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Osteoarthritis (OA) is a complicated disease with both hereditary and environmental
causes. Despite an increase in reports of possible OA risk loci, it has become clear
that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by
environmental influences and result in transcriptional alterations, may have a role in OA
pathogenesis. The majority of recent research on the epigenetics of OA has been focused
on DNA methylation, histone modification, and non-coding RNAs. However, this study will
explore epigenetic regulation in OA at the present stage. How genetics, environmental
variables, and epigenetics interact will be researched, shedding light for future studies.
Their possible interaction and control processes open up new avenues for the
development of innovative osteoarthritis treatment and diagnostic techniques.
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INTRODUCTION

Osteoarthritis (OA) is a widespread joint disease that affects around 15% of the world’s population
(Glyn-Jones et al., 2015). OA was once thought to be a degenerative illness arose from chronic wear-
and-tear and mechanical stress. However, the emerging paradigm now sees it as a complex process
involving interactions between a wide range of internal and environmental factors (Figure 1). The
genetic component of the disease is complex. Current evidence supports the theory of a polygenic
inheritance, as published studies have reported a variety of OA-related risk loci (Styrkarsdottir et al.,
2018; Zengini et al., 2018; Styrkarsdottir et al., 2019; Tachmazidou et al., 2019). However, studies
have shown that more than 80% of the disease-related variants are located in non-coding regions of
the genome (Maurano et al., 2012). As a result, it has been proposed that changes in gene expression,
rather than changes in the genetic code sequence, are more likely to influence OA development.
Indeed, epigenetics, a crucial method of gene expression regulation, has been implicated in the start
and progression of OA in recent research (Ramos and Meulenbelt, 2017).

Epigenetics is an essential gene-environment interaction process. Epigenetic modification, unlike
genomic modifications, is more versatile and reversible. Regulations of epigenetics vary by cell type
and gene. Epigenetic phenomena including DNAmethylation, genomic imprinting, maternal effects,
post-translational modifications of histones, RNA (controlled by non-coding regulatory RNAs), and
epigenetic chromatin remodeling (three-dimensional structure of chromatin) have been well studied.
(Simon and Jeffries, 2017). With the help of modern testing techniques, epigenetic studies of knee
osteoarthritis are now possible to reveal how the external environment affects changes in somatic
cells and tissues. Many studies have been conducted on the epigenetics of osteoarthritis, although
they have primarily focused on DNA methylation, histone modification, and miRNA (Ramos and
Meulenbelt, 2017). This section will review the epigenetic regulation and reciprocity based on
previous findings, trying to seek the connection, investigate how genetics and epigenetics interact,
and steer future research toward identifying biologically significant alterations and gaining a better
understanding of the mechanisms involved.
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DNA METHYLATION

The most fully studied methylation is 5-methylcytosine (5 mC)
(Miranda-Duarte, 2018). CpG dinucleotides are distributed
unevenly throughout the human genome, with the bulk of
CpG islands found in the promoter and exon regions of genes
300 to 3000bp in length. As a result, the methylation level of CpGs
can be dynamically controlled by DNMTs and TETs to regulate
transcription (Figure 2) (Rice et al., 2018).

Recent research into global and gene-specific methylation has
proved a clear link between methylation and the development of
OA. Helmtrud I. et al. were the first to study individual
methylation loci. They investigated the amount of methylation
of proximal promoter regions of aggrecanases1 (ADAMTS 4) and
matrix metalloproteinase (MMPs) 2 (gelatinase A), MMP3
(stromelysin 1), MMP9 (gelatinase B), and MMP13
(collagenase 3) (Roach et al., 2005). Despite the fact that the
demethylation and sensitivity to demethylation of these four

FIGURE 1 | Risk factors of knee OA. Risk factors for knee osteoarthritis includes ageing, gender, injury, and joint overloading, etc. Epigenetics may play a
considerable role in how these environmental factors lead to altered gene expression and ultimately pathophysiologic manifestations such as cartilage damage and
subchondral osteosclerosis.

FIGURE 2 |Methylation and demethylation of DNA. In methylation process, the 5′carbon of cytosine was methylated to 5-MC with S-adenosine methionine (SAM)
as the methyl donor. During active demethylation, the methyl group of 5 mC can be modified by the TETs-mediated addition of hydroxyl groups to generate 5-
hydroxymethylcytosine (5hmC), which can be subsequently processed in demethylation process.
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enzymes differed significantly, the degree of demethylation of at
least one CpG site in each enzyme in OA was statistically higher
than in the control group.

Additional DNA methylation locations encompassing
numerous OA-related chemicals or pathways have been
discovered in subsequent cartilage tissue studies, and these
genes can be classified into four main categories. The first
category addresses the extracellular matrix’s homeostasis,
which includes COL2A1, COL9A1, COL10A1, ACAN, MMP2,
MMP3, MMP9, MMP13, ADAMTS-4 (Pöschl et al., 2005; Roach
et al., 2005; Dickhut et al., 2009; Imagawa et al., 2014).
Inflammation-related molecules, such as IL1b, IL8, IL32, TGF-
β2, IL1RN, and WNT11, fall under the second category
(Hashimoto et al., 2009; Moazedi-Fuerst et al., 2014;
Takahashi et al., 2015). SOX4, SOX9, RUNX2, and SOD2 are
members of the third group, which are involved in cartilage
maintenance (Ezura et al., 2009; Kim et al., 2013). Growth factors
such as BMP7, SOST, and GDF5 fall within the fourth category
(Loeser et al., 2009; Reynard et al., 2011; Papathanasiou et al.,
2015). DNAmethylation is known to vary greatly between tissues
and stages of illness. Such studies only identify methylation sites
that may be related to disease due to sampling issues. Still, these
findings add to the current understanding of OA epigenetics.

CpG Methylation Patterns Correlated With
OA-Associated SNPs
Direct SNP correlations or gene-environment interactions may
be mediated by these methylation quantitative trait loci
(meQTLs). Eilis H. et al. investigated DNA methylation at
850,000 locations across the genome using a MethylationEPIC
BeadChip (850K chip) in samples from the Understanding
Society UK Household Longitudinal Study (UKHLS) (n =
1,111) (Hannon et al., 2018). They discovered 548 significant

DNA methylation quantitative trait loci correlations between
2,907,234 genetic variations and 93,268 DNA methylation
sites, resulting in 548 significant DNA methylation
quantitative trait loci. They offered two key concepts: 1)
mQTL-associated SNP mutations were more common within
500 kb of the DNA methylation site (designated as cis), and the
cis SNP variation had a much more considerable influence on

FIGURE 3 | Amodel for the presence of altered levels of DMRmethylation due to specific risk alleles is shown here. Certain OA-associated SNPmutations may lead
to alterations in the degree of DMRmethylation at a distance from the associated causative gene, which affects the expression of the associated gene. This uniquemode
of action is better studied and defined in the locus of chromosome 6p21.1 labelled rs10948172, with the associated gene RUNX2 (Zhang G. et al., 2020).

FIGURE 4 | histone modification. Histone acetylase (HAT) and Histone
deacetylase (HDAC) are two classes of enzymes responsible for the structural
modification of chromosomes and regulation of gene expression. In general,
acetylation of histones facilitates the dissociation of DNA from histone
octamers and the relaxation of nucleosome structure, thus allowing various
transcription factors and co-transcription factors to bind specifically toDNAbinding
sites and activate gene transcription. In contrast, deacetylation of histones exerts
the opposite effect with Histone acetylase.
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DNA methylation; 2) proximal methylation sites shared mQTL-
associated SNP mutations. Differential methylation region refers
to the methylation region regulated by such SNPs (DMR). These
results explained the association between SNP changes and
surrounding DMR in the proximal regions of several genes
correlated with OA risk in osteoarthritis (RUNX2, PLEC,
ALDH1A2, GDF5, MGP, COLgalt2, and COL11A2) (Figure 3)
(Reynard et al., 2014; Shepherd et al., 2018; Rice et al., 2019a;
Shepherd et al., 2019). Further mQTL research revealed 24 CpGs
linked to genes including COLgalt2, COL11A2, RAPH1, FGFR3
and WWP2. Importantly, WWP2 encloses miRNA 140, which
have been shown to be critical in cartilage maintenance, as
miRNA 140 have severe cartilage defects (Duan et al., 2020).
These findings demonstrate that DNA methylation can influence
gene and non-coding RNA expression, as well as gene
transcription and translation (Table 1).

Risk Factors and DNA Methylation in OA
Animal models have provided light on the relationship between
recognized OA risk factors like injury, aging and altered
methylation patterns in the formation of OA. Destabilization
of the medial meniscus, for example, can lead to OA development
and altered 5mc and 5hmc patterns in 12-week-old male mice
(Singh et al., 2019). Furthermore, tamoxifen-induced articular
chondrocyte specific deletion of DNMT3b (AGCCREERT2;
DNMT3bfl/fl), the de novo methyltransferase, can result in OA-
like phenotypes in knee joints; whereas DNMT3b overexpression
in articular chondrocytes can delay OA development after
meniscus ligament injury (Shen et al., 2017).

Other OA risk factors, such as obesity, appear to be mediated by
DNAmethylation. Obesity has long been assumed to cause OA due
to increased mechanical loading and wear and tear. Recent evidence
shows that even in non-weight-bearing joints, such as hands, obesity
still seems to be a significant risk factor. Leptin, a cytokine-like
peptide hormone secreted by white adipose tissue, has long been
stipulated to connect obesity with OA. Because obese patients
generally have a high level of leptin in their bodies, their blood
level is regulated significantly by body fat content. This is most likely
owing to the obese patient’s altered methylation pattern in the leptin
(lep) promoter region. According to a recent study, patients after
bariatric surgery have lower serum leptin levels and a different
methylation profile in the lep and lepr gene promoter regions. These
findings back up previous studies in rat models, which indicated that
a high-energy diet could alter lep methylation patterns (Milagro
et al., 2009). While inhibiting leptin signaling in ob−/− and DB−/−

mice models resulted in obesity, it did not affect the occurrence of
knee OA (Griffin et al., 2014). The suppression of lepmethylation by
5′-Aza-2-deoxycytidine (AZA) increased MMP13 activity in patient
chondrocytes in vitro.MMP-13 was elevated after leptin’s epigenetic
reactivation, and small interfering RNA against lep inhibited it
directly (Iliopoulos et al., 2007). Overall, existing evidence
suggests that leptin methylation could link obesity and OA
development.

The Role of DNA Methyltransferase in OA
Members of the DNMTs family include DNMT1, DNMT2,
DNMT3a, DNMT3b, and DNMT3l. The main function of

DNMT2 is to catalyze the methylation of RNA, while DNMT3l
does not have catalytic activity. CpG methylation is determined
by three DNA methyltransferases: DNMT1, DNMT3A, and
DNMT3B. DNMT1 is responsible for maintaining methylation
during DNA replication and damage repair. DNMT3A and
DNMT3B play major role in de novo methylation (Gao L.
et al., 2020). A previous matched case-control study found a
connection between DNMT polymorphisms and primary knee
OA. Under a co-dominant and dominant paradigm, the CT
haplotype of DNMT1 polymorphisms was related to a lower
risk of OA. In contrast, the CC genotype of rs2424913 of
DNMT3b was associated with an increased risk (Miranda-
Duarte et al., 2020).

Differential expression of DNMT1 in human chondrocytes
collected from different areas in articular chondrocytes can be
triggered by IL-1, a pro-inflammatory cytokine. Notably, deep
and superficial zone chondrocytes, instead of transition zone
chondrocytes, enhanced DNMT1 protein expression and activity
in response to IL-1 (Akhtar and Haqqi, 2013). The demethylation
of DMNT1 by AZA can greatly increase the expression of pro-
inflammatory or matrix carbolic proteins such as COX2, MMP9,
andMMP13. OnlyDNMT3b was expressed in the mature normal
cartilage of the knee joint and TMJ, but notDNMT3a orDNMT1.
Additionally, and the occurrence of OA in both joints would lead
to the decrease of DNMT3b expression (Shen et al., 2017).
Overexpression of DNMT3b also appears to slow the onset of
osteoarthritis caused by trauma or chemicals (Shen et al., 2017;
Zhou et al., 2019).

HISTONE MODIFICATION

The most in-depth study on OA’s overall accessible chromatin
landscape change was performed by comparing cartilage from
both the outer region of the lateral tibial plateau and the inner
region of the medial tibial plateau from the same patient. The
accessible chromatin landscapes of injured and undamaged
tissues display strikingly distinct chromatin signatures,
notwithstanding patient-to-patient differences (Liu et al.,
2018). Further analysis revealed that enhancers account for the
majority of differentially accessible peaks, including enhancers
from BMPR1b, WNT5a, and FGFR2, all of which are known to
play a role in OA-related cellular activity. Histone modification is
shown to regulate some essential chondrocyte regulator genes,
such as SOX9, as well as functioning in conjunction with
epigenetic regulators to affect downstream genes (Kim et al.,
2013). SOX11 and WNT5b, two OA-related genes, had differing
accessible peaks in their promoter regions.

Histone Acetylation in OA
Histone acetylation is a dynamic process governed by two distinct
enzyme families: HATs and HDACs. HDACs can modify
nonhistone proteins to affect a variety of cellular processes in
addition to their effects on chromatin structure (Figure 4).

Currently, most research on HDACs’ functions in OA
pathogenesis shows their interactions with non-histone
proteins, which change target gene transcription. HDAC1 and
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HDAC2 were detected in large amounts in human chondrocytes
and synovial cells from OA patients. They may alter the
expression of cartilage-specific genes such as COL9A1,
COL11A1, COMP, AGGRECAN, and Dermatopontin, likely via
interaction with SNAIL protein (Hong et al., 2009). HDAC4,
which is not indicated in normal knee cartilage, was highly
expressed in OA cartilage in other research employing knee
cartilage specimens from OA patients and normal donors.
modulate JNK and ERK1/2 activation to mediate IL1b-induced
matrix catabolic protein synthesis (Wang et al., 2018). The
HDAC9-PIASy-RNF4 axis promotes chondrocyte hypertrophy
by regulating the sumo and ubiquitination of Nkx3.2/Bapx1,
which is degraded by the proteasome, according to studies on
HDAC9 in osteoarthritis (Choi et al., 2016).

A few studies on the regulation of mesenchymal stem cell
destiny discloses that the epigenetic role of HDAC may also be
involved in the development of OA. In rate bone marrow stromal
cells, HDAC8 can inhibit osteogenesis via two pathways: it can
inhibit histone H3 lysine 9 acetylation, which reduces the
osteogentic protein RUNX2, Osterix, Osteopotin and ALP. It
can also associate with RUNX2 to repress its transcriptional
activity (Lee et al., 2019). Human MSCs increased global
histone acetylation following in situ stiffening in a hydrogel

environment by reducing HDAC activity. Histone acetylation
and Lamin A/C, the mechanosensor signaling protein, were
considerably low in subchondral bone isolated from OA
patients, while HDAC activity was significantly higher (Lee
et al., 2019).

Sirtuins (SIRTs) are histone and protein deacetylases
dependent on nicotinamide dinucleotide (NAD+). SIRTs and
SIRT-dependent epigenetic control have been widely reported to
play vital roles in DNA repair, inflammation, and aging-related
illnesses (Lee et al., 2019). Chondrocyte hypertrophy and
proteoglycan production were reduced in SIRT6-deficient mice
from the mesenchyme (Ailixiding et al., 2015). Sirtuin 1 (SIRT1),
like SOX9, is essential for maintaining cartilage homeostasis
(Tsuda et al., 2003). Boosted SIRT1 expression increased the
expression of cartilage ECM genes such as COL2A1, COL9A1,
AGGRECAN and COMP. SIRT1 has been found to connect with
SOX9 and p300, GN5, both of which are involved in nucleosome
acetylation in the COL2 promoter region. SIRT3 is mostly found
in mitochondria, and its deacetylation activity regulates
mitochondrial function, regeneration, and kinetics (Ansari
et al., 2017). These activities are hypothesized to maintain
REDOX equilibrium in cell metabolism, preventing oxidative
stress (Bause and Haigis, 2013).

TABLE 1 | Genes with a differentially methylated region potentially related to single nucleotide polymorphism

OA Associated SNP CpG loci Potential gene

rs6976 cg15147215 cg18099,408 GNL3 Rushton et al. (2015)
cg18591801

rs10948172 cg20913747 cg13979708 RUNX2 Rushton et al. (2015); Rice et al. (2019a)
cg18551225 cg19254793

rs3204689 cg12031962 - ALDH1A2 Rushton et al. (2015)
rs143383 cg14752227 - GDF5 Rushton et al. (2015)
rs10471753 cg25008444 - PIK3R1 Rice et al. (2019a)
rs11780978 cg02331830 cg19405177 PLEC

cg04255391 cg20784950 GRINA Rice et al. (2019a)
cg14598846 cg01870834
cg23299254 cg07427475
cg10299941 -

rs4764133 cg20917083 - MGP Rice et al. (2019a)
rs6516886 cg20220242 cg00065302 RWDD2B Rice et al. (2019a)

cg24751378 cg05468028
cg16140273 cg18001427

rs11583641 cg18131582 - COLGALT2 Rice et al. (2019b)
rs62182810 cg10114877 - NBEAL1 Rice et al. (2019b)
rs11732213 cg25007799 cg20987369 FGFR3 Rice et al. (2019b)
rs9277552 cg13921245 cg02197634 COL11A2 Rice et al. (2019b)

cg02375585 cg25491704
rs60890741 cg18170545 - ASAP1 Rice et al. (2019b)
rs317630 cg22375663 - CPSF1 Rice et al. (2019b)
rs35206230 cg10253484 cg20040747 SEMA7A Rice et al. (2019b)
rs6499244 cg26736200 - NFAT5 Rice et al. (2019b)

cg26661922 WWP2 Rice et al. (2019b)
rs2953013 cg16779580 - RAB11FIP4
rs62063281 cg16520312 cg17117718 LRRc37A

cg18228076 cg10826688 CRHR1
cg01934064 cg15295732 MAPT
cg15633388 cg11117266 KANSL1 Rice et al. (2019b)
cg23616531 - -

rs11583641 cg18131582 - COLGALT2 Kehayova et al. (2021)
rs6516886 cg20220242 - RWDD2B Parker et al. (2021)
rs75621460 Not mentioned in paper - TGFβ1 Rice et al. (2021)
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Studies concentrating on deacetylase/acetylases still have
significant limitations because HATs/HDACs can modify
transcription factors as well as signaling molecules, thus
affecting the expression of other distant genes (Zhao et al.,
2008). HDAC inhibitors, for example, can stimulate the
acetylation of other proteins in several physiological pathways
in addition to increasing histone acetylation. The non-targeted
protein deacetylase inhibitors Zolinza (Vorinostat) and Istodax
(Romidepsin) have been approved for the treatment of cutaneous
T-cell lymphoma. Histone modification medicines for
osteoarthritis, on the other hand, have not yet been developed.

Histone Methylation
Typically, histone methylation is more stable than histone
acetylation. Histone methylation is performed by histone
methylation transferase (HMT) on lysine and arginine residues.
Common locations of methylation include Lys 4, 9, 27, 36, 79 and
Arg 2, 17, 26 on H3, Lys 20 and Arg 3 onH4, and Lys 4, 9, 27, 36, 79
and Arg 2, 17, 26 on H3 and H4. Studies have shown that arginine
methylation on histone is a relatively dynamic marker. Arginine
methylation is associated with gene activation, whereas arginine
methylation loss in H3 and H4 is linked to gene silence (Greer and
Shi, 2012). In contrast, lysine methylation appears to be a reasonably
persistent marker for gene expression regulation.

Similar to histone acetylation, changes in histone methylation are
frequently related to altered gene expression and signaling pathways in
chondrocytes. For instance, H3k79 methylation was reduced in OA
and RA patients (He et al., 2017), while H3K9 methylation was
decreased in the temporomandibular joints of elderly mice (Ukita

et al., 2020). DOT1L, an enzyme involved in histone methylation of
Lys79 of H3 (H3K79), was a cartilage homeostasis regulator
(Monteagudo et al., 2017). Dot1l polymorphism was found to be
associated with hip joint cartilage thickness and OA risk in research
involving 6,532 people (Castaño Betancourt et al., 2012). According to
an in vitro study, DOT1L can methylate H3K79 of the LEFL and
TCF1 genes, hence reducing WNT pathway activation and causing
chondrocyte hypertrophy (Monteagudo et al., 2017). EZH2 is another
histone methyltransferase discovered to modulate theWNT pathway.
EZH2, which is elevated in OA articular chondrocytes, can increase
trimethylation of the SFRP1 promoter and is aWNT inhibitor, leading
to hyperactivation of theWNT/β-catenin signaling pathway (Chen L.
et al., 2016). Overexpression of EZH2 increases the expression of
MMP13, ADAMTS5, and COLX, via methylation of miR-138
promoter, resulting in cartilage breakdown (Chen L. et al., 2016).
In addition to histone methylation, the demethylation process is
implicated in OA as well. Jumonji domain-containing 3 (JMJD3),
HEK27Me3 demethylase, was found at increased level in cartilage
from the tibial plateau of the OA knee. Its inhibition in vitro byGSK4,
significantly increases the expression of OA-related genes MMP13
and PTGS2.

NON-CODING RNA

microRNA (miRNA) and OA
Mature miRNAs bind to complementary messenger RNA
(mRNA) sequences of target genes via RNA-induced silencing
complexes (RISCs) or block gene expression directly. Interactions

TABLE 2 | lncRNA which utilize with miRNA in OA progressing.

lncRNA miRNA Interrelated target/Regulators

SNHG14 miR-124-3-p FSTL-1, NLRP3, TLR4/NF-κB pathway Wang B. et al. (2021)
LINC02288 miR-374a-3p RTN3 Fu et al. (2021)
Linc-ROR miR-138/miR-145 SOX9 Feng et al. (2021)
RNA HOTTIP miR-663a Fyn-related kinase He et al. (2021)
RNA RMRP miR-206 CDK9 Lu et al. (2020)
RNA SNHG16 miR-373-3p PPARGC1B signaling pathway (sponging miR-373-3p) Fan et al. (2021)
RNA SNHG7 miR-214-5p PPARGC1B signaling pathway Xu et al. (2021)
RNA GAS5 miR-137 caspase-3, Bax/Bcl-2 Gao S. T. et al. (2020)
PVT1 miR-93-5p HMGB1, TLR4, NF-κB pathway Meng et al. (2020)
RNA XIST miR-27b-3p ADAMTS-5 AXIS Zhu et al. (2021)
RNA NEAT1 miR-543 MMP-3, MMP-9, MMP-13, interleukin (IL)-6 and IL-8 PLA2G4A axis Xiao et al. (2021)
RNA SNHG5 miR-10a-5p IL-1β, H3F3B axis, sponging miR-10a-5P (Jiang et al. (2021)
ARFRP1 miR-15a-5p NF-κb, TLR4 axis Zhang G. et al. (2020)
PCAT1 miR-27b-3p sponging miR-27b-3p (Zhou et al. (2021)
MIR4435-2HG miR-510-3p MMP1,MMP13, collagen II,IL17-A,<!--Soft-enter Run-on-- > p65, phosphorylated (p)-p65, IκB and p-IκB in CHON-001,

sponging miR-510-3p Liu et al. (2020a)
SNHG9 miR-34a methylation Zhang H. et al. (2020)
H19 miR-483-5p Dusp5 Wang et al. (2020)
LOXL1-AS1 miR-423-5P KDM5C axis, Chen K. et al. (2020)
SNHG15 miR-7 KLF4, sponging miR7a Chen et al. (2020a)
Loop LINC00511 miR-150-5P the 3′-UTR of transcription factor (SP1) Zhang Y. et al. (2020)
XIST miR-149-5p DNMT3A Liu et al. (2020b)
XIST miR-653-5p DNMT3A Lian and Xi, (2020)
IGHCγ1 miR-6891-3p TLR4 Zhang P. et al. (2020)
HOTAIR miR-20b PTEN Chen et al. (2020b)
H19 miR-106b-5p TIMP2 Tan et al. (2020)
SNHG15 miR-141-3p BCL2L13 Zhang X. et al. (2020)
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between miRNAs and highly complementary targets lead to
mRNA degradation, while incomplete interactions between
miRNAs and target transcripts usually lead to translation
suppression. In 2008, Dimitrios et al. found that in the
chondrocytes of arthroplasty patients, miR-483, miR-22, miR-
377, miR-103, miR-16, miR-223, miR-2b, miR-23b, and miR509
were elevated, and miR-29a, miR-140, miR-25, miR-337, miR-
210, miR-26a, and miR-373 were decreased. The genetic
signatures of these 17 miRNAs clearly distinguish OA
chondrocytes from normal chondrocytes, and 17 miRNA-
protein pairs that may be involved in the progression of
osteoarthritis were revealed by matching microRNAs and
proteomics. In this study, miR-22 and miR-103 expression
were favorably connected with BMI, but miR-25, and miR-
337, while miR-29a expression was inversely correlated with
BMI (Iliopoulos et al., 2008). Since then, numerous research
has investigated the connection between miRNA expression and
effector genes in OA, including inflammation, aging, transcription
factors, apoptosis, autophagy, and other pathogenic events in the
evolution of the illness (Zhang et al., 2015; Wang et al., 2016;
D’Adamo et al., 2016;Miyaki et al., 2010).MiR-140 is a well-known
miRNA associated with osteoarthritis that can be found in
peripheral blood circulation or synovial fluid during the
progression of OA (Miyaki et al., 2010). In articular cartilage of
OA patients, the extracellular matrix is actively remodeled under
inflammatory conditions, altering the local biomechanical
properties of chondrocytes and accelerating the course of OA,
attesting that MiR-146a has a significant function in OA
inflammatory induction (Yamasaki et al., 2009). Other
previously unmentioned miRNAs associated with ECM
degradation include miR-137, miR-449, miR221, miR-30a, miR-
19b-3p, miR-634, miR-29, miR-107, miR-497-5p, miR-26a, miR-
101 (Akbari Dilmaghnai et al., 2021). Certain miRNAs, such as
miR-378 in synovial fluids and let-7e in blood, might change their
expression level as the disease progresses (Beyer et al., 2015; Li et al.,
2016). The intra-articular injection of certain microRNAs has the
ability to reverse disease progression, which will revolutionize the
treatment of osteoarthritis.

lncRNA and OA
Unlike microRNAs that rely mostly on RNA sequence
complementary pairing to suppress target genes, lncRNAs
operate in a significantly more sophisticated manner. lncRNAs
have a unique role in a variety of gene expression regulation
mechanisms, including epigenetic regulation, transcriptional
regulation, and post-transcriptional regulation (Hoolwerff
et al., 2020; Wang Z. et al., 2021; Statello et al., 2021).

Current research has revealed the way of axial regulation of the
highly expressed lncRNA in OA tissue to the appropriate miRNA,
which subsequently influences the OA target genes. HOTTIP, for
instance, was engaged in the proliferation and death of OA
chondrocytes via the miR-663a/FRK axis (He et al., 2021).
Other lncRNA and miRNA interaction modes are more
unique. Through spatial conformation, the secondary structure
created by lncRNA can exert a sponge-like adsorption effect on
miRNA, alter the actual contact concentration of miRNA, and the
production of inflammatory genes or transcription factors in OA

tissue (Chen et al., 2020a; Liu et al., 2020a; Zhang Y. et al., 2020;
Zhou et al., 2021; Fan et al., 2021; Jiang et al., 2021).

COMBINATION OF EPIGENETIC FACTORS

In the pathological process of osteoarthritis, amultitude of epigenetic
variables may influence the expression of OA-related genes. For
instance, during articular chondrocyte death, DNMT3b facilitated
the downregulation of miR-29 by increasing its promoter
methylation. This, in turn, led to the overexpression of PTHLH, a
process strikingly similar to that observed in tumor disorders (Dou
et al., 2020). Numerous studies have identified a connection between
HDACs and miRNA cooperation patterns of OA, including
HDAC3, HDAC4, HDAC7, and HDAC8 (Chen et al., 2016b;
Chen et al., 2016a; Mao et al., 2018; Meng et al., 2018; Zhang
et al., 2019). For instance, miRNA-381 targets the 3′UTR ofHDAC4,
which in turn leads to increase in acetylation of H3, RUNX2 and
MMP13, and ultimately result in chondrocyte hypertrophy (Chen
et al., 2016a). In Table 2, a selection of the reasonably well-studied
regulatory mechanisms of these models is listed.

CONCLUSION

As a form of non-coding genetic information, epigenetics plays
distinct regulatory roles in disease onset and progression. Epigenetics
has made great strides in oncology research, and drugs targeting
DNA methylation and histone deacetylases have also emerged.
Numerous studies in the field of OA research have demonstrated
that epigenetics regulations produce interconnected and dynamic
disease progression changes. OA-related signaling pathways,
transcription factors, inflammatory factors, extracellular matrix
(ECM) proteins, and other variables traditionally associated with
OA are all sensitive to epigenetic control to varying degrees. The
combination of these genetic and epigenetic variables provides more
insight into the pathophysiology of osteoarthritis. Epigenetic control
can link a range of genetic and environmental factors, which could
provide a holistic understanding of the etiology of osteoarthritis
(OA) and guide treatment.

At present, the epigenetics of osteoarthritis focuses primarily on
chondrocytes, with only two published works addressing the
epigenetic manifestations of subchondral bone (Jeffries et al.,
2016; Zhang et al., 2016). Zhang Y et al. discovered that not only
did the subchondral bone share 111 differential methylated probes
(DMPs) and 41 differential methylated genes (DMGs) with
chondrocytes, but they also proposed a novel hypothesis that the
subchondral compartment epigenetic changes take precedence over
cartilage in the development of osteoarthritis by comparing the tibia
zoning analysis (Zhang et al., 2016). Due to the differential
expression of epigenetics in various tissues, subchondral bone,
synovium, ligaments, and other joint tissues besides chondrocytes
may contradict experimental results.

For future approaches to epigenetics in the realm of
osteoarthritis, it would be prudent to investigate refined single-
cell research. In cartilage tissue isolated from OA samples with
variable degrees of injury and degeneration, there exist
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chondrocytes, macrophages, fibroblasts, and numerous other types
of tissue. This heterogeneity can compromise the accuracy of
current knowledge of gene function and epigenetic regulation.
In the case of osteoarthritic cartilage, single-cell investigations
provide more precise subtyping of diseased tissues. Embryonic
cell research has demonstrated the validity of single-cell
methylation investigations (Lorthongpanich et al., 2013). Using
EpiTOF, histone modification investigations on a single cell are
now also feasible. Adopting lanthanide metal isotopes labeled
antibodies and mass spectrometry, this method allows
epigenetic landscape profiling at single-cell precision (Cheung
et al., 2018). In the future, these techniques could be deployed
in osteoarthritis research, and this refinement will bring a fresh
viewpoint to the field of osteoarthritis research. Large samples and
extensive genetic and epigenetic analysis, along with prospective
studies of pertinent patient histories and imaging presentations,
will eventually provide solid evidence to guide the tertiary
prevention and individualized and precise therapy of osteoarthritis.
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