algorithm,

which guarantees the nodes filtered out in the first stage are not

adjacent to the target node, i.e., are not parents or children of the

disease node.

2.2 Structure learning methods

Another question is how to learn Bayesian network structure.

Common approaches can be divided into two types: constraint-

based methods and score-and-search methods. Generally,

constraint-based methods utilize the dependence and

independence relationships between variables to infer the

network skeleton and then determine the direction of the edge
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using other Bayesian network properties. Score-and-searchmethods

transform structure learning problems into model selection

problems by treating Bayesian networks as probability models.

They typically consist of a score function for evaluating the

fitting effect and a search algorithm. The likelihood function can

be used as the score function to reflect the fitness between the model

and data. However, this may lead to over-fitting due to the lack of

penalty term considering the model complexity. To avoid this, we

think about some other common score functions.

Comparatively speaking, score-and-search methods can obtain

more accurate results than constraint-based methods. Constraint-

based methods are sensitive to the error of conditional independent

tests, making their results unstable, especially when the sample sizes

are small. However, given a score function, finding out the correct

network structure is a tough problem. An inappropriate search

program can easily lead to a local optimum or an NP-hard problem.

Under this circumstance, it’s a natural extension to combine these

two types of methods in order to improve the performance of

algorithms. This is not a fresh idea in the field of network structure

learning. Many hybridmethods have been developed up to now and

have been shown to perform well (Acid and de Campos, 2001;

Tsamardinos et al., 2006). But this idea doesn’t often occur in

GWAS.When identifying associated SNPs, combining the Bayesian

network method with other art-of-state algorithms seems more

popular. In this paper, we proposed a two-stage method to

accomplish the combination of two methods. Looser criteria

provided by the constraint-based method determine a candidate

nodes set. After that a score-and-search procedure is used to find out

genuinely associated nodes.

2.3 Algorithm

In order to balance the accuracy and feasibility, our algorithm is

a score-based two-stage Bayesian network (STS-BN) method, where

the idea of the constraint-based method and the score-and-search

method are both used. The pseudo-code is given in Table 1. We

input the disease nodeD and the setU containing all SNP nodes and

then by calculating, we can gain a disease-associated SNPs set V,

i.e., the parent nodes set of D. The whole algorithm can be divided

into two parts. The first phase reduces the dimension of SNPs

through the idea of constraint-based methods, filtering out some

nodes which are neither parents nor children of disease node D via

Theorem 2. In this stage, we use G-test to verify the independence

and conditional independence of two variables. Compared to the

chi-square test, G-values are additive and can be used for more

elaborate statistical designs (McDonald, 2014). The general formula

for G is:

G � 2∑
i
Oi ln

Oi

Ei

More specifically, the G-test of independence between two

categorical variables A and B can be defined as

G � 2∑
a,b
Nab ln

Nab

Eab
,

where Eab � N·bNa·
N·· .

The degrees of freedom for the G-test betweenA and B can be

calculated by:

df � (Cat(A) − 1) × (Cat(B) − 1)

When considering conditional independence, the G-test of

conditional independence between two variables A and B

conditioning on a variable set C can be written as

G � 2∑
a,b,c

Nabc ln
Nabc

Eabc
,

where Eabc � N·bcNa·c
N··c .

The degrees of freedom will be:

df � (Cat(A) − 1) × (Cat(B) − 1) × ∏
i
Cat(Ci)

Cat(X) represents the number of categories of variable X. The

numbers of empty cells in the contingency table are reduced

when calculating the degrees of freedom.

In the second phase, a score-and-search process is utilized to

analyze the candidate nodes set from phase I and finally select the

parents set of the disease node. We consider the Bayesian

information criterion (BIC) as our score function because it’s

a score equivalent, decomposable, and consistent scoring

criterion (Nandy et al., 2018). To cater for the circumstance

that the sample sizes of GWAS data are usually not big enough on

account of high research cost, we adjust the coefficient of the

penalty term (0.17 here) at the suggestion of Han and Chen

(2011). To save time, we embed the greedy search in phase II,

which might make the algorithm sensitive to different orders of

input nodes. But in fact, the first phase of our algorithm can

provide a proper order while decreasing the dimension, which

greatly improves the stability of the whole algorithm.

3 Results

3.1 Simulation study

3.1.1 Materials
We compare the performance of our method and several

other approaches using the simulated data sets generated from

three common two-loci disease models (Marchini et al., 2005;

Li and Chen, 2008), whose disease odds for every genotype are

displayed in Table 2. In Model 1, two loci have an independent

multiplicative genotype effect. In Model 2, there is also a

multiplicative effect but it only appears when both two loci

have the disease-associated allele. Model 3 is a

typical threshold model where genotype effects appear

equally as long as both two loci have the disease-associated

allele.
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We use α and θ to represent the baseline effect and genotype

effect, respectively. For convenience sake, we introduce some

parameters to reflect the data set characteristics: a marginal

parameter, λ, a disease prevalence, p, the minor allele

frequency (MAF), and the linkage disequilibrium, LD

(measured by the parameter r2). First, we specify the minor

allele frequency of disease locus, λ, p and r2. Under the

assumption of Hardy-Weinberg law, we can deduce the value

of α and θ from the expressions of λ and p:

λ � p(D|1A)
p( �D∣∣∣∣1A)/

p(D|0A)
p( �D∣∣∣∣0A) − 1,

p � ∑
gA, gB

p(D∣∣∣∣gA, gB)p(gA, gB),

where D represents an individual who has the disease, �D

represents an individual who doesn’t have disease and gA, gB

are genotypes.

We can also calculate the conditional probability of the locus

having linkage disequilibrium with the disease locus given the

TABLE 1 STS-BN algorithm.

TABLE 2 Two-loci disease models.

Model 1 bb Bb BB

Aa α α(1 + θ) α(1 + θ)2
Aa α(1 + θ) α(1 + θ)2 α(1 + θ)3
AA α(1 + θ)2 α(1 + θ)3 α(1 + θ)4

Model 2 bb Bb BB

aa α α α

Aa α α(1 + θ) α(1 + θ)2
AA α α(1 + θ)2 α(1 + θ)4

Model 3 bb Bb BB

aa α α α

Aa α α(1 + θ) α(1 + θ)
AA α α(1 + θ) α(1 + θ)
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allele of the disease locus using r2. In population genetics, linkage

disequilibrium describes a phenomenon where there are

nonrandom associations between different genetic markers in

a given population. The allele frequencies are written as

πC, πc, πD, πd, and the haplotype frequencies are written as

πCD, πcD, πCd, πcd. Then, the expression for r2 can be written as:

r2 ≡
(πCD − πCπD)2
πCπcπDπd

.

Once the parameters are prepared, we can generate the

disease status in a 1:1 ratio and the genotype of the disease

locus. According to the genotype of disease loci, its associated loci

can also be generated.

In this study, we choose 36 sets of parameters as shown in

Table 3 to guarantee the generality of the experiment.

For each parameter setting, we generate 50 datasets, each of

which contains 2000 samples and 102 makers. Two markers are

directly associated with the disease, and two markers are

associated with these two disease-associated markers,

respectively, but not directly associated with the disease. The

cases and controls are generated in a ratio of 1:1. The MAF of

each non-disease marker is randomly generated from a uniform

distribution.

We compare our algorithm with BEAM, BOOST, MOMDR,

SVM, DASSO-MB and bNEAT. To assess the outcome, we define

power as the proportion of the datasets whose disease loci are

detected accurately without any false positive. The powers of

different methods are calculated and compared under our

parameter setup.

BEAM detects the SNPs associated with disease via the

Bayesian partition model. This method labels the SNPs as the

members of group 0, group 1, and group 2, which contains the

SNPs that have no effect on the disease, influence the disease

independently, and have a joint influence on the disease with

other SNPs, respectively. And then, MCMC simulations are used

to estimate the posterior probability that each SNP belongs to

different groups, and the B statistics are calculated for the test of

significance. The software we used here is downloaded from

http://www.fas.harvard.edu/~junliu/BEAM/.

BOOST is a two-stage search method containing a screening

stage and a testing stage. In the former stage, it uses a noniterative

method to approximate the likelihood ratio statistic in evaluating

all pairs of SNPs and select candidate SNP pairs by a threshold.

Then in the testing stage, the classical likelihood ratio test is

employed to measure the interaction effects of candidate SNP

pairs (Wan et al., 2010). The software can be found at http://

bioinformatics.ust.hk/BOOST.html.

MOMDR is a MDR-based method with a multiobjective

function. This method considers the incorporated measures

including correct classification and likelihood rates to detect

epistatic interactions (Yang et al., 2018). The software can be

found at https://goo.gl/M8dpDg.

As for support vector machines, we mimic the process in

Jiang et al. (2009) instead of using the methods provided by Chen

et al. (2008) for time-saving. Firstly, we rank the SNPs according

to the mutual information between SNPs and disease status.

Then, we select a candidate SNPs subset via a sliding window

sequential forward feature selection algorithm where the

FIGURE 1
Performance comparison. Powers of STS-BN, bNEAT,
DASSO-MB, MOMDR, BEAM, BOOST, SVM. (r2 = 0.5).

TABLE 3 Parameters.

λ r2 MAF

Model 1 0.3 0.5, 0.7, 0.9 0.05, 0.1, 0.2, 0.5

Model 2 0.3 0.5, 0.7, 0.9 0.05, 0.1, 0.2, 0.5

Model 3 0.6 0.5, 0.7, 0.9 0.05, 0.1, 0.2, 0.5
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accuracy rate for classification of SVM estimated by 10-fold

cross-validation is used as criteria. Finally, χ2 tests with

a Bonferroni correction are conducted to obtain the

causal SNPs.

DASSO-MB is a constraint-based Bayesian network

approach that uses conditional independence tests to detect

the Markov blanket of the disease. The algorithm is given by

Han et al. (2010) and we implement it in an R program.

bNEAT is another Bayesian network method that is designed

on the basis of the score-and-search approach and is more

suitable for small sample data. Although it outperforms

DASSO-MB (Han and Chen, 2011), this algorithm is

developed based on a greedy search program and is sensitive

to improper input orders. And unfortunately, although designers

try to reduce computational complexity consciously, this method

still has difficulty in applying to the GWAS data directly. Its

pseudo-code is shown in Han and Chen (2011) and we

implement it in R, too.

3.1.2 Results
In order to quantify the performance of different methods,

we define the criteria (here we name it power) as the ratio of the

number of simulated datasets in which only the correct markers

are detected without any false positive and the total amount of

datasets under the same parameter configuration. In Figures 1–3,

we use histograms to describe the simulation results. In most

cases, the power of our method is closed to bNEAT, and is higher

than the other methods. One of the reasons why SVM doesn’t

work well might be that using prediction accuracy as the inclusive

criteria of associated markers can introduce a lot of false

FIGURE 2
Performance comparison. Powers of STS-BN, bNEAT,
DASSO-MB, MOMDR, BEAM, BOOST, SVM. (r2 = 0.7).

FIGURE 3
Performance comparison. Powers of STS-BN, bNEAT,
DASSO-MB, MOMDR,BEAM, BOOST, SVM. (r2 = 0.9).
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TABLE 4 Performance Comparison. Powers of simulations are given
by this table. The percentage of the simulated datasets in which
the correct markers are detected and at most two false positives are
included is shown in the parentheses.

Model 1 (r2 = 0.5)

MAF 0.05 0.1 0.2 0.5

STS-BN 0(0) 0.06(0.06) 0.84(0.86) 1(1)

bNEAT 0(0) 0.02(0.02) 0.88(0.9) 0.98(1)

DASSO-MB 0.02(0.08) 0.04(0.08) 0.7(0.86) 0.88(1)

MOMDR 0(0) 0(0) 0.74(0.84) 1(1)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0(0) 0.02(0.02) 0.7(0.98) 0(0.98)

SVM 0(0) 0(0) 0.12(0.46) 0.7(0.96)

Model 2 (r2 = 0.5)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.32(0.32) 0.62(0.62) 0.86(0.9) 0.46(0.46)

bNEAT 0.34(0.34) 0.76(0.76) 0.9(0.94) 0.48(0.48)

DASSO-MB 0.18(0.42) 0.46(0.64) 0.72(0.92) 0.34(0.46)

MOMDR 0.08(0.1) 0.38(0.46) 0.72(0.74) 0.22(0.24)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0.04(0.04) 0.26(0.34) 0.12(0.18) 0(0)

SVM 0.02(0.02) 0.14(0.2) 0.28(0.58) 0.2(0.44)

Model 3 (r2 = 0.5)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.7(0.74) 0.94(0.94) 0.98(1) 0.98(1)

bNEAT 0.88(0.88) 1(1) 0.96(1) 0.94(1)

DASSO-MB 0.36(0.82) 0.72(0.96) 0.84(1) 0.84(1)

MOMDR 0.56(0.6) 0.82(0.9) 1(1) 1(1)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0.38(0.74) 0.22(0.96) 0.24(1) 0.52(0.74)

SVM 0.1(0.2) 0.14(0.78) 0.36(0.82) 0.5(0.88)

Model 1 (r2 = 0.7)

MAF 0.05 0.1 0.2 0.5

STS-BN 0(0) 0.02(0.02) 0.72(0.74) 1(1)

bNEAT 0.02(0.02) 0.12(0.12) 0.94(0.96) 0.98(1)

DASSO-MB 0(0.02) 0.02(0.02) 0.58(0.74) 0.8(1)

MOMDR 0(0) 0(0) 0.58(0.74) 1(1)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0(0) 0.02(0.02) 0.3(0.84) 0(0.98)

SVM 0(0) 0(0) 0.04(0.36) 0.38(0.86)

Model 2 (r2 = 0.7)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.22(0.22) 0.42(0.42) 0.7(0.7) 0.4(0.4)

bNEAT 0.4(0.4) 0.64(0.64) 0.78(0.82) 0.42(0.48)

DASSO-MB 0.14(0.44) 0.36(0.48) 0.58(0.7) 0.38(0.44)

(Continued in next column)

TABLE 4 (Continued) Performance Comparison. Powers of simulations
are given by this table. The percentage of the simulated datasets in
which the correct markers are detected and at most two false positives
are included is shown in the parentheses.

Model 2 (r2 = 0.7)

MAF 0.05 0.1 0.2 0.5

MOMDR 0.08(0.1) 0.26(0.34) 0.44(0.54) 0.16(0.22)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0.08(0.18) 0.12(0.22) 0.02(0.14) 0(0)

SVM 0.02(0.02) 0.04(0.18) 0.04(0.5) 0.06(0.26)

Model 3 (r2 = 0.7)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.62(0.62) 0.94(0.94) 0.9(0.94) 1(1)

bNEAT 0.88(0.88) 0.96(0.96) 0.96(1) 1(1)

DASSO-MB 0.3(0.78) 0.64(0.96) 0.7(0.96) 0.8(1)

MOMDR 0.28(0.34) 0.64(0.76) 0.96(0.98) 0.98(0.98)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0.16(0.7) 0.06(0.94) 0(1) 0.26(0.8)

SVM 0.06(0.34) 0(0.78) 0.18(0.78) 0.44(0.88)

Model 1 (r2 = 0.9)

MAF 0.05 0.1 0.2 0.5

STS-BN 0(0) 0.08(0.08) 0.66(0.68) 0.98(1)

bNEAT 0(0) 0.18(0.18) 0.8(0.84) 0.98(1)

DASSO-MB 0(0) 0.06(0.1) 0.4(0.68) 0.78(1)

MOMDR 0(0) 0(0) 0.58(0.7) 1(1)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0(0) 0(0.08) 0.04(0.94) 0(0.98)

SVM 0(0) 0(0) 0(0.32) 0.28(0.78)

Model 2 (r2 = 0.9)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.2(0.2) 0.22(0.22) 0.5(0.52) 0.26(0.26)

bNEAT 0.26(0.26) 0.56(0.56) 0.62(0.64) 0.42(0.44)

DASSO-MB 0.1(0.26) 0.08(0.28) 0.38(0.54) 0.22(0.36)

MOMDR 0.08(0.08) 0.32(0.36) 0.4(0.44) 0.1(0.12)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0(0.1) 0.08(0.32) 0(0.3) 0(0)

SVM 0(0.02) 0(0.08) 0.04 0.02

Model 3 (r2 = 0.9)

MAF 0.05 0.1 0.2 0.5

STS-BN 0.56(0.56) 0.64(0.64) 0.82(0.84) 1(1)

bNEAT 0.86(0.86) 0.86(0.86) 0.92(0.96) 0.94(0.9)

DASSO-MB 0.34(0.58) 0.44(0.64) 0.62(0.84) 0.8(1)

MOMDR 0.26(0.32) 0.52(0.68) 0.9(0.94) 0.72(0.76)

BEAM 0(0) 0(0) 0(0) 0(0)

BOOST 0.02(0.84) 0.02(0.98) 0.02(0.94) 0.06(0.76)

SVM 0(0.38) 0(0.6) 0.08(0.78) 0.06(0.8)
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positives. Also as listed in Table 4, in most cases, the change in

power of our method is relatively small when two additional false

positives are allowed to appear in the results. This suggests that

our method can reduce the occurrence of false positives to some

extent.

As mentioned above, though bNEAT usually performs well

in some simulation experiments, it can hardly get good results

when the input sequence is inappropriate. So, we randomly

disturb the order of the makers in each dataset and reproduce

the experiment. From the results in Figures 4–6, we can see that

our algorithm far outperforms bNEAT. Under most

configurations, the results of our method are the same as the

former, while the accuracy of bNEAT is significantly reduced.

This suggests that our method possesses higher stability than

bNEAT.

3.2 Application to real datasets

3.2.1 UK biobank lung cancer data
We apply our algorithm to the real data set to evaluate its

adaptability to the real-world situation. The dataset we used is a

lung cancer dataset extracted from the UK Biobank. The UK

Biobank is a large-scale biomedical database and research

resource containing in-depth genetic and health information

from approximately 500,000 individuals from across the

United Kingdom, aged between 40 and 69 at recruitment

(Bycroft et al., 2018). Here we selected the patients with

malignant neoplasm of bronchus and lung based on the ICD-

10 code for the type of cancer. The controls were selected from

the population, where we excluded the patients with malignant

neoplasm of bronchus and lung or lung cancer based on ICD-10,

FIGURE 4
Performance comparison of STS-BN and bNEAT. The input
orders of markers are randomly disturbed and r2 = 0.5.

FIGURE 5
Performance comparison of STS-BN and bNEAT. The input
orders of markers are randomly disturbed and r2 = 0.7.
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ICD-9 or self-reported code, by R package “MatchIt” (Ho et al.,

2011) according to the sex and age of the participants in a 1:

1 ratio. Then, these people’s imputed genetic variation data on

autosomes were extracted. Data preprocessing was completed by

PLINK 2.0 (Chang, 2022). In this step, the variants with minor

allele frequency ≤ 0.05, missing call rate > 0.05, or the Hardy-

Weinberg equilibrium exact test p-value < 1e-50 were excluded.

Variants with more than 2 alleles were also filtered out. After

these, we got a data set with 5472 samples (2736 cases and

2736 controls) and 5,637,802 SNPs.

Using STS-BN to analyze the dataset, rs6534554 and

rs10229375 were detected. The importance of the latter has

been more evident in previous researches. According to

dbSNP (Sherry et al., 2001), rs10229375 is the intro variant of

STX1A and the 2 kb upstream variant of MIR4284. STX1A

encodes a member of the syntaxin superfamily. This protein

has been shown to be associated with different types of lung

cancer (Graff et al., 2001; Zombori et al., 2021). In another study,

STX1A was used to classify NSCLC (non-small cell lung cancer)

patients into different prognostic groups (Lau et al., 2007). In

addition, a recent study suggested that the up-regulation of

MIR4284, i.e. microRNA 4284, was shown in NSCLC tissues

and cell lines compared to the corresponding normal controls,

and decreased expression of MIR4284 could inhibit tumor cell

proliferation, migration and invasion (Tian et al., 2021).

3.2.2 SMRIDB data
Another experiment is conducted with a dataset downloaded

from The Stanley Medical Research Institute Online Genomics

Database (Higgs et al., 2006), which can be found at https://www.

stanleygenomics.org/. This database collected the information of

patients suffering from mental diseases such as schizophrenia

and bipolar disorder. Schizophrenia is a devastating and

debilitating form of chronic psychiatric disorder, which is

expressed as a combination of psychotic symptoms and

motivational and cognitive dysfunctions. As a cognitive and

behavioural disorder, schizophrenia is ultimately about how

the brain processes information. Besides, this disease involves

subtle pathological changes in specific neural cell populations

and cell-cell communication (Kahn et al., 2015).

To identify associated SNPs, we chose the dataset whose

study ID is 20, and there are a total of 153 samples and

500,568 SNPs. After removing the missing data, we selected a

control group of 48 samples and a case group including

44 patients with schizophrenia. Finally, we get a dataset

containing 92 samples and 330,673 SNPs. Analyzing the

dataset with STS-BN, we found three associated SNPs,

rs11723575, rs1120408, and rs6062361. According to dbSNP

(Sherry et al., 2001), rs1120408 and rs6062361 are intron

variants of the diacylglycerol kinase beta (DGKB) gene and

protein-L-isoaspartate (D-aspartate) O-methyltransferase

domain containing 2 (PCMTD2) gene, respectively. DGKB

gene codes a kind of protein that can phosphorylate

diacylglycerol to phosphatidic acid, thus removing

diacylglycerol. Phosphatidic acid functions both in signaling

and phospholipid synthesis. DGKB is mainly expressed in the

brain, especially the amygdala, caudate nucleus, and

hippocampus within the adult brain (Caricasole et al., 2002).

The expression of the PCMTD2 gene can also be found in the

brain. This gene plays an important role in myelination and

regulating neural differentiation. There are some clues that

suggest PCMTD2 might be related to schizophrenia. A

previous study (Zarrei et al., 2019) has shown that

PCMTD2 is one of the neurodevelopmental disorders

associated genes linked across more than one disorder,

including schizophrenia. A case report (Kroepfl et al., 2008)

also shows that the loss of the PCMTD2 gene seems to be

responsible for severe intellectual disability. As we can see

FIGURE 6
Performance comparison of STS-BN and bNEAT. The input
orders of markers are randomly disturbed and r2 = 0.9.
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from above, both DGKB and PCMTD2 are closely related to the

brain and have the possibility to be associated with

schizophrenia. Unfortunately, there is little information about

rs11723575 at present, but we can still believe that it’s an

interesting site worth exploring.

4 Conclusion and discussion

In the era when data acquisition is getting easier and easier,

the emergence and the development of data-drivenmethods have

become a trend. Applying data-driven methods to GWAS data is

crucial for understanding and predicting some complex traits. In

this paper, we design a new algorithm based on Bayesian network

to detect causal SNPs of complex diseases, which shows good

stability and accuracy in simulation experiments. Furthermore,

we have applied this algorithm to two real-world datasets and

have gotten reasonable results within an acceptable time. That is,

our method has the capacity to handle real GWAS data

containing hundreds of thousands of SNPs.

Although the behavior of our algorithm is satisfactory, there

are a few points worth discussing. For example, G-test may not be

the best criteria for constraint-based structure learning methods

which is used in the first phase of our algorithm. And the strategy

of inclusion one by one makes it difficult to detect interactions

without at least one single locus having an independent main

effect. Besides, although the first phase can provide a proper

input sequence for the second phase, the essence of the search

program used in phase II is still a greedy search, which means the

program is possible to trap in a local optimum. We will consider

other measures of conditional independence in future studies.

More advanced search algorithms both in Phase I and Phase II

will also be adopted. Another issue is that only a few SNPs have

been found in real data experiments. We speculate that this is due

to our algorithm’s tendency to reduce false positives, which may

result in an increase in false negatives. The lack of complexity of

data preprocessing and disease classification may also have

influenced the results to some extent. In addition, we can

expand our study to the circumstance where gene-gene

interactions and gene-environment interactions are considered

at the same time so that we can have a more objective

understanding of the complex disease.
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