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Background: Lung cancer is a complex disease composed of neuroendocrine

(NE) and non-NE tumors. Accurate diagnosis of lung cancer is essential in

guiding therapeutic management. Several transcriptional signatures have been

reported to distinguish between adenocarcinoma (ADC) and squamous cell

carcinoma (SCC) belonging to non-NE tumors. This study aims to identify a

transcriptional panel that could distinguish the histological subtypes of NE

tumors to complement the morphology-based classification of an individual.

Methods: A public dataset with NE subtypes, including 21 small-cell lung cancer

(SCLC), 56 large-cell NE carcinomas (LCNECs), and 24 carcinoids (CARCIs), and

non-NE subtypes, including 85 ADC and 61 SCC, was used as a training set. In

the training set, consensus clustering was first used to filter out the samples

whose expression patterns disagreed with their histological subtypes. Then, a

rank-based method was proposed to develop a panel of transcriptional

signatures for determining the NE subtype for an individual, based on the

within-sample relative gene expression orderings of gene pairs. Twenty-

three public datasets with a total of 3,454 samples, which were derived from

fresh-frozen, formalin-fixed paraffin-embedded, biopsies, and single cells,

were used for validation. Clinical feasibility was tested in 10 SCLC biopsy

specimens collected from cancer hospitals via bronchoscopy.

Results: The NEsubtype-panel was composed of three signatures that could

distinguish NE from non-NE, CARCI from non-CARCI, and SCLC from LCNEC

step by step and ultimately determine the histological subtype for each NE

sample. The three signatures achieved high average concordance rates with

97.31%, 98.11%, and 90.63%, respectively, in the 23 public validation datasets. It
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is worth noting that the 10 clinic-derived SCLC samples diagnosed via

immunohistochemical staining were also accurately predicted by the

NEsubtype-panel. Furthermore, the subtype-specific gene expression

patterns and survival analyses provided evidence for the rationality of the

reclassification by the NEsubtype-panel.

Conclusion: The rank-based NEsubtype-panel could accurately distinguish

lung NE from non-NE tumors and determine NE subtypes even in clinically

challenging samples (such as biopsy). The panel together with our previously

reported signature (KRT5-AGR2) for SCC and ADCwould be an auxiliary test for

the histological diagnosis of lung cancer.

KEYWORDS

relative gene expression orderings, transcriptional signatures, individualization,
histological classification, lung neuroendocrine tumors

1 Introduction

Lung cancer is the most common malignant tumor and one

of the main causes of cancer-related deaths in humans. The most

common histological classification of lung cancer is small-cell

lung cancer (SCLC) and non-small cell lung cancer (NSCLC),

which is based on cell morphology, according to the World

Health Organization (WHO) criteria. In 2015, theWHO updated

this classification by providing a new criterion that classifies lung

cancer into neuroendocrine (NE) and non-NE tumors based on

NEmorphology (Rekhtman, 2010; Travis et al., 2015), to provide

new insights into precision therapy for lung cancer (Yang and

Lin, 2016).

Lung NE tumors account for approximately 25% of all lung

tumors and include SCLC (~20%), large cell neuroendocrine

carcinomas (LCNECs, ~3%), and carcinoids (CARCIs, ~2%)

(Rekhtman, 2022). The treatment strategies for lung NE are

different from those for non-NE and even differ for each NE

subtype. The main treatment for SCLC is combination

chemotherapy, typically with etoposide plus either cisplatin or

carboplatin (Ramirez et al., 2021), while surgery is only

performed on a few early-stage patients; this is different from

the treatment modalities of other NE subtypes and non-NE

patients (Lindeman et al., 2013). Chemotherapy schedule for

LCNEC after surgical resection is typically adopting NSCLC or

SCLC chemotherapy regimens, and this has always been

controversial (Fasano et al., 2015). As per recent studies,

etoposide–cisplatin chemotherapies, that is, “treat as an

SCLC,” are more effective strategies for LCNEC patients

(Fasano et al., 2015; Ramirez et al., 2021). For CARCI

treatment (an NE subtype with low malignancy), the main

therapy is surgical resection (Ramirez et al., 2021). These

discrepancies in tumor biology and in response to drug

treatment highlight the importance of distinguishing lung NE

from non-NE tumors and determining the NE subtypes

accurately.

Microscopic morphological features observed using

hematoxylin–eosin (HE)-stained specimens are the “gold

standard” for elucidating lung cancer histological

classification. NE tumors have some unique morphological

characteristics (organ-like structure, palisade or trabecular

arrangement, and chrysanthemum-shaped cluster structure)

and ultra-microstructures (dense core particles) (Teng et al.,

2016), which can be used to distinguish them from non-NE

tumors. For the NE subtypes, CARCI can be distinguished from

SCLC and LCNEC based on the mitotic phases and necrosis

degree; LCNEC, large cells with abundant cytoplasm and

prominent nucleoli, can be distinguished from SCLC (small

cells with sparse cytoplasm and inconspicuous nucleoli) based

on cell morphological characteristics (Lantuejoul et al., 2020).

However, all these diagnostic criteria have been described from

surgical specimens, which can be difficult to demonstrate on

small biopsy specimens (Hung, 2019), that they account for

approximately 70% of the initial lung cancer diagnoses (Travis

et al., 2013). As a result, a proportion of LCNEC tumors were

recognized as large-cell carcinoma (LCC) on biopsy and cytology

and subsequently misclassified as non-NE.

Therefore, immunohistochemical (IHC) detection of

subtype-specific markers has been proposed for assisting

histological classification. NE markers, such as chromogranin

(CgA), synaptophysin (Syp), and CD56, can be used as auxiliary

diagnostic tools for discriminating NE from non-NE tumors

(Rekhtman, 2022). However, the classification accuracy of NE

markers is limited by their suboptimal sensitivity and specificity

(Teng et al., 2016; Rekhtman, 2022), because approximately

5–10% of NE tumors can be negative for all the above three

NEmarkers (Yatabe et al., 2019). Several studies revealed that the

diagnostic accuracies of the three NE markers (CgA, Syp, and

CD56) were approximately 42, 40, and 88%, respectively (Park

et al., 2003; Zhou et al., 2013). In addition, 10–20% of NSCLC

without morphological features of NE neoplasms, which have

similar cytological features to LCNEC, may also show expression
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of NEmarkers on IHC detection (Lantuejoul et al., 2020), leading

to non-NE patients misdiagnosed as LCNEC.

It is important that even with the auxiliary immunomarkers,

there is still a certain percentage of misclassified cases because of

the subjective diagnoses of HE staining or immunostaining

results made by pathologists using varying pathological

criteria or interpretations, resulting in low reproducibility of

pathological diagnosis between LCNEC and SCLC in

particular (Thunnissen et al., 2017). Two previous studies

have reported that there was a percentage of SCLC and

LCNEC samples for which no consensus diagnosis could be

reached among most pathologists (den Bakker et al., 2010; Ha

et al., 2012). Moreover, some SCLC and LCNEC borderline

subgroups with comparable features make accurate diagnosis

challenging (Thunnissen et al., 2017; Sonkin et al., 2019).

Furthermore, clinical pathological specimens, often derived

from small biopsies, inevitably suffer from mechanical damage

and squeezing, which typically lack a well-preserved morphology

in most cases, rendering morphological and IHC evaluation

difficult (Baine and Rekhtman, 2020).

Therefore, considerable efforts have been devoted to extracting

signatures based on gene expression profiles to stratify the

histological subtypes of lung cancer (Girard et al., 2016).

However, most transcriptional signatures were developed to

distinguish between adenocarcinoma (ADC) and squamous cell

carcinoma (SCC) belonging to non-NE tumors (Girard et al., 2016;

Li et al., 2019), and only a few studies focused on lung NE tumors.

Faruki et al. developed a lung subtyping panel consisting of

57 genes for the diagnosis of ADC, SCC, and NE (Faruki et al.,

2016), while it could not determine the NE subtypes. Guo et al.

constructed a classifier based on transcriptome data to improve the

diagnostic accuracy for LCNEC and SCLC (Guo et al., 2021).

However, most of these reported quantitative transcriptional

signatures lack robustness for clinical applications because of

batch effects (Guan et al., 2018) and quality uncertainties of

clinical samples, such as in formalin-fixed paraffin-embedded

(FFPE) tissues with high RNA degradation and small biopsy

specimens with low-input RNA (Chen et al., 2017; Liu et al.,

2017). In contrast, the “within-sample” relative expression

orderings (REOs) of gene pairs, which are the qualitative

transcriptional characteristics of samples, are highly robust

against experimental batch effects (Zheng et al., 2021; Li et al.,

2022; Wang et al., 2022; Wu et al., 2022), partial RNA degradation

during specimen storage and preparation (Chen et al., 2017), and

low-input RNA specimens (Liu et al., 2017) and can be directly

applied to samples at individualized levels (Qi et al., 2016). Before,

we had developed a robust qualitative signature (KRT5 and AGR2)

for distinguishing SCC andADC (non-SCC) subtypes based on the

REO approach (Li et al., 2019). However, this signature invariably

classifies lung cancer into SCC or ADC (non-SCC) categories;

therefore, it is worthwhile to develop a panel of signatures based on

REOs that can be used in a diagnostic context for all clinically

important histological subtypes of lung cancer.

This study aimed to develop a panel of qualitative signatures

step by step for distinguishing NE from non-NE tumors and

determining NE subtypes individually. In the training dataset,

consensus clustering was performed to exclude dubious samples

whose expression patterns were discordant with their

pathological subtypes and a rank-based method was applied

to construct a panel of qualitative transcriptional signatures

for the NE subtypes. The performance of the signatures was

tested in independent datasets with multiple tissue types, even for

the clinical challenging tissues (biopsies specimens). A tentative

clinical cohort of 10 SCLC samples was collected to test the

clinical feasibility. Gene expression patterns of the specific

immunomarker genes and survival analyses were also

conducted to support the reclassification obtained by the

NEsubtype-panel.

2 Materials and methods

2.1 Public data sources and data
preprocessing

The 22 public gene expression datasets of lung tissues used in

this study were downloaded from the Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) and The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov/). Two

datasets were collected through a literature search of the

NCBI PubMed database (https://pubmed.ncbi.nlm.nih.gov/)

using multiple keywords related to lung NE: “lung cancer”

AND “lung neuroendocrine tumors” AND (“lung carcinoid”

OR “small cell lung cancer” OR “lung large cell

neuroendocrine tumors”) AND (“gene expression profiles” OR

“RNA-seq data”). Datasets needed to fulfill the following criteria:

1) containing at least one NE subtype, or only containing non-NE

subtypes but providing follow-up information; and 2) providing

raw data or processed gene expression profiles with clear

preprocessing and normalized methods. All datasets used in

this study are displayed in Figure 1A, and the details are

shown in Supplementary Table S1 (Supplementary Material).

The training dataset (GSE30219), including pathologically

determined samples of 21 SCLC, 56 LCNEC, 24 CARCI, 85 ADC,

and 61 SCC, was used to investigate the molecular landscape

across lung cancer subtypes; data from 198 patients who had

undergone only curative surgical resection were used for survival

analysis. The dataset was further used as a training set to develop

a panel of qualitative transcriptional signatures.

The qualitative signatures were tested step by step in

18 datasets that had fresh-frozen lung specimens, one dataset

that had FFPE specimens, two datasets that had small biopsy

specimens, two datasets that had mixed tumors with varied

proportions of tumor cells, and one single-cell dataset, and

these included 122 SCLC, 25 LCNEC, 137 CARCI, 6 NE,

2,155 ADC, 1,003 SCC, 4 adenosquamous carcinoma, and
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FIGURE 1
Datasets andmolecular landscape of lung cancer. (A) 25 lung cancer datasets were used in this study. (B) heatmaps of the molecular landscape
of lung cancer subtype in the training (GSE30219) dataset. The clinical heatmap panels show the distributions of clinical parameters, including
histological subtype, tumor stage, age, and sex. The score heatmap panels show the proliferation scores, stemness scores, hypoxia scores, and
immune scores calculated by mRNA expression profiles, based on the published articles (Supplementary Material). The boxplots of four scores
across the lung cancer subtypes are displayed in Supplementary Figure S1. The immune cell heatmap panels show the relative infiltration abundances
of 28 immune cell types quantified by ssGSEA. The immune checkpoint heatmap panels show the mRNA expression levels of three immune
checkpoint genes, which are targets of immunotherapy. The levels of immune cell infiltration and immune checkpoint gene expression were scaled

(Continued )
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12 other non-NE samples in total. LCC samples in these datasets,

diagnosed according to the WHO 2004 criteria, were removed

from this study since they might have included LCNEC samples.

For the single-cell RNA-sequencing data (GSE131907),

32,764 tumor cells were derived from 58 samples of 44 ADC

patients, including the primary tissues of 22 early-stage lung

cancers (tLung) and advanced-stage lung cancers (tL/B), 17 brain

metastases (mBrain) and metastatic lymph nodes (mLN)

samples, and 5 pleural effusion samples.

In addition, among the 18 datasets with fresh-frozen samples,

nine datasets (GSE42127, GSE50081, GSE37745, GSE26939,

GSE31210, GSE31546, GSE14814, GSE17710, and GSE68465)

with survival information were integrated for survival analysis,

and these included 1,071 stage I–III ADC and SCC (non-NE)

patients who had undergone only curative surgical resection.

Supplementary Table S2 (Supplementary Material) shows the

clinical information of these nine datasets.

For the microarray datasets generated by Affymetrix platforms,

a robust multiarray average algorithm (Irizarry et al., 2003) was used

for preprocessing the raw data. For the microarray datasets

generated by Agilent and Illumina platforms, the originally

processed data (series matrix files) were used with clear

preprocessing and normalized methods. Probe IDs were mapped

to gene IDs according to the corresponding platform files. For the

RNA-sequencing datasets generated by Illumina Hiseq platforms,

the originally processed data (series matrix files) were used. Ensembl

gene IDs or gene symbols were mapped to the Entrez gene IDs.

2.2 Tissue samples, RNA extraction, and
sequencing

Frozen biopsy specimens were obtained from 10 SCLC

patients who underwent bronchoscopic intervention at the

Harbin Medical University Cancer Hospital. Among them,

nine patients were directly diagnosed by pathologists based on

HE staining results, while one patient with a poorly differentiated

tumor was further performed IHC detection for NE markers and

finally diagnosed as SCLC by pathologists, which showed

positivity for CD56, CgA, Syp, TTF-1, and CK7 and negativity

for CK5/6 and P63. The samples were obtained under the ethical

approval of the Institutional Review Boards of the Harbin

Medical University Cancer Hospital, and written informed

consent forms were obtained from all participants.

Total RNA was extracted according to the manufacturer’s

protocol. The RNA quality was checked using Nanodrop

(Thermo Company, United States). The purity and

concentration of total RNA were determined using a

Nanodrop spectrophotometer (Thermo Company,

United States) according to the OD260/280 reading and a

Qubit fluorescence quantifier (Invitrogen Company,

United States), respectively. Paired-end sequencing with a read

length of 100 bp was conducted using the Illumina Hiseq 2500/

3000 platform (Illumina, San Diego, CA), and the final processed

RNA-sequencing data were termed as SCLC data of Harbin

Medical University (HMU-SCLC) (Figure 1A). Data and

further clinical information are available from the

corresponding author upon request.

2.3 Consensus clustering analyses

Consensus clustering was performed using the

“ConsensusClusterPlus” package version 1.52.0 according to

the Ward method for hierarchical clustering (Wilkerson and

Hayes, 2010). The samples were clustered into k groups (k =

2–10) via Pearson’s correlation distance using the top 1,000 most

variable genes across all samples in a cohort. The k value that

corresponded to the first downward inflection in the cumulative

distribution function was selected as the optimum number of

clusters.

2.4 Hierarchical identification of
qualitative signatures for lung cancer
subtypes

A hierarchical rank-based method was developed to

construct multiple qualitative signatures of lung cancer

subtypes step by step.

2.4.1 Identification of subtype candidate genes
To improve the accuracy of the training samples, dubious

samples, whose consensus clustering results were discordant with

their original pathological subtypes, were removed. Student’s

t test was used to identify differentially expressed genes (DE

genes) between the two clustering-adjusted subtype groups. The

p values were adjusted using the Benjamini–Hochberg method

FIGURE 1
across all samples using the Z-score method. The subtype-specific marker heatmap panels depict the mRNA expression levels of seven
subtype-specificmarker genes, including three neuroendocrinemarker genes (CD56, SYP, andCHGA), two SCCmarker genes (KRT5 and TP63), and
one ADCmarker gene (NAPSA). Analysis of variance was used to test the differences across five subtype groups. The log 10-transformed p values are
displayed on the left of the heatmap panels. (C) Kaplan–Meier curves of overall survival for the lung cancer subtypes in the training (GSE30219)
dataset. The patients had undergone only curative surgical resection. ssGSEA, single-sample gene set enrichment analysis; SCC, squamous cell
carcinoma; and ADC, adenocarcinoma.
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for multiple testing to control the false discovery rate (FDR)

(Benjamini and Hochberg, 1995). Genes with FDR of < 5% were

defined as DE genes. As genes with larger differences between the

two subtype groups provide more effective classification

information, the top 1,000 DE genes with the largest fold

changes (FCs) were selected as “candidate genes.”

2.4.2 Identification of reversed gene pairs
between the two subtypes

For a pair of genes, Ga and Gb, derived from the candidate genes,

Fisher’s exact test was used to assess whether the frequency of a specific

REO pattern (Ea > Eb or Ea ≤ Eb) in one clustering-adjusted subtype

sample was significantly different from that in another clustering-

adjusted subtype sample. Here, Ea and Eb are the gene expression

values of Ga and Gb, respectively. Gene pairs with FDR of < 5% were

defined as significantly reversed gene pairs between the two subtypes.

2.4.3 Construction of gene pair signature for the
two subtypes

A gene pair signature was constructed from all significantly

reversed gene pairs as follows: First, for each significantly

reversed gene pair, its classification consistency with

pathologically diagnostic subtypes was calculated. Here, the

classification consistency was termed as the “apparent”

accuracy, since the pathological assessments were not 100%

reliable and there may be misclassified cases according to

clinical pathological methods.

Apparent accuracy � S/N × 100 (1)

where S is the number of samples whose classification

subtypes predicted by the gene pair (Ga and Gb) were

consistent with their original pathological subtypes, and N

is the total number of corresponding subtype samples used in

the dataset.

Second, all the significantly reversed gene pairs were chosen

as an initial set, and all the genes contained in the initial set were

used as seed. Then, a de-redundant method was utilized to obtain

an optimal gene pair set based on the filter rule as follows: For any

gene in the seed, if there were multiple gene pairs containing the

gene, the one with the highest apparent accuracy was retained. If

multiple gene pairs achieved the same maximum apparent

accuracy, the gene pair with the largest absolute rank

difference (Eq. 2) between the two subtypes was retained. By

traversing all genes in the seed and removing the redundant gene

pairs, we finally obtained an optimal gene pair set. This improves

their robustness to batch effects and quality uncertainties of the

clinical samples.

Rab �
��������������
Rab(g1) × Rab(g2)

√
(2)

where Rab(g1) and Rab(g2) are the geometric means of the absolute

rank differences of the gene pair (Ga and Gb) in all samples

between the two subtype groups (g1 and g2), respectively.

At last, the classification score for each sample was calculated

as the sum of the classification votes of all the gene pairs in the set.

The majority voting rule of the reversed gene pairs within a

sample was adopted for classification, where if more than half of

the gene pairs within the sample voted for one subtype, the

sample was classified into that subtype.

In the training dataset (GSE30219), the above method was

utilized to develop the NEsubtype-panel composed of three

transcriptional signatures to distinguish the NE from non-NE

tumors, CARCI from non-CARCI tumors, and SCLC from

LCNEC tumors. To improve the robustness of the signatures

to RNA degradation or low RNA input, which usually occur in

clinically challenging samples, such as FFPE and biopsy samples,

the gene pairs that have the gene with undetected expression

value were removed and the majority voting rule of the

remaining gene pairs in the signature was adopted for

classification.

2.5 Functional enrichment, differential,
and survival analyses

“ClusterProfiler” R package (Yu et al., 2012) was performed

to conduct the functional enrichment analyses based on the

current Gene Ontology databases, where a hypergeometric test

was used.

Analysis of variance (ANOVA) was used to test the

differences across multiple groups. RankProd (RP)

algorithm of the “RankProd” R package version 3.14.0

(Hong et al., 2006), a nonparametric test, was conducted

to estimate whether the subtype-specific marker genes were

differentially expressed between the signature-confirmed and

reclassified samples. The subtype-specific marker genes

contain three NE marker genes (CD56, SYP, and CHGA)

(Karlsson et al., 2017), two SCC marker genes (KRT5 and

TP63), and one ADC marker gene (NAPSA) (Kim et al.,

2013). Here, a commonly used ADC marker gene (TTF-1)

was excluded, since it is also highly expressed in partial SCLC

samples (Rekhtman, 2022). Wilcoxon rank-sum test was used

to test the difference in proliferation scores between the

signature-confirmed and reclassified samples.

Overall survival (OS) is defined as the time from the date of

initial surgical resection to the date of death or last contact

(censored). To avoid deviations in the patient follow-up time

among the different datasets, patient OS was truncated at

60 months. Survival curves were estimated using the

Kaplan–Meier method and were statistically compared using

the log-rank test (Bland and Altman, 2004). A multivariate

Cox proportional-hazards regression model was used to assess

whether the reclassified groups were independently associated

with the patient survival after adjusting for data centers and

clinical parameters, such as tumor stage, age, and sex. Hazard

ratios (HRs) and 95% confidence intervals (CIs) were generated
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using univariate and multivariate Cox proportional-hazards

models.

All statistical analyses were conducted using R 3.6.2 software

(http://www.r-project.org/). Significance was defined as p < 0.

05 or FDR < 0.05 for multiple testing.

3 Results

3.1 Transcriptional characteristics of lung
cancer subtypes

The clinical and transcriptional characteristics of 247 lung

cancer samples in the GSE30219 dataset were investigated and

are displayed in Figure 1B. The different lung cancer subtypes

represent diverse demographic and clinical characteristics and

mRNA expression levels of subtype-specific marker genes. The

proliferation scores, stemness scores, and hypoxia scores were

estimated based on the mRNA expression profiles

(Supplementary Material). The SCLC subtype showed the

highest proliferation and stemness scores, followed by the

LCNEC subtype (ANOVA, p < 0.0001, Figure 1B,

Supplementary Figures S1A,B), suggesting a high grade of

malignancy and poor differentiation. The SCC subtype had

the highest hypoxia score, followed by the LCNEC and SCLC

subtypes (ANOVA, p < 0.0001, Figure 1B, Supplementary Figure

S1C). By contrast, CARCI exhibited the lowest proliferation,

stemness, and hypoxia scores. Then, the immune landscape

across lung cancer subtypes was depicted, including the

immune scores calculated by ESTIMATE (Yoshihara et al.,

FIGURE 2
Clustering heatmap of lung cancer subtypes in the GSE30219 dataset. (A) consensus clustering of all the lung cancer samples based on the top
1,000 most variable genes in the dataset. The left panel represents the matrix heatmap when k = 2, and the right panel represents the consistent
cumulative distribution function graph. (B) hierarchical clustering of all the samples based on the top 1,000 most variable genes.
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2013), abundances of 28 subpopulations of infiltrating immune

cells quantified by single-sample gene set enrichment analysis

(Subramanian et al., 2005) (Supplementary Material), and

mRNA expression levels of three immune checkpoint genes

(PD-1, PD-L1, and CTLA4). The CARCI subtype was

characterized by low levels of immune score, cell

infiltration, and immune checkpoint gene expression, while

partial LCNEC and SCLC samples showed high levels of the

three immune indexes (ANOVA, p < 0.0001, Figure 1B,

Supplementary Figure S1D), suggesting that these patients

might benefit from immunotherapy. The survival analysis

showed that SCLC and LCNEC patients had the worse

prognoses, while CARCI patients had a favorable survival,

when compared with ADC and SCC patients (log-rank p <
0.0001, Figure 1C). These results highlighted the

discrepancies in tumor molecular biology across lung

cancer subtypes.

At last, consensus clustering was performed for all samples in

the GSE30219 dataset, and it was found that the samples were

optimally classified into two subgroups (Figure 2A) with 157 and

90 samples, respectively, of which 87.13% of the NE samples were

clustered into category I (named as NE-like), and 98.63% of the

non-NE samples were clustered into category II (named as non-

NE-like). The results indicated that NE (SCLC, LCNEC, and

CARCI) and non-NE (ADC and SCC) samples had distinct

transcriptional patterns. A similar result was observed after the

hierarchical clustering (Figure 2B). It is worth noting that the

hierarchical clustering result also showed that CARCI, SCLC,

and LCNEC in the NE-like category had different gene

expression patterns. These results suggested that the

transcriptomic would be an effective tool to determine the

histological subtype of lung cancer.

3.2 Identification of the NEsubtype-panel
of transcriptional signatures for NE
subtypes

Figure 3A describes the flowchart for developing and

validating the NEsubtype-panel for the diagnosis of lung NE

FIGURE 3
Flowchart of this study. (A) identification of the NEsubtype-panel. First, in the training dataset (GSE30219), a consensus clustering was
performed based onmRNA expression to remove the discordant samples, and then, a panel of transcriptional signatures for determining NE subtype
(NEsubtype-panel) in the clustering-adjusted samples was hierarchically developed, based on the “within-sample” relative expression orderings
(REOs) of gene pairs to determine the lung NE subtypes. Second, the NEsubtype-panel was tested in multiple datasets with fresh-frozen,
clinically challenging (FFPE and small biopsy specimens), and single-cell samples. At last, survival and differential expression analyses were
conducted to indirectly support the reclassification indicated by these signatures. (B) the NEsubtype-panel classification diagram. For a given sample,
the NEsubtype-panel was used to classify the histological subtype step by step based on the “within-sample” REOs of gene pairs, and to ultimately
determine the patient subtype. NE, neuroendocrine; non-NE, non-neuroendocrine; and FFPE, formalin-fixed paraffin-embedded.
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subtypes. First, the abovementioned consensus clustering results

of 15 samples (13 NE and 2 non-NE samples) in the training set

were discordant with their original pathological subtypes

(Figure 2B) and thus were deleted from the training set. From

the remaining 232 samples, 13,216 DE genes between the

clustering-adjusted 88 NE and 144 non-NE groups were

extracted (Student’s t test, FDR < 0.05), which was more than

the 12,917 DE genes extracted between the original

TABLE 1 Gene pair composition of the NEsubtype-panel

No. NE-signature CARCI-signature SCLC-signature

Gene a > Gene b Gene a > Gene b Gene a > Gene b

1 KIF5C (3800) > CXCL2 (2920) NAP1L3 (4675) > UBE2C (11065) SEZ6L (23544) > ANG (283)

2 TMEM145 (284339) > P2RY2 (5029) XKR4 (114786) > NDC80 (10403) ATCAY (85300) > LOC100505490 (100505490)

3 INSM1 (3642) > TPSAB1 (7177) GAL3ST1 (9514) > AURKA (6790) PLCXD2 (257068) > FAH (2184)

4 CAMK2N2 (94032) > KCNK6 (9424) ABAT (18) > CDCA5 (113130) ZNF711 (7552) > SRXN1 (140809)

5 LRRC49 (54839) > EPHA2 (1969) CDO1 (1036) > RAD51AP1 (10635) DBH-AS1 (138948) > TRPM4 (54795)

6 CELSR3 (1951) > SGMS2 (166929) CTNNA2 (1496) > NUF2 (83540) KCNC1 (3746) > C4orf19 (55286)

7 RAB39B (116442) > COL17A1 (1308) LOC100286909 (100286909) > GPNMB (10457) LOC284219 (284219) > SLC12A8 (84561)

8 ACYP1 (97) > YAP1 (10413) ZNF540 (163255) > AUNIP (79000) CENPK (64105) > SLC50A1 (55974)

9 UBE2QL1 (134111) > ITGB6 (3694) MTMR11 (10903) > UHRF1 (29128) DPYSL5 (56896) > SERPINA3 (12)

10 PTPRN (5798) > AREG (374) LOC257396 (257396) > E2F7 (144455) NFIB (4781) > NOTCH2 (4853)

11 GNAZ (2781) > PRODH (5625) USP27X-AS1 (158572) > MCM6 (4175) BRSK2 (9024) > ABCC4 (10257)

12 MIR7-3HG (284424) > SCEL (8796) ITIH1 (3697) > BUB1 (699) TMOD2 (29767) > S100P (6286)

13 STMN3 (50861) > C1orf116 (79098) SLC35F3 (148641) > CDC6 (990) ST6GAL2 (84620) > AJUBA (84962)

14 SH3GL2 (6456) > SFTA2 (389376) TCEAL2 (140597) > RFC4 (5984) ELAVL3 (1995) > ADA (100)

15 CENPV (201161) > CARD6 (84674) NAP1L2 (4674) > CAPG (822) MRAP2 (112609) > ACP6 (51205)

16 ST18 (9705) > SH3RF2 (153769) ZNF658 (26149) > SYK (6850) FBXO43 (286151) > GSTM4 (2948)

17 RAB3B (5865) > KRT16 (3868) CCDC184 (387856) > DEPDC1B (55789) C5orf49 (134121) > CTAG2 (30848)

18 NRCAM (4897) > TMPRSS4 (56649) RGS11 (8786) > PARPBP (55010) DAND5 (199699) > PDP2 (57546)

19 BEX2 (84707) > TNFSF10 (8743) LOC100130360 (100130360) > SKP2 (6502) LRFN5 (145581) > GTSF1 (121355)

20 SCN3A (6328) > SLC6A14 (11254) MNX1-AS1 (645249) > CENPF (1063) LOC284244 (284244) > KCNE4 (23704)

21 SOWAHA (134548) > ACE2 (59272) SLC22A17 (51310) > EZH2 (2146) ASPM (259266) > SPATC1L (84221)

22 PEG10 (23089) > CEACAM6 (4680) SYT5 (6861) > E2F8 (79733) CACNA1A (773) > C15orf48 (84419)

23 NRXN1 (9378) > KIF14 (9928) LRRC75A (388341) > TIMP3 (7078)

24 SPRYD7 (57213) > TTK (7272) KIRREL3 (84623) > TRIM6 (117854)

25 PPP1R1A (5502) > KIT (3815) KIF28P (100130097) > ME1 (4199)

26 MYT1L (23040) > CNTNAP2 (26047) LMO2 (4005) > PCOLCE (5118)

27 C5 (727) > SLC7A5 (8140) ADAM22 (53616) > MAGEA1 (4100)

28 MIA2 (117153) > LCAL1 (80078) AMER2 (219287) > AZGP1 (563)

29 RGS7BP (401190) > SCGB2A1 (4246) ENHO (375704) > TMEM45A (55076)

30 RFX6 (222546) > PDK4 (5166) STXBP5L (9515) > PRR15 (222171)

31 DCC (1630) > VTCN1 (79679)

32 SHD (56961) > CHSY3 (337876)

33 ATP6V1FNB (100130705) > OLR1 (4973)

34 PCDH8 (5100) > MX2 (4600)

35 FGF14 (2259) > MUC13 (56667)

36 SETBP1 (26040) > IER3 (8870)

37 SBK1 (388228) > DSG2 (1829)

38 EEF1A2 (1917) > MXRA5 (25878)

39 CNPY1 (285888) > RFX4 (5992)

40 ISL1 (3670) > CHN2 (1124)

Gene Symbol and Entrez gene IDs (within brackets) are provided in Table 1. For each gene pair (Gene a and Gene b) in the NEsubtype-panel, if the expression of Gene a is greater than Gene

b in a sample, then it was supported to classify the sample as NE, CARCI, or SCLC, respectively. NE, neuroendocrine; CARCI, carcinoids; and SCLC, small-cell lung cancer.
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FIGURE 4
Hierarchical validation of the NEsubtype-panel. (A) protein–protein interaction network of genes in the NEsubtype-panel constructed using
Cytoscape. The NE-signature, CARCI-signature, and SCLC-signature genes are marked in light green, pink, and blue, respectively. Line thickness
indicates the strength of data support (interaction score by STRING). The apparent sensitivity, apparent specificity, and apparent accuracy of the (B)
NE-signature, (C) CARCI-signature, and (D) SCLC-signature in multiple datasets. The left panel of each signature represents the classification
accuracy of different sample types, and the right panel displays the number of reclassified samples. NE, neuroendocrine; CARCI, carcinoids; and
SCLC, small-cell lung cancer.
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pathologically determined subtypes (Student’s t test, FDR <
0.05). Furthermore, 92.44% of the 12,623 overlapped DE

genes had a higher FC value than that in the original

pathological subtypes, indicating the rationality of

removing the dubious samples. From the 13,216 DE genes

between the two clustering-adjusted subtype samples, the top

1,000 DE genes with a large FC difference were selected to

construct gene pairs. Next, 373,502 NE-specific gene pairs

were extracted, whose specific REO patterns (Ea > Eb)

occurred more frequently in the clustering-adjusted NE

samples than those in the clustering-adjusted non-NE

samples (Fisher’s exact test, FDR < 0.05). For each NE-

specific gene pair, if its REO in a sample was Ea > Eb, it

voted the sample as NE, and vice versa. At last, the de-

redundant method (see Materials and methods) was utilized

to generate an optimal gene pair set consisting of 22 gene

pairs (Table 1), which were selected as the NE-signature for

distinguishing NE from non-NE tumors. According to the

major classification rule, the apparent accuracy of the NE

samples (named as apparent sensitivity) was 95.45%, and the

apparent accuracy of the non-NE samples (named as

apparent specificity) was 100%.

Second, consensus clustering for the 88 NE samples in the

training cohort was performed (Supplementary Figure S2A), and

it was found that CARCI samples had considerably different gene

expression patterns from those of the SCLC and LCNEC samples

(non-CARCI). By comparing the clustering results and original

pathological subtypes, five discordant samples were deleted, and

11,682 DE genes between the clustering-adjusted CARCI and

non-CARCI groups were extracted. Likewise, 305,986 CARCI-

specific gene pairs were extracted, whose REO patterns in the

CARCI samples were significantly different from those in non-

CARCI samples (Fisher’s exact test, FDR < 0.05), and the

CARCI-signature consisting of 30 non-redundant gene pairs

was developed (Table 1). According to the major classification

rule, the apparent accuracies for clustering-adjusted CARCI and

non-CARCI samples were both 100%.

At last, for the 19 SCLC and 42 LCNEC samples,

15 discordant samples were deleted based on their consensus

clustering (Supplementary Figure S2B), and the SCLC-signature

consisting of 40 gene pairs was developed (Table 1). The apparent

sensitivity and specificity for 13 clustering-adjusted SCLC and

33 LCNEC samples were both 100%.

Overall, the NEsubtype-panel is composed of the NE-

signature, CARCI-signature, and SCLC-signature for

determining NE subtypes step by step (Figure 3B). The R

code for classification of the NEsubtype-panel is detailed in

Supplementary R function (Supplementary Material).

Furthermore, based on The Search Tool for the Retrieval

of Interacting Genes database (STRING) database, genes in

the three signatures were mapped into the protein–protein

interaction (PPI) network (Figure 4A). Then, the Cytoscape

plug-in Molecular Complex Detection was applied to detect

notable modules, and then, the function of these key genes

was analyzed. For instance, for the CARCI-signature module,

the gene set functions mainly involved cell division and

mitotic spindle organization, corresponding to 10 genes

downregulated in CARCI samples, which were supported

by the knowledge that the mitotic index of CARCI is lower

than that of SCLC and LCNEC (Righi et al., 2017). Besides,

YAP1 is overexpressed in NSCLC and the loss of YAP1 has

potential as a clinical marker for predicting NE features (Ito

et al., 2016), and YAP1, combined with ASCL1, NEUROD1,

and POU2F3, can be used to define SCLC subtypes (Baine

et al., 2020). It is worth noting that the REO of two genes in a

gene pair has intuitive biological implications in tumor

subtype development. For instance, in gene pair RAB3B-

KRT16 in the NE-signature of the panel, RAB3B is a Ras

oncogene superfamily member that controls the regulated

exocytosis in neuronal/secretory cells, and its expression is

significantly higher in NE (SCLC) samples than in non-NE

(ADC, SCC, and LCC) samples (Zhang et al., 2016); however,

keratin 16 (KRT16) is a type I cytokeratin, whose

overexpression promotes tumorigenicity in ADC (Yuanhua

et al., 2019). The relative order of RAB3B expression tended to

be higher than that of KRT16 in NE patients and was reversed

in non-NE patients. In addition, hub genes with a higher

degree in the network may be potential key therapeutic targets

for NE subtypes. For example, the abnormal spindle-like,

microcephaly associated (ASPM) with the highest degree in

SCLC-signature was essential for normal mitotic spindle

function-dependent cell division (Higgins et al., 2010;

Zhang et al., 2015). Besides, Iwakawa et al. revealed that

ASPM was frequently mutated in SCLC (Iwakawa et al.,

2015). Our results showed that ASPM was significantly

higher expressed in SCLC than in LCNEC (Student’s t test,

p < 0.0001), indicating that ASPM might be a therapeutic

target for SCLC (Zhang et al., 2015).

Therefore, PPI network construction and functional analyses

of genes in the three transcriptional signatures provided

biological evidences for their ability to determine the

histological classification and clues for the treatment of lung

cancer.

3.3 Hierarchical validation of the
NEsubtype-panel

The NEsubtype-panel was tested on multiple independent

lung cancer datasets. First, the NE-signature in the panel was

tested on 18 fresh-frozen tissue datasets, including 200 NE and

2,048 non-NE samples (Figure 4B). In total, the apparent

sensitivity of NE samples was 98.00%, the apparent specificity

of non-NE samples was 97.56%, and the apparent accuracy

was 97.60%. Likewise, in one dataset with FFPE specimens

(GSE60052), 73 of 79 NE samples were confirmed by the
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signature, and the apparent sensitivity of the NE samples was

92.41%. In one dataset with small biopsy specimens (GSE58661)

that had one NE and 88 non-NE samples, the apparent sensitivity

for NE samples was 100%, the apparent specificity for non-NE

samples was 95.45% (84/88), and the apparent accuracy was

95.51%. Likewise, we applied the NE-signature to mixed tumor

samples with 10–100% tumor cells in TCGA-LUAD and TCGA-

LUSC datasets. The overall apparent accuracies of the NE-

signature for 490 ADC samples and 490 SCC samples were

97.96 and 96.12%, respectively. In the single-cell RNA-

sequencing dataset (GSE131907) with 58 ADC samples, the

apparent specificity for non-NE samples was 100% across all

the 32,764 primary and metastatic tumor cells sampled from

biopsy or pleural effusion.

Then, the classification accuracy of the CARCI-signature in

the panel was verified in the 280 signature-confirmedNE samples

across nine validation datasets (Figure 4C). The apparent

sensitivity for CARCI samples reached 97.76% (131/134), and

the apparent specificity for non-CARCI samples was 98.21% (55/

56) in fresh-frozen specimens, 98.63% (72/73) in the one FFPE

dataset (GSE60052), and 100% in one biopsy tissue dataset

(GSE58661).

Next, the SCLC-signature in the panel was validated in

the signature-confirmed non-CARCI samples (Figure 4D).

The apparent sensitivity for SCLC samples was 75.00% (24/

32), the apparent specificity for LCNEC was 100%, and the

apparent accuracy was 85.45% in fresh-frozen specimens.

In GSE60052, the dataset with FFPE specimens, 68 of

FIGURE 5
Biological analyses of the reclassification of theNEsubtype-panel. The boxplots ofmRNA expression of the subtype-specificmarker genes in (A)
GSE60052, (B) TCGA-LUAD, and (C) TCGA-LUSC datasets with the most reclassified samples (6, 10, and 19 samples, respectively). The subtype-
specific marker genes include three neuroendocrine marker genes (CD56, SYP, and CHGA), two SCC marker genes (KRT5 and TP63), and one ADC
marker gene (NAPSA). The RankProd algorithm was used to test the difference in the subtype-specific marker genes between the reclassified
samples and the signature-confirmed samples. (D) Kaplan–Meier curves of overall survival for the non-NE samples that were reclassified as CARCI
(blue), signature-confirmed non-NE (yellow), and non-NE samples reclassified as LCNEC (red). (E) multivariate Cox regression analysis for
histological classification by signatures after adjusting for data center and clinical parameters in the integrated dataset. NE, neuroendocrine; CARCI,
carcinoids; ADC, adenocarcinoma; SCC, squamous carcinoma; and LCNEC, large-cell neuroendocrine carcinoma.
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72 SCLC samples were confirmed by the signature, and the

apparent accuracy was 94.44%. For two small biopsy

specimen datasets, the apparent sensitivity for SCLC

samples was 90.00% (9/10), all LCNEC samples were

confirmed by the signature (1/1), and the apparent

accuracy was 90.91%.

At last, we collected 10 SCLC biopsy samples from the

clinic (HMU-SCLC), and the NEsubtype-panel exhibited

100% accuracy for these samples, indicating its clinical

feasibility.

In total, the NEsubtype-panel had a good performance in

distinguishing NE tumors from non-NE tumors and

determined the NE subtypes not only in fresh-frozen

specimens but also in samples with RNA degradation

(FFPE) and low RNA input (small biopsy and single-cell

specimens).

3.4 Biological analyses for reclassification

As the subjective diagnoses of HE staining or

immunostaining results by pathologists may lead to some

misclassified cases (Guo et al., 2021), several biological

analyses were conducted to indirectly support the

reclassification indicated by the signatures. First,

according to the above results, it was found using the

NE-signature that the three datasets, namely, GSE60052

(NE samples), TCGA-LUAD (non-NE samples), and

TCGA-LUSC (non-NE samples), had the most

misclassified samples (6, 10, and 19, respectively). As a

consequence, differential expression analyses were

conducted for six subtype-specific marker genes. In the

GSE60052 dataset, out of 73 signature-confirmed NE

samples, six reclassified non-NE samples had significantly

decreased expression of one NE marker gene (RP algorithm,

CD56: p = 0.0023, Figure 5A) and significantly increased

expression of one SCC marker gene (RP algorithm, TP63: p =

0.0198, Figure 5A). In the TCGA-LUAD dataset, the

NEsubtype-panel reclassified 10 (2.04%) ADC samples as

LCNEC, which had significantly increased expression of

three NE marker genes and significantly decreased

expression of the ADC marker gene, respectively, when

compared with the signature-confirmed ADC samples (RP

algorithm, CD56: p = 0.0253; SYP: p = 0.0253; CHGA: p =

0.0045; NAPSA: p < 0.0001, Figure 5B). Likewise, in the

TCGA-LUSC dataset, compared with the signature-

confirmed SCC samples, the 19 SCC samples reclassified

as one CARCI and 18 LCNEC exhibited significantly

increased expression of three NE marker genes (RP

algorithm, CD56: p < 0.0001; SYP: p = 0.0009; CHGA: p =

0.0302, Figure 5C) and significantly decreased expression of

two SCC marker genes (RP algorithm, KRT5: p < 0.0001;

TP63: p = 0.0001, Figure 5C).

Next, the accuracy of reclassification by these signatures was

further evaluated through survival analyses. Nine datasets were

integrated and included 1,071 stage I–III ADC and SCC (non-

NE) patients who were treated with only curative surgical

resection and recorded survival information. From all the

non-NE samples, 1,051 patients were confirmed by the NE-

signature, and 20 patients were reclassified as NE, of which

3 and 17 cases were further reclassified as CARCI and

LCNEC, respectively, by the CARCI- and SCLC-signatures. As

expected, survival analysis showed that the three reclassified

CARCI patients had significantly longer OS, while the

17 reclassified LCNEC patients showed significantly shorter

OS than the other ADC and SCC patients (log-rank p =

0.0087, HR = 2.22, 95% CI = 1.22–4.01, Figure 5D)

(Vesterinen et al., 2018; Jiang et al., 2021). Multivariate Cox

analysis showed that the reclassified patients also had

significantly different OS than the signature-confirmed non-

NE patients (p = 0.0146, HR = 2.06, 95% CI = 1.15–3.67,

Figure 5E), after adjusting for data centers and clinical

parameters.

The above biological results provided evidence that these

signatures might rectify some misclassifications that occur

during routine pathological assessments.

4 Discussion

This study investigated the transcriptional

characteristics of lung cancer subtypes and demonstrated

that the different lung cancer subtypes represented diverse

degrees of malignancies, immune cell infiltration, and

transcriptional patterns, highlighting the discrepancies in

tumor biology across lung cancer subtypes. Utilizing

transcriptional data, a panel of signatures for the

individualized pathological diagnosis of lung NE tumor

was developed. To our knowledge, this is the first report

of a panel of transcriptional signatures that can distinguish

NE from non-NE tumors and determine NE subtypes

accurately. Because of the limited number of NE samples

and the often misdiagnosed samples during pathological

diagnosis, the consensus clustering method was first

applied to eliminate the dubious samples whose

expression patterns were discordant with their

pathological subtypes. The results showed that after

removing these dubious samples, the number of DE genes

between the two clustering-adjusted subtypes increased, and

the degree of difference also improved. These results support

the rationality of deleting these dubious samples to improve

the training accuracy.

We have developed the NEsubtype-panel, which can be

used for identifying NE subtypes based on the within-

sample REOs of gene pairs for individualized

applications. The NEsubtype-panel was effectively
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verified in 23 public datasets from multiple platforms,

including Affymetrix, Agilent, and Illumina, and the

overall consistencies of the three signatures with

pathologically diagnostic subtypes were 97.31%, 98.11%,

and 90.63%, respectively, which can thus be used to assist

the pathologist in classifying lung NE tumors. The ability of

the NEsubtype-panel to reliably distinguish lung NE

subtypes was validated in multiple tissue types, even for

clinical challenging tissues (FFPE and biopsy). These

results suggested the advantage of the subtype panel in

clinical applications. It is worth noting that the overall

apparent sensitivity of the SCLC-signature for SCLC was

88.60%, which did not seem to be perfect. As our results

showed that SCLC displayed higher proliferation ability,

the reclassified LCNEC samples had significantly lower

proliferation abilities than the signature-confirmed SCLC

samples in two of the three datasets (GSE108055, Martin

et al., and GSE60052) (Wilcoxon rank-sum test,

GSE108055: p = 0.0480, GSE60052: p = 0.0066,

Supplementary Figure S3). As a result, we additionally

collected 10 SCLC frozen biopsy samples from the clinic

and verified the accuracy of the NEsubtype-panel,

indicating its clinical feasibility. A previous study has

published a lung subtype panel, including 57 genes (57-

gene), for distinguishing lung cancer subtypes (Faruki et al.,

2016). In a word, gene centroid was calculated for each of

three subtypes (ADC, SCC, and NE), respectively.

Correlations between a test sample and each gene

centroid were calculated (Spearman’s rank correlation),

and then, the sample was assigned to a specific subtype

(ADC, SCC, or NE) corresponding to the maximally

correlated centroid. We compared with 57-gene in all the

fresh-frozen and FFPE datasets in this study, and the results

showed that the overall apparent accuracies were lower

than that of the NE-signature in the panel in 15 frozen

datasets and one FFPE dataset and equal to our signature in

three frozen datasets (Supplementary Figure S4), indicating

a superior performance of our developed the NEsubtype-

panel. Moreover, another limitation of 57-gene is that it

cannot be applied to small biopsy samples for subtype

classification, while our panel can classify biopsy samples

more accurately.

The overall classification accuracy of the NEsubtype-

panel was high; however, the comparison of the

classification performance between the NEsubtype-panel

and NE immunomarkers (CgA, Syp, CD56, etc.) still

deserved follow-up study. Although the accuracy of the

NEsubtype-panel could reach more than 92%, there was

still a certain percentage of discordant samples identified

by pathological diagnosis and the NEsubtype-panel, which

may lead to some misclassification because of subjective

diagnosis of HE staining or immunostaining results by

pathologists. The subtype-specific marker genes analysis

provided transcriptional evidence to support the

reclassifications obtained by our panel. Further, the

reclassification of these signatures was supported using

survival analyses by the knowledge that LCNEC patients

have poorer prognoses and CARCI patients have better

prognoses than those ADC and SCC patients. Such

biological evidences support the classification accuracy of

the NEsubtype-panel.

However, there are still some limitations of this study. One

limitation is that the NEsubtype-panel could not distinguish

between typical and atypical CARCIs in the CARCI samples

because the samples of these two subtypes are associated with

a low incidence of lung cancer, and thus, there are very few

samples present currently to develop robust signatures.

Another limitation is that most samples in the public

datasets are diagnosed according to the WHO 2004 criteria,

which might not be detected by IHC and needs further

validation based on the samples diagnosed using the WHO

2015 criteria.

5 Conclusion

The novel transcriptional NEsubtype-panel, consisting

of three gene pair signatures, was developed that could

effectively distinguish lung NE tumors from non-NE

tumors and determine the NE subtypes individually, even

in clinically challenging samples (FFPE and biopsy

samples). The combination of these signatures with our

previously published signature (KRT5 and AGR2) used

for distinguishing SCC from non-SCC (ADC) samples

could be used as an RNA-sequencing panel to

complement the morphology-based classification of lung

tumors. This would also help in preserving precious tissue

samples that can then be used for conducting other

molecular tests.
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