
DETexT: An SNV detection
enhancement for low read depth
by integrating mutational
signatures into TextCNN

Tian Zheng1,2*
1Department of Computer Science and Technology, School of Electronic and Information
Engineering, Xi’an Jiaotong University, Xi’an, China, 2Institute of Data Science and Information Quality,
Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an,
China

Detecting SNV at very low read depths helps to reduce sequencing

requirements, lowers sequencing costs, and aids in the early screening,

diagnosis, and treatment of cancer. However, the accuracy of SNV detection

is significantly reduced at read depths below ×34 due to the lack of a sufficient

number of read pairs to help filter out false positives. Many recent studies have

revealed the potential of mutational signature (MS) in detecting true SNV,

understanding the mutational processes that lead to the development of

human cancers, and analyzing the endogenous and exogenous causes.

Here, we present DETexT, an SNV detection method better suited to low

read depths, which classifies false positive variants by combining MS with

deep learning algorithms to mine correlation information around bases in

individual reads without relying on the support of duplicate read pairs. We

have validated the effectiveness of DETexT on simulated and real datasets and

conducted comparative experiments. The source code has been uploaded to

https://github.com/TrinaZ/extra-lowRD for academic use only.
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1 Introduction

Mutation detection is important for the accurate diagnosis and personalized

therapeutics of cancer (Fanfani et al., 2021). Somatic mutations are caused by

exogenous and endogenous mutational processes that operate during the cell lineage

between the fertilized eggs and the cancer cells. Each mutational process may involve
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components of DNA damage or modification, DNA repair, and

DNA replication (which may be normal or abnormal) and

potentially include base substitutions, small insertions and

deletions (indels), genome rearrangements, and chromosome

copy number changes (Stratton et al., 2009). Of all mutation

types, single nucleotide variants (SNVs) have high genetic

stability, which helps to determine the relationship between

genetic polymorphism and disease, explain the susceptibility

to phenotypic differences between individuals, and have

important implications for disease diagnosis, individualized

treatment, and prognosis (Xu et al., 2012; Cashman et al., 2020).

Accurate detection of SNVs with low read depths is of great

significance and helps in early cancer screening, diagnosis, and

treatment (Kothen et al., 2018). Read depth is the ratio of the total

number of bases to the size of the genome (Sims et al., 2014).

Most SNV detection methods rely on high sequence read depth

and false-positive results appear to increase with the decrease of

sequencing depth (Xiao et al., 2021). Although advances in

sequencing technologies have reduced the cost of high read

depth, the effective depth remains low in the case of prenatal

fetal detection (Alba et al., 2012), low purity tumors (Wilkerson

et al., 2014), and subclonal structures (Al-Katib et al., 2020). For

example, liquid biopsies that identify cancer mutations through

blood material have been proposed as a transformative

technology for early cancer screening and residual disease

monitoring (Kleftogianniss et al., 2020). However, the

proportion of ctDNA (cell-free tumor DNA) in the overall

blood DNA is relatively low, particularly in situations of low

disease burden, such as early cancer detection, and residual

disease surveillance after therapeutic intervention ( Underhill.,

2021).

The solution to this problem is not unambiguous.

Existing methods, such as MuTect, have a sensitivity that

drops below 0.1 at 5% variant allelic frequency (VAF)

and ×10 read depth (Steven et al., 2018). The possible

causes are analyzed in this study and listed as follows. 1)

Existing methods mainly calculate reads mapped to the same

allele as a set of extracted features to locate mutations (Fang

et al., 2015). Their performance is limited in challenging

situations such as low-complexity regions and low tumor

purity (Steven et al., 2018; Esteva et al., 2019; Zheng et al.,

2021). 2) Existing methods align each read pair to a haplotype

to obtain a likelihood matrix based on the pairwise HMM

algorithm and then use a Bayesian somatic likelihood model

to obtain the log ratio of somatic mutation to sequencing

error (Cibulskis et al., 2013). Mutations supported by low

read depths are indistinguishable in the values of these

models. The existing methods cannot support single reads

and require many hard filters to filter mutation candidates

(Sahraeian et al., 2019). Furthermore, existing deep learning-

based methods treat the sequence reads as images for variant

detection and encode bases by one-hot encoding (Poplin

et al., 2018; Luo et al., 2019; Sahraeian et al., 2019).

However, 1) this encoding method only extracts the

information of the base itself in the convolution operation

and does not notice the differences between the variant sites

and other bases and 2) mutation identification using only

two-dimensional information may take up less resource.

Recent studies have highlighted the potential of mutational

signatures (MSs) for the accurate detection of SNVs (Lawrence

et al., 2013; Alexandrov et al., 2020). Somatic mutations in the

cancer genome are caused by multiple mutational processes, each

producing features calledMSs. Over the last few years, large-scale

analyses have revealed many MSs in human cancer types. The

Pan-Cancer Analysis of Whole Genomes (PCAWG) Network

have analyzed data from over 23,000 samples (Tarabichi et al.,

2021), showing that SNV tri-nucleotide structures have unique

distribution characteristics. The observed MSs suggest that the

occurrence of SNV is not an equiprobable event and may help to

reveal the true probability of positive SNV, which provides a

promising potential approach for SNV detection at low read

depths.

FIGURE 1
Workflow of DETexT. The workflow of DETexT can be divided into two parts: data pre-processing and network structure. 1) Data pre-
processing includes different base detection, mutational signature encoding, and tensor encoding. 2) The network structure consists of three
convolution filters, each followed by a ReLU layer. The mutational signature probabilities are applied before the Softmax layer. The output is the true
SNV after the false positive filter.
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Inspired by these, this study presents DETexT, an SNV

detection enhancement model that works at very low read

depths by integrating MS and the deep semantic learning

model Text Convolution Neural Network (TextCNN).

DETexT uses a training scheme that not only detects true

mutations with high sensitivity but also rejects candidate

mutations caused by systematic sequencing artifacts. It

integrates MS to maximize the extraction of features carried

by individual reads and reflects the cumulative effects of

exogenous and endogenous mutational processes acting on

cancer cells. Specifically, DETexT can be divided into three

parts: 1) Read coding. It proposes a differential encoding

algorithm that translates the difference information between

reads and the reference genome into an input matrix for a

deep learning model instead of a one-hot encoder. 2)

TextCNN learning and training. 3) Integration of MS as prior

probabilities. We conducted several experiments on simulated

data and a dataset of esophageal cancer (ESCC) SNVs. The

results show that DETexT can filter out the false-positive

variant candidates at very low read depths, which may

provide support for liquid biopsy technology for cancer.

2 Materials and methods

2.1 Overview of DETexT

The input to the proposed method is a sequence alignment

map (SAM) file, the built-in reference is the human genome 19

(hg19), and the output is a variant calling format (VCF). The

specific pipeline of the proposed method is shown in Figures 1, 2

and can be divided into three parts: 1) encoding of the read-pair

difference representation, 2) learning and training of the

TextCNN, and 3) integration of the MS as prior probabilities.

FIGURE 2
Method diagram. (A)Diagrammatic representation of the base difference. Bases A/T/C/G are converted to 1/2/4/8 codes and for each read, and
the difference between it and the corresponding position of the built-in reference is calculated. The mutational signature is encoded by tri-
nucleotide structure, for example, if a position is A→ T, the corresponding position is encoded as 1–2 = −1. (B)Representation of the tri-nucleotide
structure of the mutational signature. The mutational signature is encoded by tri-nucleotide structure; if a position has T (A→T) T, the
corresponding position is encoded as (2, −1, 2). (C) Schematic representation of the entire pipeline. The network structure consists of three
convolution filters, each followed by a ReLU layer. The mutational signature probabilities are concatenated before the Softmax layer. The output is
the true SNV with false positives filtered. (D) There are 96 possible mutations as we incorporated six classes of base substitution: C > A, C > G, C > T,
T > A, T > C, and T > G (referred by a pyramiding of mutated Watson–Crick base pair) and base information for the 5′ and 3′ bases immediately
adjacent to eachmutated base. (E)DETexT converts the reads of the variance representation (C) into the embedding_size dimension (E) through the
embedding operation of the tensor.
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2.2 Difference detection and tensor
encoding

DETexT devised the coding principle for the difference

representation of sequencing data, as shown in Figure 2A. The

read bases A/T/C/G are converted to 1/2/4/8, and the difference

between each read base and the corresponding position of the

built-in reference is calculated by numerical subtraction. For

example, if a position has A → T, the corresponding position

code is 1–2 = −1. One-hot CNNs may not be suitable for

classification when one has a small to medium-sized training

dataset, possibly due to sparsity: the reads of NGS are perhaps

too brief to provide sufficient information for such high

dimensional encoding (Zhang and Wallace., 2015). Compared

to the one-hot coding algorithm used in existing methods, the

replaced bases (−1, −2, −4, ±3, ±6...) may differ from the

representation of ATCG bases (1/2/4/8), which retains the

information before and after the base substitution. In addition,

the information of one of the original bases around the variable

point is also retained [i.e., encoding T (A→T) T as ( 2, −1, 2)], as

shown in Figure 2B.

The user is supported to set the vector dimension

manually according to the length of the input reads, with a

default value of 100 (bps). DETexT converts the reads of

difference representation (Figure 2C) into the

embedding_size dimension (Figure 2E) by the embedding

operation of the tensor. Here, the number of the embedding is

20 and the embedding size is 5.

2.3 Model selection and architecture

SNV detection on a single read is essentially a binary

classification problem, that is, whether the difference between

a read and the reference is a genuine mutation or an error that

needs to be screened. Compare to traditional neural networks

such as MLP, convolutional neural network has the

characteristic of sparse interactions, parameter sharing,

and equivariant representations. TextCNN (Sahraeian

et al., 2019) is a successful application of image CNN

networks on text data with a simple network structure,

small number of parameters, low computational effort, and

fast training. It can automatically combine and filter N-gram

features to obtain semantic information at different levels of

abstraction. These make it suitable for processing the

sequence data. On a single-card v100 machine, it can train

1.65 million data, iterate 260,000 steps, and converge in

about half an hour. Inspired by these, DETexT

has proposed an attempt to detect SNV with the TextCNN

model.

TABLE 1 Baseline configuration.

Description Values

Filter region size (2, 3, 4)

Feature maps 100

Activation function ReLU

Pooling 1-max pooling

Dropout rate 0.5

l2 norm constraint 3

FIGURE 3
Visualization of the corresponding convolution calculation steps.
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2.3.1 Implementation details
The specific structure and parameters of DETexT are

shown in Figure 2E; Table 1, and described below. The

input of the TextCNN is the embedding layer computed in

Section 2.2. We start with tokenized mutation candidate

reads, which are then transformed into a vector

representation of each token. The model architecture is a

slight variant of the TextCNN architecture (Zhang and

Wallace. 2015). The convolution layer here is one-

dimensional. DETexT depicts three filter region sizes,

namely, 2, 3, and 4, with one filter size of 100 and a step

size of 1. Each filter has two output channels. DETexT uses

rectified linear unit (ReLU) as the activation function and sets

the pooling operation to 1-max pooling. The dropout rate is

0.5 and the l2 norm constraint is 3. The Softmax activation

function is used to calculate the probability of each category

(true variant or false positive).

2.3.2 Feature extraction
We describe here the process of feature extraction.

Suppose there is a filter parameterized by a weight matrix

w with region size h, then w will contain h·d parameters to be

estimated. DETexT uses filters with widths equal to the read

vectors dimension (d = 100) and simply varies the ‘height’ of

the filter as the region size of the filter. Furthermore, since the

embedding size is 5, we set the three region sizes (h) to (2, 3,

4), as shown in Figure 3.

We use A ∈ R 5×100 to denote the input matrix, and A[i : j]
denotes the submatrix of A from the ith to jth rows. The output

sequence o ∈ R 5−h+1 of the convolution operator is obtained by

repeatedly applying the filter to the sub-matrices of A:

oi � w · A[i: i + h − 1], i � 1, . . ., 5 − h + 1, (1)

where·is the dot product (sum of multiplication of elements)

between the submatrix and the filter. We add a bias term b ∈ R

and an activation function f to each oi, including the feature map

c ∈ R 5−h+1 for this filter:

ci � f(oi + b). (2)

The feature map can be presented as follows:

c � [c1, c2, . . . , c5−h+1]. (3)

We then apply a max-overtime pooling operation over the

feature map and use the maximum valueĉ � max {c} as the

feature corresponding to this particular filter. The idea is to

capture the most important feature—one with the highest

value—for each feature map. 1-max pooling is uniformly

better than other pooling strategies (Zhang and Wallace.

2015).

2.3.3 Regularization
These features form the penultimate layer and are passed to a

fully connected softmax layer whose output is the probability

FIGURE 4
Statistical analysis of the MS. From the results of probability statistics, A (C > G) G has the lowest probability of occurrence among the
96 classifications at 0.005275 while T (C > T) A has the highest at 0.41994, a difference of 79.6 times.
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distribution of the labels. For regularization, DETexT employs

dropout in the penultimate layer to constrain the l2 norms of the

weight vectors (Hinton et al., 2012). The dropout method

prevents the hidden units from co-adaptation through

random rejection, that is, a certain proportion of hidden units

are set to zero during forward backpropagration. That is, given

the penultimate layer z � [ĉ1, . . . , ĉ3] (note that here we have

three filters), for the output unit y in the forward propagation,

dropout uses

y � w · (z+r) + b, (4)

where + is the element-wise multiplication operator, and r ∈ R3is

a ‘masked’ vector of Bernoulli random variables with a

probability p of being 1. The gradients are backpropagated

only through the unmasked units. At test time, the learned

weight vectors are scaled by p such that ŵ � pw, and ŵis

used (without dropout) to score the unseen mutation

candidate. We also constrain l2 norms of the weight vector by

rescalingw so that after the gradient descent step, we have ||w||2 =

s whenever ||w||2 > s (Yoon., 2014). We set the dropout rate (p) to

0.5 and the l2 norm constraint (s) to 3 based on the sensitivity

analysis, as shown in Section 3.3.2.

2.4 Integration of mutational signatures

A third innovation of DETexT is the integration of

mutational signatures (MSs), which are mutations types

shared between patients or in local sequence environments

that can reveal information about the somatic mutational

process such as slight infidelity inherent in the DNA

replication machinery, exposures to exogenous or endogenous

mutagens, enzymatic modification, exposures to DNA repair

defects or abnormalities maintenance (Lawrence et al., 2013;

Alexandrov et al., 2020). MS have been tentatively identified by

analyzing 4,938,362 somatic substitutions and small insertions/

deletions (InDels) from the mutational catalogs of 7,042 primary

cancers of 30 different classes (507 from whole genome and

6,535 from exome sequences) with the nonnegative matrix

factorization (NMF) algorithm (Alexandrov et al., 2013).

There are 96 possible mutations as we incorporated six

classes of base substitution: C > A, C > G, C > T, T > A, T >
C, and T > G (referred to by the pyramiding of the mutated

Watson–Crick base pair) as well as information on the 5′ and 3′
bases immediately adjacent to each mutated base, as shown in

Figure 2D) (Alexandrov et al., 2013). The 96 substitution

FIGURE 5
Example of receiver operating characteristics. The light blue curve in the figure indicates the results of the experiment when 10% of the dataset
samples are used as the training set and 90% as the test set, light yellow indicates 20% of the dataset is used for training and 80% for testing, light
green indicates 30% of the dataset is used for training and 70% for testing, light red indicates 40% for training and 60% for testing, light purple
indicates 50% as the training set and 50% as the testing set, brown indicates 60% as the training set and 40% as the testing set, and dark blue
indicates 70% of the data as the training set and 30% as the testing set. The curve highlighted in dark purple indicates the average value, and the gray
area indicates the value space of the seven results.
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classifications are particularly useful for distinguishing MS that

give rise to the same substitution but in different sequence

contexts. Mutational processes from different etiologies are

active during cancer development and can be identified by MS

due to their uniquemutational pattern and specific activity on the

genome. The results reveal the diversity of mutational processes

during the development of cancer and have potential

implications for understanding cancer etiology (Tianyuan Liu

et al., 2022), prevention (Aaron Chevalier et al., 2021), and

therapy (Drews et al., 2022).

The Catalogue Of Somatic Mutations In Cancer

(COSMIC) database is the world’s largest and most

comprehensive resource for exploring the impact of

somatic mutations on human cancer. Extensive statistical

analyses have shown that variable tri-nucleotide structures

have distributional characteristics and that the probability of

occurrence of sharp base substitution is not an equal

probability event (Helleday et al., 2014; Roberts and

Gordenin, 2014). The incidence of somatic mutations

varies widely between and within cancer categories, from

about 0.001 per megabase (Mb) to over 400 per Mb. Certain

childhood cancers [Pilocytic astrocytoma (~0.001),

medulloblastoma (~0.01), and kidney chromophobe (~0.1)]

have the fewest mutations, whereas cancers associated with

chronic mutagenic exposures such as lung (tobacco smoking,

~100) and malignant melanoma (exposure to ultraviolet

light, ~400) exhibited the highest prevalence (Alexandrov

et al., 2013). This variation in mutation prevalence can be

attributable to differences in cell lineage duration between the

fertilized egg and the cancer cell being sequenced and/or

differences in somatic mutation rates during all or part of that

cell lineage (Stratton et al., 2009). From the results of the

probability statistics, the probability of occurrence of A (C >
G) G was 0.005275, the lowest of the 96 classifications,

whereas T (C > T) A was the highest at 0.41994, a 79.6-

fold difference, as shown in Figure 4. In conclusion,

mutational signatures are summaries of mutation

occurrence rules extracted from large-scale cancer data,

and it is necessary to judge variants with mutational

signatures suggesting high probability among candidate

mutations as true mutations, rather than false positives.

DETexT downloaded the mutation signature probability

from the COSMIC, traversed the probability value of the

96 classifications, and integrated the maximum occurrence

probability of each mutational signature as prior knowledge

into the deep learning framework to help filter mutation false

positives, as shown in Figure 2C. DETexT matches the

candidate mutation to 96 types and obtains the probability

values from the COSMIC. We took the prior value of the

maximum occurrence probability, added it to the convolution

kernel processing result, extended the convolution kernel

result to one dimension, and put them into a Softmax

layer for training to help obtain the classification

probability values. Section 3 presents the experimental

TABLE 2 Detection performance on simulated datasets.

Datasets Accuracy Recall F1-score Precision

1 0.8000 0.7700 0.7942 0.8200

2 0.8950 0.8900 0.8945 0.8990

3 0.8350 0.9300 0.8493 0.7815

4 0.8700 0.9000 0.8738 0.8491

5 0.8700 0.9000 0.8738 0.8491

6 0.8300 0.7900 0.8229 0.8587

7 0.7950 0.7700 0.7897 0.8105

8 0.8300 0.7900 0.8229 0.8587

9 0.8483 0.8100 0.8423 0.8773

10 0.8717 0.8367 0.8670 0.8996

TABLE 3 Comparison result with MuTect, freebayes, and SiNVICT.

Accuracy

Dataset DeTexT TextCNN without MS MuTect Freebayes SiNVICT

1 0.80 0.51 0.34 0.43 0.29

2 0.895 0.52 0.32 0.44 0.33

3 0.835 0.45 0.40 0.43 0.42

4 0.87 0.56 0.33 0.42 0.44

5 0.87 0.52 0.31 0.43 0.42

6 0.83 0.54 0.33 0.34 0.32

7 0.795 0.49 0.29 0.32 0.29

8 0.83 0.45 0.33 0.34 0.36

9 0.848 0.51 0.29 0.33 0.25

10 0.872 0.49 0.31 0.41 0.33

The best results are highlighted in boldface.
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results demonstrating that the design can greatly improve the

accuracy of mutation detection. When there is no

agglomeration effect of read pairs at very low read depth,

this method can maximize the retention of essential

information about candidate mutation and filter out the

false positives. Furthermore, during the integration of

mutational signatures, we tested the difference between

adding the probability directly and multiplying by a

coefficient, considering the numerical difference between

the probability value and convolution kernel results, and

determined the coefficient to seven based on experimental

verification, as shown in Section 3.3.1.

3 Experiments and results

We conducted a series of experiments on several simulated

and real datasets covering esophageal cancer (ESCC) and

benchmark datasets to validate the performance of DETexT.

How we obtained the data and performance is described in detail

in each section. In Section 3.1, we describe the datasets and

conduct experiments on test and training datasets of different

sizes. In Section 3.2, we test the performance of DETexT on

10 simulated datasets and compare it with existing advanced

detection software and algorithms. In Section 3.3, we test the

performance of the DETexT on ESCC real datasets. In Section

3.3.1, we evaluate the effect of integratingMS. In Section 3.3.2, we

perform a sensitivity analysis on regularization. In Section 3.3.3,

we evaluate the capability of DETexT in different specific

chromosomes and add experiments to compare the proposed

method with several classical machine learning algorithms.

3.1 Experiments on test and training sets of
different sizes

To validate the performance of DETexT against an explicit

evaluation benchmark, we tested it on a simulated dataset. The

simulated data were obtained from the Genome in a Bottle (GIAB)

published authentic structural variant marker dataset, a NIST-

hosted consortium dedicated to the authoritative characterization

of benchmark human genomes, which currently has characterized

a pilot genome from the HapMap project (NA12878/HG001) and

two son/father/mother trios of Ashkenazi Jewish and Han Chinese

ancestry from the Personal Genome Project (Zook et al., 2020).

Highly reliable variant annotation files are available from official

public data sources and are widely used for the evaluation or

testing of variant detections (Poplin et al., 2018; Cameron et al.,

2019). We downloaded the candidate variant results for

HG002 and its families HG003 (father) and HG004 (mother)

as a source for the simulation training dataset. The sample

NA12878 (HG001) of the descendants of the CEU trio was

downloaded for inference. To construct the training sample

dataset, we randomly selected 10,000 sample data from each

category (both true variants and false positives) of each original

dataset and obtained labels for true positives and false positives by

comparing with the original VCFs to form a subset of

20,000 sample data with labels.

We conducted experiments on different proportions of the

training and test set. We used scikit-learn’s StratifiedKFold

function to slice the training and test set (n-fold cross-

validation), and the results are shown in Figure 5. The light blue

curve in the figure indicates the experimental results when 10% of

the samples of the dataset are used as the training set and 90% as the

FIGURE 6
Detection performance at different low read depths. The experimental results of DETexT were compared with those of textCNN without MS,
MuTect, freebayes, and SiNVICT on datasets with read depths of 1–8×.
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test set, light yellow indicates that 20% of the dataset is used for

training and 80% for testing, and light green indicates 30% of the

dataset is used for training and 70% for testing. Light red indicates

40% for training and 60% for testing, light purple indicates 50% as

the training set and 50% as the testing set, brown indicates 60% as

the training set and 40% as the testing set, and dark blue indicates

70% of the data as the training set and 30% as the testing set. The

curve highlighted in dark purple indicates the average value, and the

gray area indicates the value space of the seven results. It can be seen

that the AUC gradually increases as the proportion of the training

set increases.

3.2 Comparative experiments on
simulated data

To simulate data with low read depths, we extract read pairs

from the same read pairs in the BAM file to simulate different

coverage rates. Based on the position information, one read pair

matching the same position is extracted to simulate a ×1 read depth,

two to simulate ×2 read depth, and so forth. Once the new BAM/

SAM file was obtained, the variant identification was then re-run,

and those with the same mark as the real variant are true positives

and those with different marks are false positives. We simulated

sequencing samples with ×1 read depth and extracted

20,000 candidate mutations each time to form the test data, and

a total of eleven simulations were performed to obtain 1 training

dataset and 10 test datasets. The reference genome here is the human

genome 19. We use classical data sampling methods to balance

positive and negative categories: under-sampling a large amount of

data in a category (classical easensemble) and over-sampling a small

amount of data in a category (classical SMOTE). For each simulated

dataset, the positive and negative categories are balanced. We chose

accuracy, recall, precision, and F1-score as evaluation criteria. The

experimental results for the 10 datasets are shown in Table 2.

We compared DETexT with the well-established and

popular SNV detection algorithms MuTect (Cibulskis

et al., 2013), freebayes (Garrison and Marth, 2012), and

SiNVICT (Kockan et al., 2017). MuTect is a reliable and

accurate identification of somatic point mutations in NGS

data and is known for sensitive detection in impure and

heterogeneous cancer samples. Freebayes is a Bayesian

genetic variant detector designed to look for small

polymorphisms, especially SNPs, indels, MNPs (multi-

nucleotide polymorphisms), and complex events

(composite insertion and substitution events) with lengths

smaller than short-read sequencing alignments. SiNVICT is

an ultrasensitive detection of single nucleotide variants and

indels in circulating tumor DNA, with advanced and

promising applications. The comparison results on 10 test

TABLE 4 Experiments of MS and normalization.

(A) Experiment of coefficient selection

Coefficient 0 1 2 3 4 5 6 7 8 9 10

Iters 2050 1,450 1,400 1,100 2,500 2,500 2,450 1850 300 2,500 1850

AUC 0.9972 0.9988 0.9979 0.9986 0.9950 0.9972 0.9992 0.9994 0.9958 0.9966 0.9916

ACC 0.8755 0.8740 0.8522 0.8688 0.8700 0.8744 0.8820 0.8897 0.8845 0.8650 0.8840

(B) Experiment of ESCC’s MS integration

Iters 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

AUC 0.9255 0.9533 0.9750 0.9577 0.9655 0.9750 0.9776 0.9588 0.9800 0.9827 0.9730

ACC 0.8400 0.8680 0.8400 0.8551 0.8727 0.8791 0.8550 0.8566 0.8544 0.8550 0.8554

(C) Experiment of dropout rate

Dropout rate none 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AUC 0.9862 0.9884 0.9906 0.9928 0.9950 0.9972 0.9994 0.9983 0.9972 0.9961 0.9862

ACC 0.7979 0.8132 0.8285 0.8438 0.8591 0.8744 0.8897 0.8797 0.8697 0.8597 0.7979

(D) Experiment of l2 norm

S 1 2 3 4 5 6 7 10 15 20 30

AUC 0.9972 0.9933 0.9994 0.9977 0.9935 0.9910 0.9884 0.9859 0.9834 0.9808 0.9972

ACC 0.8703 0.8800 0.8897 0.8851 0.8805 0.8822 0.8797 0.8782 0.8767 0.8753 0.8703

The best results are highlighted in boldface.
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datasets are shown in Table 3. The results show that similar

methods perform poorly at very low read depths, whereas

DETexT achieved over 80% accuracy.

3.3 Experiments on the esophageal cancer
datasets

We applied DETexT to SNV detection of esophageal

cancer (ESCC), the seventh most common and sixth

deadliest cancer in the world. The largest ESCC project

sequenced 508 ESCC samples by whole-genome

sequencing, with an average sequencing depth of ×98 for

tumors and ×44 for normal tissues. The 7,630,294 SNVs

and indels associated with ESCC cancer species were

accurately identified (Cui et al., 2020). We selected the final

results published by the project, implanting all

7,454,579 SNVs into the corresponding positions in the

reference genome (hg19). We used the NGS simulator

GSDcreator (Wang et al., 2019) to simulate the sequence

FIGURE 7
MSprobability of ESCC in COSMIC. MS statistics specific to ESCC and comparisonwith the COSMIC schematic. ESCChas fourMSs, COSMICMS
1, 2, 6, and 17, accounting for the probability statistics of the 96 tri-nucleotide structure results of MS 1, 2, 6, and 17, as shown in the pie. Cosmic_max
indicates the maximum value of the cosmic library records corresponding to the 96 tri-nucleotide results.

FIGURE 8
Loss and learning curve. The small graph on the left shows the loss curve, the blue curve (loss_t) indicates the loss of the training set, and the red
curve (loss_v) indicates the loss of the test set. The small graph on the right shows the learning curve, the red curve (ACC on training set) indicating
the ACC of the training set, and the blue curve (ACC on test set) indicates the ACC of the test set.
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data, which included simulated sequencing errors,

amplification bias, unique molecule indices, adapter

artifact, quality score distribution, GC content, population

polymorphisms, sequencing depth distribution, and insert-

size distribution. We simulated paired-end sequencing with

100-bps sequencing read length. We set the sequencing error

rate to 0.001, the amplification error rate to 3.0, the template

length to (0, 600), and normal bases varying in (33, 36). The

sequencing error base was in the interval (7, 19).

We generated sequencing sample data by seeding the

ESCC SNPs into the hg19 reference genome using read pair

generation software to simulate sequencing depths of 1–8×.

We used DETexT for SNP variant detection discrimination

and the candidate variants obtained by the string position

matching algorithm constitute the test set in this section.

Corresponding to a sequencing read pair depth of 1–8×,

20,000 candidates were selected for each sample to form a

total of 8 test sets, and another dataset with 20,000 data was

extracted from 5× samples as the training set. In addition, we

added a comparison with a textCNN model that does not

integrate mutation signatures. The results show that DETexT

can accurately detect the SNV as shown in Figure 6, with a

10 percentage points improvement in accuracy compared to

the other four methods.

3.3.1 Experiments of mutational signatures
As previously described, the proposed method selects the

maximum probability of occurrence in COSMICMS multiplied

by a fixed coefficient and adds it to the previous layer before

Softmax to assist in discriminative classification. A total of two

sets of experiments were performed to test the effect of

mutation signatures. The first experiment was a sensitivity

experiment on the coefficients, and the second compared the

proposed method with the integration of only the MS

probabilities of individual cancers. Here, the training set is

the 5× training set presented in Section 3.3, and the test set is a

concatenated set of the 1–8× ESCC sample datasets in Section

3.3 (keeping all candidates appearing in the 8 datasets and

removing duplicate terms).

The first experiment was a sensitivity experiment of the

coefficients. There is a difference in numerical dimensional

between the features extracted by the deep network and MS

probability, so we added parameters and used the results of

multiplying the parameters with the MS probabilities to

incorporate the feature results. We conducted parameter

comparison experiments and recorded the results of

parameter variation in the interval (0,10), as shown in

Table 4A. Experiment 1 focused on the incorporation of the

multiplied parameters, and we found that the better performance

FIGURE 9
Experiment on different chromosomes. The effect of mutational signatures on each chromosome. The overall performance of themethod was
good, whereas the effects of mutational signatures on different chromosomes are slightly different.
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was achieved when the coefficient was 7. Iters denotes the

number of iteration in which the model converged.

In addition, we tested the effect of different probability selection

methods on the validity of the model in Experiment 2. The results of

selecting only MSs associated with ESCC for integration were

compared with those of extracting the maximum probability

without differentiating cancer types. Our analysis of the literature

and data yielded MS specifically for ESCC cancer types as COSMIC

MS 1, 2, 6, and 17, with percentages of 48%, 11%, 14%, and 27%,

respectively, as shown in the pie chart in Figure 6 (Alexandrov et al.,

2013). The ESCC project also showed that 11 MSs (S1–S11) were

identified in the 508WGS cohort, and nine signatures corresponded

to mutation signatures in the COSMIC database. S1 and S2 have

related to APOBEC (apolipoprotein B mRNA editing enzyme,

catalytic polypeptide-like) activity, S3 with DNA mismatch repair

deficiency (dMMR), S4 with age, S8 with aristolochic acid, S9 with

alcoholic consumption, and S11 with homologous recombination

deficiency. S6 was similar to COSMIC signature S17, and recent

studies implicated its association with gastric acid reflux (Cui et al.,

2020). We plotted the probability results for MS1, 2, 6, and

17 against the maximum probability values in cosmic in Figure 7

and compared the results using themaximum probabilities from the

entire cosmic library using themaximumvalues inMS1, 2, 6, and 17,

which are more relevant to ESCC, as shown in Table 4B. The results

show that the differences between the two methods are not

significant for the reasons that can be seen in Figure 7, where

the maximum probability values in MS1, 2, 6, and 17 do not differ

significantly from the COSMIC library, but there is also some

difference in accuracy from the results.

3.3.2 Experiments of regularization
In total, two common regularization strategies for CNNs are

dropout and l2 norm constraints. As mentioned earlier, we set the

dropout rate (p) to 0.5 and the l2 norm constraint (s) to 3 based on

the sensitivity analysis. Here, we describe the experimental details of

the regularization. The “dropout” was applied to the penultimate

layer of inputs. We experimented with dropout rate ranging from

0.0 to 0.9, fixing the l2 norm constraint to 3. The results are shown in

Table 4C. We also report the accuracy achieved when we remove

both dropout and the l2 norm constraint (i.e., when no

regularization is performed), denoted by “None”. In addition, we

considered the effect of imposing the l2 norm on the weight vectors

that parameterize the Softmax function. We recall that the l2 norm

of a weight vector is linearly scaled to a constraint s when it exceeds

this threshold, so a smaller s implies stronger regularization. (Like

dropout, this strategy is applied only to the penultimate layer.) We

show the relative effect of varying s in Table 4D, where we have fixed

the dropout rate to 0.5. From the results, one can see that non-zero

dropout rates can help (though very little) at some points from 0.1 to

0.5. But imposing an l2 norm constraint generally does not improve

performance much. We see that dropout on the convolution layer

helps little, and large dropout rate may hurts performance.

We also plotted the loss curves and the learning curves, as

shown in Figure 8, to demonstrate that our model can converge

quickly without overfitting. The training set is same as the Section

3.3.1, being the ×5 training set introduced in Section 3.3 and the test

set is the concatenated set of 1–8× ESCC sample datasets from

Section 3.3 (retaining all candidates appearing in the eight datasets

and removing duplicate terms). The iters is the number of iterations,

indicating the number of iterations for which the model converges.

The small graph on the left shows the loss curves, with the blue curve

(loss_t) indicating the loss of the training set and the red curve

(loss_v) indicating the loss of the test set. The small graph on the

right shows the learning curve, with the red curve (ACC on training

set) indicating the ACC of the training set and the blue curve (ACC

on test set) indicating the ACC of the test set.

3.3.3 Experiments on different chromosomes
To further explore the effectiveness of the proposed method, we

compared its performance on different chromosomes, as shown in

Figure 9 and Table 5. We randomly selected 20,000 reads from each

chromosome data on the 1–8× dataset described in 3.3 to form

24 test datasets, additionally extracted 20,000 data on chromosome

2 as the training data set, and calculated the performance of the

model on these 24 test sets. In addition, we tested the proposed

TABLE 5 Detection performance on a real dataset and shown in each
chromosome.

Chromosome Accuracy Recall F1-score Precision

1 0.8500 0.8499 0.8499 0.8500

2 0.8470 0.8441 0.8456 0.8470

3 0.8459 0.8420 0.8439 0.8459

4 0.8475 0.8451 0.8463 0.8475

5 0.8470 0.8441 0.8455 0.8470

6 0.8462 0.8425 0.8443 0.8462

7 0.8467 0.8434 0.8451 0.8467

8 0.8474 0.8450 0.8462 0.8474

9 0.8465 0.8430 0.8447 0.8465

10 0.8478 0.8455 0.8466 0.8478

11 0.8453 0.8406 0.8429 0.8453

12 0.8465 0.8431 0.8448 0.8465

13 0.8480 0.8459 0.8469 0.8480

14 0.8463 0.8426 0.8444 0.8463

15 0.8500 0.8500 0.8500 0.8500

16 0.8463 0.8427 0.8445 0.8463

17 0.8443 0.8388 0.8415 0.8443

18 0.8483 0.8465 0.8474 0.8483

19 0.8476 0.8451 0.8463 0.8476

20 0.8436 0.8373 0.8404 0.8436

21 0.8472 0.8443 0.8457 0.8472

22 0.7254 0.8299 0.7654 0.7101

X 0.8470 0.8442 0.8456 0.8470

Y 0.8448 0.8397 0.8423 0.8448
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method with another pooling algorithm and other machine learning

algorithms, including decision trees, gradient boosted decision trees

(GBDT), random forests, and support vector machines (SVM). The

accuracy results are shown in Table 6. The results show thatDETexT

has good overall performance, with slightly different results for

mutation signatures on different chromosomes. On chromosomes 8,

16, and 19, the effect of MS tends to be negative, whereas on the

other chromosomes, positive effects of integrated MS can be seen,

especially on chromosome 22.

4 Discussion and conclusion

This work focuses on SNV detection for low read depths in

NGS data, but can also be used for high depth calls, and performs

comparatively well compared to other advanced methods with a

big emphasis on utilization when looking at low depth WGS.

Compared with existing methods based mainly on extracting

statistical results from correlated features of read pairs, 1) the

proposed differential representation ensures maximum utilization

of base sequence information and differential information on the

one hand and minimizes storage and operation costs on the other.

2) The integration of the mutational signature is enlightening for

distinguishing true SNV from false positives. We have conducted

extensive experiments, and the results show that the proposed

method can accomplish SNV detection at low read depth with low

cost and high efficiency.

Furthermore, although the structure and parameters of the

proposed method are relatively clear, the deep learning model is

still a black box and/or the interpretability of the model is worth

investigating. Our study highlights the importance of using

mutational signatures, and in experiments testing the effect of

MS on different chromosomes, we have noticed that the effects of

MS on different chromosomes was different. We cannot assert

that the effect of the proposed method will not change at all in

other cancer types or new datasets, which suggests that more work

on the model with larger datasets is still worth exploring. We aim

to collect more data to explore the effect ofMS on variant detection

and expand the cancer species data in the future work.
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The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

TABLE 6 Comparison experiment with average_pooling and traditional machine learning algorithms.

Chromosome Baseline DETexT 1Max_pooling Average_pooling Random forest SVM GBDT

1 0.7098 0.8500 0.8029 0.6270 0.5347 0.5962

2 0.7312 0.8470 0.7856 0.6320 0.5150 0.5170

3 0.7526 0.8459 0.7683 0.6370 0.4953 0.4378

4 0.7214 0.8475 0.7510 0.6420 0.4756 0.4183

5 0.7051 0.8470 0.7871 0.6470 0.4559 0.5927

6 0.71826 0.8462 0.7881 0.6520 0.4362 0.4184

7 0.71634 0.8467 0.7891 0.6570 0.4165 0.4662

8 0.71442 0.8474 0.7900 0.5620 0.3968 0.6674

9 0.7125 0.8465 0.7910 0.6670 0.3771 0.5962

10 0.71058 0.8478 0.7920 0.6720 0.3574 0.5170

11 0.713687 0.8453 0.7930 0.6770 0.3377 0.4378

12 0.713921 0.8465 0.7940 0.6820 0.3180 0.4183

13 0.714155 0.8480 0.7950 0.5870 0.2983 0.4370

14 0.71439 0.8463 0.7960 0.6920 0.2786 0.4534

15 0.714624 0.8500 0.7970 0.6970 0.2589 0.5326

16 0.714858 0.8463 0.7980 0.7020 0.5150 0.6038

17 0.715092 0.8443 0.7989 0.7070 0.4953 0.6830

18 0.715327 0.8483 0.7999 0.6370 0.4756 0.7046

19 0.715561 0.8476 0.8009 0.6420 0.4559 0.6674

20 0.715795 0.8436 0.8019 0.6470 0.4362 0.5962

21 0.71603 0.8472 0.8029 0.6520 0.4165 0.5170

22 0.716264 0.7254 0.8039 0.6570 0.3968 0.5134

X 0.716498 0.8470 0.8049 0.6620 0.3771 0.4183

Y 0.716732 0.8448 0.8059 0.6670 0.3574 0.4370
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