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Background: The pseudouridine synthases (PUSs) have been reported to be

associated with cancers. However, their involvement in hepatocellular

carcinoma (HCC) has not been well documented. Here, we assess the roles

of PUSs in HCC.

Methods: RNA sequencing data of TCGA-LIHC and LIRI-JP were downloaded

from the Cancer Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC), respectively. GSE36376 gene expression microarray was

downloaded from the Gene Expression Omnibus (GEO). Proteomics data for an

HBV-related HCC cohort was obtained from the CPTAC Data Portal. The RT-

qPCR assay was performed to measure the relative mRNA expression of genes

in clinical tissues and cell lines. Diagnostic efficiency was evaluated by the ROC

curve. Prognostic value was assessed using the Kaplan-Meier curve, Cox

regression model, and time-dependent ROC curve. Copy number variation

(CNV) was analyzed using the GSCA database. Functional analysis was carried

out with GSEA, GSVA, and clusterProfiler package. The tumor

microenvironment (TME) related analysis was performed using ssGSEA and

the ESTIMATE algorithm.

Results: We identified 7 PUSs that were significantly upregulated in HCC, and

5 of them (DKC1, PUS1, PUS7, PUSL1, and RPUSD3) were independent risk

factors for patients’ OS. Meanwhile, the protein expression of DKC1, PUS1, and

PUS7 was also upregulated and related to poor survival. BothmRNA and protein

of these PUSswere highly diagnostic of HCC.Moreover, the CNVof PUS1, PUS7,

PUS7L, and RPUSD2 was also associated with prognosis. Further functional

analysis revealed that PUSs were mainly involved in pathways such as genetic

information processing, substance metabolism, cell cycle, and immune

regulation.

Conclusion: PUSs may play crucial roles in HCC and could be used as potential

biomarkers for the diagnosis and prognosis of patients.
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Introduction

Hepatocellular carcinoma remains a global health challenge

as one of the most malignant malignancies (Llovet et al., 2021).

Early diagnosis and clinical intervention, together with advances

in surgical methods and the development of anti-tumor

therapies, have led to significant advances in the treatment of

HCC. However, median survival time for patients with advanced

HCC is only 2–3 years (Yang et al., 2019). Even in early HCC

cases suitable for surgery, the 5-year recurrence rate after

hepatectomy is close to 70% (Roayaie et al., 2013). The high

heterogeneity of HCC is amassive challenge to improving clinical

outcomes. Hence, there is an urgent need to explore the complex

functional pathways and molecular mechanisms behind HCC, to

develop new biomarkers for early diagnosis, prognosis and

relapse prediction, and to identify new therapeutic targets

(Llovet et al., 2018).

Post-transcriptional modifications could affect RNA

stability, localization, structure, splicing, or function

(Roundtree et al., 2017). And its deregulation has been linked

to human diseases, including tumorigenesis (Jonkhout et al.,

2017). RNAmodifications regulate cancer cell fate by modulating

cell survival, differentiation, migration and drug resistance

(Delaunay and Frye, 2019). Pseudouridine (5-ribosyluracil, ψ)
is the 5-ribosyl isomer of uridine, and is the most abundant type

of RNA modification. It is also known as the ‘fifth nucleotide’

(Charette and Gray, 2000). Enzymes responsible for this

modification are pseudouridine synthase (PUS). A total of

thirteen PUSs have been identified in humans and are

classified into two categories, RNA-dependent and RNA-

independent PUSs (Supplementary Table S1). Of these,

Dyskerin, the only RNA-dependent PUS, is a nucleolar

protein encoded by the Dyskerin Pseudouridine Synthase 1

(DKC1) gene. It is present in small nucleolar

ribonucleoprotein particles and is responsible for converting

specific uridine residues of ribosomal (r) RNA into

pseudouridine. And twelve RNA-independent PUSs can

modify target RNAs by directly recognising sequences or RNA

structures (Li et al., 2016).

Pseudouridine in cancer cells has emerged as a therapeutic

target for cancer (Nombela et al., 2021). A recent study found

that DKC1 was a potential therapeutic target in colorectal cancer,

and its increased expression was associated with poor prognosis

(Kan et al., 2021). PUS7 was a targetable regulator of

glioblastoma growth (Zhang et al., 2021a), and its increased

expression was associated with reduced patient survival. The

application of PUS7 inhibitors inhibited tumorigenesis and

prolonged the life span of tumor-bearing mice (Cui et al.,

2021). In ovarian cancer, both mRNA and protein expression

of PUS7 were higher in cancer tissues than in normal tissues (Li

et al., 2021). All these emerging findings showed the potential of

PUSs as cancer biomarkers. Therefore more research is necessary

to explore the importance of PUSs in cancer.

Currently, there is a lack of research on PUSs in HCC. To

address this scientific gap, we integrated transcriptomic, genomic

and proteomic data to assess the diagnostic, prognostic and

therapeutic value of PUSs and to preliminarily explore the

potential mechanisms by which PUSs affect HCC.

Materials and methods

The flow chart for this study is shown in Figure 1.

Dataset sources and processing

Three transcriptomic datasets were analyzed in this study.

The TCGA-LIHC (RNA sequencing in FPKM format) cohort,

containing 50 adjacent samples and 374 HCC samples, was

downloaded from GDC Data Portal (https://portal.gdc.cancer.

gov/). The LIRI-JP (RNA sequencing in FPKM format) cohort,

containing 202 adjacent samples and 243 HCC samples, was

downloaded from ICGC Data Portal (https://dcc.icgc.org/).

FPKM values were converted to TPM values for subsequent

analyses. Mutation data and clinical data for TCGA-LIHC and

LIRI-JP were derived from the same sources as the corresponding

expression data. GSE36376 (standardized expression data)

cohort, containing 193 adjacent samples and 240 HCC

samples, was downloaded from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/). The GPL10558 platform file was

used as a reference for gene annotation. The average expression

of probes was used as the expression value of the gene matched to

multiple probes. Expression data for GSE36376 were eligible for

direct analysis. The original proteomics and clinical data for an

HBV-related HCC cohort (ID: PDC000198) were downloaded

from CPTAC Data Portal (https://pdc.cancer.gov/pdc/). The

data preprocessing process and the normalized proteomics

matrix were obtained from Gao’s study. (Gao et al., 2019).

And a total of 6,478 proteins in 159 paired samples were

included in subsequent analyses.

Public online bioinformatics databases

Gene Set Cancer Analysis (GSCA) is a comprehensive

database for genomic and immunogenomic cancer analysis

(http://bioinfo.life.hust.edu.cn/GSCA/#/) (Liu et al., 2018).

Using the GSCA database, we analyzed CNV data from the

TCGA-LIHC cohort, including the composition of CNV, the
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correlation between copy number and gene expression, and the

differences in survival of patients with different types of CNV.

The Human Protein Atlas (HPA) is an open-access resource

for human proteins (https://www.proteinatlas.org/) (Uhlén

et al., 2015). In our study, we assessed the expression levels

of PUSs in clinical specimens and obtained several

representative immunohistochemical staining results from

the HPA database.

Functional and pathway enrichment
analysis

Gene set enrichment analysis (GSEA) was used to identify

KEGG pathways related to PUSs in HCC tissues (Subramanian

et al., 2005). The annotation file (c2.cp.kegg.v7.5.1.symbols.gmt)

was obtained from the MSigDB (http://www.gsea-msigdb.org/

gsea/downloads.jsp). The analysis was performed using GSEA

software (V4.2.1), and the number of permutations was set to

1,000. A false discovery rate (FDR) < 0.05 was considered a

significant pathway enrichment. Gene set variation analysis

(GSVA) was used to estimate the activity of KEGG pathways

in each HCC sample (Hänzelmann et al., 2013). The GSEABase

package was used to read pathway information, and the GSVA

package was used to convert the gene expression matrix into a

gene set score matrix. Moreover, the clusterProfiler package was

used to identify and visualize the GO terms (including biological

process, cellular component, and molecular function) and KEGG

pathways enriched for proteins.

Correlation of PUSs with tumor
microenvironment

A previous study conducted an extensive immunogenomic

analysis of over 10,000 tumor samples from 33 different cancer

types in the TCGA and identified six immune subtypes spanning

cancer tissue types (Thorsson et al., 2019). In our study, we

analyzed the differences in PUSs expression in samples of

different immune subtypes from the TCGA-LIHC cohort. The

abundance of different immune cell types and the activity of

immune functional pathways in HCC samples were estimated by

single sample gene set enrichment analysis (ssGSEA) (Barbie

et al., 2009). The analysis was performed using the GSEABase

package and the GSVA package. The ESTIMATE algorithm

could score tumor purity, the level of stromal cells, and the

FIGURE 1
Flowchart of the present research.
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level of immune cell infiltration in the tumor tissue based on

expression data (Becht et al., 2016). We obtained stromal score,

immune score, ESTIMATE score, and tumor purity for HCC

samples using the estimate package.

Collection of the clinical specimens

The clinical specimens involved in this study were obtained

from HCC patients who underwent hepatectomy at Qingdao

Municipal Hospital. All patients had been pathologically

confirmed and diagnosed with HCC. Cancer tissues and matched

paracancerous tissue were frozen immediately in liquid nitrogen

after resection and then stored at −80°C prior to use. The study was

approved by the Ethics Committee of the Qingdao Municipal

Hospital and conducted following the Declaration of Helsinki.

Cell culture

Human hepatocyte LO2 cells and human HCC cells (Hep3B,

Huh7) were purchased from the Chinese Academy of Sciences Cell

Bank (Shanghai, China). The cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; HyClone, United States)

containing 10% fetal bovine serum (FBS; Excellbio,

United States) and 1% penicillin - streptomycin (HyClone,

United States). All cells were incubated at 37°C under 5% CO2.

RNA extraction and quantitative real-
time PCR

Total RNA was extracted from clinical tissues or cell lines with

TRIzol reagent (Tiangen Biotech, China). cDNA was synthesized

from total RNA using a PrimeScript RT reagent kit (TaKaRa).

SYBR Green assays (TaKaRa) were used to perform the RT-qPCR.

GAPDH was used as the loading control, and the 2-ΔΔC t method

was used to calculate the relative expression of mRNA. The primer

sequences are listed in Supplementary Table S2.

Statistical analysis

Statistical analyses were performed using R software (V4.1.2).

Comparisons between two groups and multiple groups were

presented via Wilcoxon rank-sum test and the Kruskal–Wallis

test, respectively, unless otherwise specified. ROC curves were

performed to measure the specificity and sensitivity of the

variables for the diagnosis of HCC. Spearman correlation test

was adopted to ascertain the correlation between variables. K-M

survival curve and the log-rank test were utilized to compare

survival differences between groups of patients. The optimal cut-

off for groups was determined using the survminer package.

Univariate and multivariate COX regression was used to perform

independent prognostic analysis and to construct a prognostic

model. The optimal model was identified based on the Akaike

information criterion (AIC). The nomogram was based on the

independent prognostic factors filtered by multivariate Cox analysis

and generated using the rms package. The predictive performance

of the nomogram was evaluated by time-dependent ROC curves

and calibration curves. Throughout the analysis, three multivariate

COX analyses were performed, which were used for the

independent prognostic analysis of single PUS, the construction

of the PUS score and the construction of the nomogram,

respectively. p < 0.05 was considered statistically significant.

Results

mRNA expression and diagnostic value of
PUSs in hepatocellular carcinoma

First, we analyzed the mRNA expression levels of 13 PUSs in

two RNA-seq datasets (Supplementary Table S3). As shown in

Figures 2A,B, PUSs expression was generally higher in HCC tissues

than in non-cancerous tissues. In the TCGA-LIHC cohort, the

expression ofDKC1, PUS1, PUS3, PUS7, PUS7L, PUSL1, RPUSD1,

RPUSD2,RPUSD3,RPUSD4, TRUB1, andTRUB2was upregulated

in HCC tissues While there was no difference in the expression of

PUS10 (Figure 2C). In the LIRI-JP cohort, DKC1, PUS1, PUS7,

PUS7L, PUSL1, RPUSD1, RPUSD2, RPUSD3, RPUSD4, TRUB1,

and TRUB2 were upregulated in HCC tissues, and PUS10 was

downregulated. In addition, the expression of PUS3 in HCC did

not differ from that in non-cancerous tissues (Figure 2D). Next, we

calculated the fold change (mean TPM in HCC/mean TPM in

normal samples) for each gene and set fold change >1.5 as the

threshold. As a result, nine genes were screened in the TCGA-

LIHC cohort and seven in the LIRI-JP cohort. Of these, a total of

seven genes (DKC1, PUS1, PUS7, PUSL1, RPUSD1, RPUSD2, and

RPUSD3) met the condition in both cohorts, and we considered

them as DEGs (Figure 2E). Then, we validated the expression of

DEGs using the GSE36376 cohort, and the trends were consistent

with the previous results (Figure 2F). Finally, we evaluated the

diagnostic value of DEGs at the mRNA level using ROC curves. As

shown in Figure 2G, these genes were of high diagnostic value in all

three HCC cohorts (AUC 0.798–0.977).

In summary, we identified 7 PUSs that were significantly

upregulated in HCC tissues, which may be closely related to HCC

and could be used as biomarkers for HCC diagnosis.

Correlation between PUSs expression and
clinicopathological parameters

Here, we analyzed the correlation of PUSs expression with

two important clinicopathological parameters, tumor stage
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FIGURE 2
Expression profile and diagnostic value of PUSs mRNA in HCC. (A–B) Heatmap of PUSs expression in TCGA-LIHC (A) and LIRI-JP (B); (C–D)
Expression difference of PUSs between non-cancerous tissues and HCC in TCGA-LIHC (C) and LIRI-JP (D); (E) Venn diagram of differentially
expressed PUSs in TCGA-LIHC and LIRI-JP; (F) Expression of seven differentially expressed PUSs between non-cancerous tissues and HCC in
GSE36376; (G) ROC curves of PUSs expression in three HCC cohorts. (ns: no statistical significance, *p < 0.05, **p < 0.01, and ***p < 0.001).
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and tumor grade. As shown in Supplementary Figure S1A, in

the TCGA-LIHC cohort, all the DEGs had higher expression

levels in poorly differentiated tissues than in well-

differentiated tissues. In the ICGC cohort, due to

incomplete and inaccurate information about tumor grade,

we only included part of the samples in the analysis. The

results showed that, except for RPUSD2, the median

expression of the other six PUSs was higher in poorly

differentiated tissues than in well-differentiated tissues

(Supplementary Figure S1B). Notably, the results for PUS7,

RPUSD2 and RPUSD3 were not statistically significant, which

may be due to the small sample size of poorly differentiated

FIGURE 3
(Continued).
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cases. Meanwhile, the expression of DKC1, PUS7, and

RPUSD1 was also higher in patients with advanced HCC

(Supplementary Figure S1C). And the correlation between

PUSs expression and tumor stage was also confirmed in the

LIRI-JP cohort (Supplementary Figure S1D). These results

suggested that PUSs may be involved in the

progression of HCC and may be associated with poor

prognosis.

TABLE 1 Univariate Cox analysis of PUSs and clinical factors.

Univariate analysis

Overall Survival (OS) Progression Free
Survival (PFS)

Characteristics TCGA-LIHC LIRI-JP TCGA-LIHC

HR (95% CI) P HR (95% CI) P HR (95% CI) P

DKC1 1.021(1.012-1.031) <0.001 1.022(1.014-1.030) <0.001 1.012(1.004-1.021) 0.003

PUS1 1.054(1.030-1.080) <0.001 1.023(1.008-1.039) 0.003 1.037(1.015-1.060) 0.001

PUS7 1.061(1.027-1.097) <0.001 1.073(1.031-1.116) <0.001 1.046(1.017-1.075) 0.002

PUSL1 1.026(1.012-1.041) <0.001 1.026(1.007-1.046) 0.008 1.005(0.989-1.022) 0.529

RPUSD1 1.019(1.005-1.034) 0.007 1.037(1.005-1.069) 0.024 1.003 (0.989-1.018) 0.637

RPUSD2 1.006(0.958-1.055) 0.823 1.030(0.939-1.130) 0.533 1.032(0.992-1.074) 0.119

RPUSD3 1.050(1.024-1.078) <0.001 1.039(1.017-1.062) <0.001 1.033(1.009-1.058) 0.006

Age 1.010(0.996-1.025) 0.174 1.003(0.973-1.034) 0.863 0.994(0.982-1.005) 0.280

Gender (M/F) 0.776(0.531-1.132) 0.188 0.536(0.287-0.998) 0.049 0.933(0.673-1.294) 0.679

Grade (G3-4/G1-2) 1.141(0.784-1.661) 0.490 1.151(0.841-1.574) 0.380

Stage (III-IV/I-II) 2.500(1.721-3.632) <0.001 2.479(1.355-4.533) 0.003 2.213(1.596-3.068) <0.001

FIGURE 3
(Continued). Survival differences of HCC patients stratified by PUSs expression. (A–B) OS in TCGA-LIHC (A) and LIRI-JP (B); (C) PFS in TCGA-LIHC.
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Prognostic value of PUSs in hepatocellular
carcinoma

First, we divided all HCC patients into high and low

expression groups according to the median level of PUSs

expression, and analyzed the survival differences between the

two groups using the Kaplan-Meier method. As shown in Figures

3A,B, the patients with high expression of DKC1, PUS1, PUS7,

PUSL1, and RPUSD3 had better OS. And the same difference was

also found in the PFS of patients (Figure 3C).

Then, Cox regression models were used for independent

prognostic analysis. We included the four most common clinical

features (age, gender, tumor stage, and tumor grade) as confounding

factors and excluded the patients who lacked complete clinical

information. As a result, a total of 344 patients from the TCGA-

LIHC cohort and 228 patients from the LIRI-JP cohort were

included in the independent prognostic analysis, respectively

(Supplementary Table S4). The univariate analysis showed that

DKC1, PUS1, PUS7, PUSL1, RPUSD1, and RPUSD3 were

associated with poor OS and DKC1, PUS1, PUS7, and RPUSD3

were associated with poor PFS (Table 1). Further multivariate

analysis showed that DKC1, PUS1, PUS7, PUSL1, and RPUSD3

were independent of the above clinical features, and could be used as

independent risk factors for OS (Supplementary Figure S2).

Meanwhile, PUS1, PUS7, and RPUSD3 could be used as

independent risk factors for PFS (Supplementary Figure S3).

TABLE 2 Results of multivariate Cox analysis for PUSs.

Multivariate analysis

Overall Survival (OS) Progression Free
Survival (PFS)

Characteristics TCGA-LIHC LIRI-JP TCGA-LIHC

HR (95% CI) P HR (95% CI) P HR (95% CI) P

DKC1 1.019(1.009-1.028) <0.001 1.018(1.009-1.026) <0.001 1.008(0.999-1.017) 0.076

PUS1 1.046(1.021-1.071) <0.001 1.020(1.00 -1.036) 0.011 1.030(1.007-1.053) 0.010

PUS7 1.056(1.021-1.093) 0.002 1.066(1.024-1.110) 0.002 1.034(1.003-1.066) 0.031

PUSL1 1.018(1.003-1.033) 0.016 1.023(1.003-1.043) 0.024

RPUSD1 1.012(0.998-1.027) 0.104 1.032(0.998-1.067) 0.064

RPUSD3 1.041(1.015-1.067) 0.002 1.032(1.010-1.054) 0.004 1.029(1.005-1.054) 0.016

TABLE 3 Distribution of CNVs of PUSs and correlation of CNVs with PUSs expression in TCGA-LIHC.

Copy Number Variation of PUSs in TCGA-LIHC

Gene Total
amplification
(%)

Total
deletion
(%)

Heterozygous
amplification
(%)

Heterozygous
deletion (%)

Homozygous
amplificatin
(%)

Homozygous
deletion (%)

Spearman
correlation

FDR

DKC1 23.24 17.57 21.35 17.30 1.89 0.27 0.17 0.002

PUS1 12.70 15.68 11.35 15.68 1.35 0.00 0.42 <0.001
PUS3 5.95 25.41 5.68 25.14 0.27 0.27 0.34 <0.001
PUS7 31.62 7.57 30.54 7.57 1.08 0.00 0.34 <0.001
PUS7L 12.97 10.81 12.70 10.81 0.27 0.00 0.28 <0.001
PUS10 12.43 9.73 12.16 9.46 0.27 0.27 0.30 <0.001
PUSL1 6.22 43.51 5.95 40.54 0.27 2.97 0.36 <0.001
RPUSD1 11.35 29.46 10.00 28.92 1.35 0.54 0.39 <0.001
RPUSD2 9.73 19.19 9.73 19.19 0.00 0.00 0.43 <0.001
RPUSD3 14.05 12.70 12.70 12.70 1.35 0.00 0.36 <0.001
RPUSD4 6.22 25.68 5.95 25.41 0.27 0.27 0.39 <0.001
TRUB1 9.73 28.65 9.73 28.65 0.00 0.00 0.30 <0.001
TRUB2 7.84 30.81 7.30 30.81 0.54 0.00 0.52 <0.001
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FIGURE 4
Construction and validation of a PUS-based nomogram. (A) The coefficients of three optimal PUSs; (B) K-M analysis for OS of HCC patients
stratified by PUSscore; (C–D) Association of PUSscore with tumor stage (C) and tumor grade (D); (E)Correlation of PUSscore withMKI67 expression;
(F) Representative HE staining and immunohistochemical results of HCC tissues with different levels of PUSscore; (G) Multivariate Cox analysis of
PUSscore and clinical factors; (H) Development of a nomogram based on PUSscore and tumor stage; (I) K-M analysis for OS of HCC patients
stratified by nomogram points; (J) The time-dependent ROC curves of the nomogram; (K) The calibration curves for the nomogram.
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The hazard ratio and 95%CI adjusted by four clinical features

were summarized in Table 2. Finally, we validated the

expression of these five prognosis-related PUSs in clinical

tissues and cell lines. As expected, their expression was

consistently higher in HCC tissues than in non-cancerous

tissues and in HCC cells (Hep3B and Huh7) than in

LO2 cells. Besides, the results from the CCLE database

(https://portals.broadinstitute.org/ccle/about) showed that

these five PUSs’ expression varied between different

hepatocellular carcinoma cell lines (Supplementary Figure

S4). These results again demonstrated that PUSs might be

closely related to HCC.

Establishment of a prognostic nomogram
based on PUSs

To apply the prognostic value of PUSs to clinical practice, we

further constructed a nomogram using TCGA-LIHC data to

predict OS.

FIGURE 5
CNVs of PUSs and the correlation between PUSs and mutations. (A) Survival differences of HCC patients stratified by PUSs CNV; (B–C)
Differences in TP53 mutation rates in HCC tissues with low versus high PUS expression; (D–E) Correlation of PUSs expression with TMB. (**p <
0.01 and ***p < 0.001).
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FIGURE 6
Functional analysis of PUSs in HCC. (A) Correlation of five prognosis-related PUSs expression; (B) Venn diagram of prognosis-related pathways
(GSVA scores) in TCGA-LIHC and LIRI-JP; (C–D) Correlation of PUSs expression with GSVA scores of risk pathways (C) and protective pathways (D);
(E) Top five KEGG pathways in high PUSs expression group based on GSEA; (F) Correlation of PUSs expression with m6A regulators expression. (*p <
0.05, **p < 0.01, and ***p < 0.001).
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First, based on the PUSs screened in the univariate analysis,

we used multivariate COX analysis again to construct a PUS-

related prognostic signature, which was calculated as follows:

PUS score = Σ(Expi*coefi). Where Expi and Coefi denote the

expression of PUSs and the coefficients obtained from

multivariate COX analysis, respectively. The coefficients of the

3 PUSs in the signature are shown in Figure 4A. As expected, the

patients with high PUS scores had poorer OS (Figure 4B). And

the PUS score also correlated with the patient’s tumor stage and

grade (Figures 4C,D). Besides, we also observed a significant

positive correlation between the PUS score and the expression of

MKI67, the encoding gene of ki67 protein, which is one of the

most commonly used prognostic indicators of malignancy in

clinical practice (Figure 4E). We then calculated the relative PUS

scores for the tissues from our clinical center based on the relative

expression of PUSs. As shown in Figure 4F, the expression of

ki67 was significantly higher in the tissue with the highest PUS

score than in that with the lowest PUS score. Further multivariate

COX analysis showed that the signature was an independent

prognostic factor for OS (Figure 4G). Next, we integrated the

FIGURE 7
Relationship between PUSs and TME. (A) Differences in PUSs expression in HCC tissues of different immune subtypes; (B) Correlation of PUSs
expression with the estimated abundance of immune cells; (C) Correlation of PUSs expression with the estimated activity of immune functions; (D)
Correlation of PUSs expression with ESTIMATE score and estimated tumor purity. (ns: no statistical significance, *p < 0.05, **p < 0.01, and ***p <
0.001).

Frontiers in Genetics frontiersin.org12

Jin et al. 10.3389/fgene.2022.944681

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.944681


FIGURE 8
Expression levels of PUS proteins in HCC and their diagnostic and prognostic value. (A) Differences in PUS proteins expression between non-
cancerous tissues and HCC; (B) ROC curves of PUS proteins expression in HCC; (C) Representative immunohistochemical results of three
differentially expressed PUS proteins; (D) K-M analysis for OS and RFS of HCC patients stratified by protein expression of three differentially expressed
PUSs. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 9
Potential functions of PUS proteins in HCC. (A) Correlation of three prognosis-related PUS proteins expression; (B) Venn diagram of DEPs co-
expressedwith PUS proteins; (C–D)GO terms for DEPs positively (C) and negatively (D) correlated with PUS proteins; (E–F) KEGG pathways for DEPs
positively (E) and negatively (F) correlated with PUS proteins.
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PUS score with another prognostic factor, the tumor stage, to

establish a nomogram (Figure 4H). With this nomogram, we can

calculate the risk score for patients and thus predict their OS.

Then, we divided all patients into three groups based on their risk

scores, and the K-M curves showed significant differences in OS

between the three groups (Figure 4I). The ROC curves showed

good accuracy for this nomogram in predicting OS with the AUC

was 0.733 for 1-year, 0.701 for 2-year, 0.718 for 3-year and

0.723 for 5-year (Figure 4J), and the calibration curves showed

the predictions were almost identical to the actual observations

(Figure 4K). These results suggested that the nomogram was a

robust prognostic predictor for patients in the TCGA-LIHC

cohort. Finally, we validated the above findings in the LIRI-JP

cohort (Supplementary Figure S5).

Copy number variations of PUSs and the
correlation between PUSs and gene
mutations in hepatocellular carcinoma

Here, the CNVs of PUSs in the TCGA-LIHC cohort were

analyzed by using the GSCA database. First, we obtained the

composition of PUSs CNVs. As can be seen in Table 3, the

proportion of heterozygous CNV was significantly higher than

that of homozygous CNV. Among them, PUS7 had the highest

percentage of heterozygous amplification, while PUSL1 had the

highest percentage of heterozygous deletion. Moreover, CNVs

of PUSs were positively correlated with the mRNA expression of

PUSs. Then, we analyzed the correlation between CNVs and

patients’ prognosis. As a result, CNV of four genes (PUS1,

PUS7, PUS7L, and RPUSD2) were associated with patients’

prognosis (Figure 5A). Of these, the deletion of PUS7 and

RPUSD2 copy numbers mean poor OS and PFS. Patients

with PUS1 amplification had the worst OS, and patients with

wild type of PUS1 copy number had the best OS. As for PUS7L,

its CNV was also associated with a poor prognosis. In detail,

compared to PUS7L deletion, patients with PUS7L

amplification had worse OS, but the difference was not

significant in PFS. The above results suggested that the

CNVs of PUSs may also be potential prognostic markers for

HCC patients.

Due to the extremely low incidence of PUSsmutation in both

HCC cohorts, we did not further analyze its significance.

However, we noted a correlation between PUSs expression

and mutations in TP53, the most mutated gene in both HCC

cohorts (Supplementary Table S5). Based on the median of

7 DEGs expression, we divided all patients into high and low

expression groups. Then we found a higher incidence of TP53

mutation in the high expression group (Figures 5B,C). We also

calculated the TMB of each HCC sample based on the somatic

mutation data and found that the expression of RPUSD2 and

RPUSD3 was positively correlated with TMB (Supplementary

Table S6) (Figures 5D,E).

Potential pathways for the roles of PUSs in
hepatocellular carcinoma

To further explore the roles of 5 independent prognostic

PUSs in HCC, we performed functional pathway analyses based

on two RNA-seq cohorts.

First, we analyzed the correlation between the 5 PUSs

expression in HCC tissues. As shown in Figure 6A, the

expression of these five genes was significantly positively

correlated, suggesting that they may act synergistically with

each other in HCC.

Next, we performed GSVA to evaluate the enrichment score

of 186 KEGG pathways in each HCC sample and used univariate

COX models to screen for prognosis-related pathways. As a

result, we identified 31 risk pathways (HR > 1, p < 0.05) and

29 protective pathways (HR < 1, p < 0.05) in the TCGA-LIHC

cohort, 36 risk pathways and 45 protective pathways in the LIRI-

JP cohort (Supplementary Tables S7, S8). Moreover, 27 risk

pathways and 20 protective pathways were filtered as the

intersection of two results (Figure 6B). In detail, the risk

pathways mainly focused on genetic information processing,

substance metabolism, cell cycle, and immune response. And

the protective pathways were almost entirely involved in

metabolism.

Then, we analyzed the correlation between PUSs expression

and the enrichment scores of these prognostic KEGG pathways.

As expected, the expression of PUSs was significantly positively

correlated with most risk pathways and negatively correlated

with most protective pathways (Figures 6C,D). It was evident that

PUSs may play broad roles in HCC and lead to poor clinical

outcomes. Moreover, we also used GSEA to explore the KEGG

pathways that were significantly enriched in samples with high

PUSs expression (Supplementary Table S9). And the top

5 pathways ranked by NES for each PUSs are shown in

Figure 6E. Consistent with previous results, many risk

pathways were significantly enriched in samples with high

PUSs expression. In addition, more pathways have been

uncovered, including regulation of autophagy, RIG-I-like

receptor pathway, adherens junction, lysosome, and oxidative

phosphorylation. It can be seen that the relevance of PUSs to

these pathways cannot be ignored.

Finally, we analyzed the correlation of PUSs with m6A,

another post-transcriptional modification that is currently being

studied with great fervor. As shown in Figure 6F, PUSs were

significantly correlated with m6A-related genes, which suggested a

link between two types of RNAmodification, ψ andm6A, in HCC.

Relationship between PUSs and tumor
microenvironment

First, we compared the differences in PUSs expression in

samples of different immune subtypes. In the TCGA-LIHC
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cohort, there were no samples classified as C5 subtype and, only

1 sample was classified as the C6 subtype (Supplementary Table

S10). Therefore, we only compared samples of C1-4 subtypes. As

shown in Figure 7A, PUSs expression was highest in HCC tissues of

the C1 subtype (wound healing), followed by the C2 subtype (IFN-γ
dominant). In contrast, PUSs expression was lowest in HCC tissues

of the C3 subtype (inflammatory). These results suggested that PUSs

may be associated with the tumor immune microenvironment.

Next, we analyzed the correlation between the expression of

PUSs and immune cells and immune pathways (Supplementary

Tables S11, S12). The results in Figure 7B showed that PUSs were

associated with multiple immune cell types. For example, the

expression of DKC1, PUS1, and PUSL1 was positively correlated

with the abundance of activated CD4+ T cells,DKC1 expression was

positively correlated with Th2 cell, and the expression of PUS1,

PUS7, and RPUSD3 was negatively correlated with NK cell, etc.

Meanwhile, we found that RPUSD3 was negatively correlated with

most of the immune cell types. In addition, PUSs were also

associated with some immune functions, such as IFN response,

T cell co-stimulation (Figure 7C). Notably, RPUSD3 was also

negatively associated with multiple immune functions. Then, we

performed the ESTIMATE algorithm to analyze the correlation

between PUSs and TME (Supplementary Table S13). As shown in

Figure 7D, the expression of PUS1 and PUS7 was negatively

correlated with the stromal score. RPUSD3 expression was

negatively correlated with both stromal and immune scores and

positively correlated with tumor purity. Similar to RPUSD3, the

expression of PUS7 may also imply higher tumor purity.

Protein expression of PUSs in
hepatocellular carcinoma and their
diagnostic and prognostic value

To further explore the role of PUSs in HCC, we also assessed

their value at the protein level.

First, we compared the differences in protein expression

levels of these five PUSs in HCC tissues and normal tissues. As a

result, four proteins (DKC1, PUS1, PUS7, and RPUSD3) were

differentially expressed in the two groups of samples

(Figure 8A). Notably, in the raw proteomics data, PUSL1 did

not pass the quality control criteria for the data and was

therefore excluded from the analysis. To ensure the rigour of

the study, we verified the results of PUS protein expression

using the UALCAN database (http://ualcan.path.uab.edu/). As

expected, DKC1, PUS1, PUS7 and RPUSD3 were significantly

upregulated in HCC tissues. In contrast, PUSL1 expression was

not significantly different in HCC and normal tissues

(Supplementary Figure S6). Next, we evaluated the

diagnostic value of these 4 PUSs using ROC curves and

found that DCK1, PUS1, and PUS7 (AUC of 0.912, 0.

912 and 0.922, respectively) could serve as diagnostic

markers for HCC (Figure 8B). The above results suggested

that DCK1, PUS1, and PUS7 were closely associated with HCC.

Then, we obtained the representative immunohistochemical

results from the HPA database, which also confirmed the higher

expression of these 3 PUSs in HCC specimens than in normal

liver specimens (Figure 8C). Finally, we analyzed the

correlation between 3 PUSs and patients’ prognosis using

K-M curves. We divided the patients from the CPTAC

cohort into two groups according to the best cut-off value of

PUSs expression and found that patients in high expression

groups had worse OS and RFS (Figure 8D).

Taken together, DKC1, PUS1, and PUS7 were closely related

to HCC and may serve as potential biomarkers for the diagnosis

and prognosis of HCC.

Functional enrichment analysis of the
PUSs co-expression network

Here, we explored the roles of PUSs in HCC. First, correlation

analysis showed that DKC1, PUS1, and PUS7 were co-expressed

(Figure 9A). Consistent with the results at themRNA level, theymay

play synergistic roles in HCC. Next, we screened for proteins

associated with these 3 PUSs. In the CPTAC cohort, we found

1,274 DEPs using fold change >1.5 as the threshold. After that, we
used the correlation coefficient to measure their correlation with the

PUSs, with |r| > 0.3 being considered significant. As a result,

482 proteins negatively associated with PUSs expression and

221 positively associated with PUSs expression were identified,

respectively (Figure 9B). Finally, we analyzed the GO terms and

KEGG pathways enriched by these proteins (Supplementary Table

S14). The count of enriched genes was used as the ranking criterion,

and the top 10 GO terms for both groups of proteins were shown in

Figures 9C,D, and the top 20 KEGG pathways were shown in

Figures 9E,F. The results showed that the proteins positively

associated with PUSs mainly function in genetic information

processing (such as DNA replication and damage repair,

transcription, and translation) and the cell cycle. Meanwhile, the

proteins negatively associated with PUSs mainly function in

metabolism. These results were almost identical to those at the

mRNA level, which suggested that PUSs may affect HCC precisely

by regulating these functions or pathways and gave us an initial

insight into the role of PUSs in HCC.

Discussion

Pseudouridine (ψ) was the first post-transcriptional

modification discovered and is one of the most abundant

RNA modification types (Charette and Gray, 2000).

Alterations in its deposition are involved in human diseases,

including cancers (Nombela et al., 2021). For example, high levels

of ψ have been detected in body fluids of patients with colon,

prostate, ovarian and oral squamous cell carcinomas, suggesting
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that ψ could be a potential biomarker for cancer diagnosis (Jiang

et al., 2015; Krstulja et al., 2017; Sridharan et al., 2019; Stockert

et al., 2019; Zeleznik et al., 2020). This has led to an increasing

interest in the role of its modifying enzymes in cancer.

Unsurprisingly, PUS is indeed associated with many human

cancer types (Nombela et al., 2021). However, few studies

have explored the role of PUS in HCC. To fill this scientific

gap, our study integrated transcriptomic, proteomic and genomic

data from HCC patients and confirmed the importance of PUS

in HCC.

Previous studies have found that both protein and mRNA

expression of DKC1 was higher in HCC than in non-cancerous

liver tissues and was associated with advanced clinical stage and

poor prognosis (Liu et al., 2012; Ko et al., 2018; Zhang et al., 2021b;

Li et al., 2022a). As for RNA-independent PUSs, their roles inHCC

have rarely been explored. A previous study constructed a lactate

metabolism-related gene signature to predict the prognosis of

HCC patients, and PUS1 was a key risk factor in this gene

signature (Li et al., 2022b). To our knowledge, this is the only

study that explores the value of RNA-independent PUSs in HCC.

In our study, we found that seven PUS genes (DKC1, PUS1, PUS7,

PUSL1, RPUSD1, RPUSD2, and RPUSD3) were significantly

upregulated in HCC and they were expressed at higher levels in

advanced stage or poorly differentiated HCC tissues. Importantly,

all these 7 PUSs can be used as diagnostic markers for HCC, and

5 of them (DKC1, PUS1, PUS7, PUSL1, and RPUSD3) were risk

factors for patients’ survival independently of age, gender, stage

and grade. Moreover, the protein levels of DKC1, PUS1, and

PUS7 were also significantly upregulated in HCC and associated

with poor prognosis. Our findings filled a gap where most PUSs

have been left unstudied in HCC and confirmed the involvement

of PUSs in HCC. The nomogram we further constructed also

applied the prognostic value of PUSs to the clinic, providing

clinicians with a guide that can accurately predict patient

prognosis.

As for the molecular mechanism of PUS involvement in cancer,

it has been reported that overexpression of DKC1 increased the

expression of TERC and rRNA pseudouridylation, promoting the

proliferation of colorectal cancer (Turano et al., 2008; Nersisyan

et al., 2019). The upregulation of PUS7 promoted CRC cell

metastasis and was independent of the catalytic activity of PUS7.

This mean PUS7-mediated ψ may not govern the metastatic

capacity of CRC cells. Meanwhile, the HSP90/PUS7/LASP1 axis

was a potential mechanism by which PUS7 promoted CRC

metastasis (Song et al., 2021). Another study showed that

PUS7 could promote CRC cell proliferation and invasion by

activating PI3K/AKT/mTOR signaling pathway (Du et al., 2021).

In glioma, DKC1 up-regulation was common and necessary for

extensive tumor growth. DKC1 could upregulate the expression of

N-cadherin, MMP-2, HIF1A, CDK2, and cyclin E, and the glioma

cells with DKC1 knockdown exhibited low motility. Meanwhile,

DKC1 knockdown also altered the expression of cell cycle-relative

molecules to arrest at the G1 phase (Miao et al., 2022). Moreover,

the molecular mechanisms of PUS1 involvement in melanoma and

breast cancer, and PUS10 involvement in prostate cancer have also

been initially explored (Zhao et al., 2004; Jana et al., 2017).

So how is PUS involved in HCC? What functions are

available? What pathways? Unfortunately, there has not been

sufficient research to address these issues. As for some typical

pathways with strong relevance to PUS in our study,

abnormalities in cell cycle progression are one of the

fundamental mechanisms of tumorigenesis. Cell cycle

regulatory pathways are combined with other features of

cancer, including metabolic remodelling and immune escape.

This makes regulators of the cell cycle machinery a reasonable

target for anti-cancer therapy (Liu et al., 2022). Meanwhile, the

cell cycle is driven by the activation of cell cycle protein-

dependent kinases (CDKs), whose activity is controlled by

ubiquitin-mediated proteolysis of key regulators such as cell

cycle proteins and CDK inhibitors (Nakayama and Nakayama,

2006). From this, we inferred that ubiquitin-mediated

proteolysis may be closely related to the cell cycle, and they

might synergistically or independently affect the prognosis of

HCC patients. Next, we turn our attention to transcription-

related pathways. The spliceosome is thought to be general

cellular ‘housekeeping’machinery. Spliceosomal mutations and

aberrant splicing are also closely associated with human cancer.

Also, some spliceosome gene mutations can lead to immune

dysregulation. As a result, spliceosome-targeted therapies

(STTs) have emerged as highly effective anti-cancer

strategies (Yang et al., 2021). Transcription mediated by

RNA polymerases is an important factor in determining the

growth of cancer cells. However, inactivation of some tumor

suppressors (e.g., p53) in cancer can dysregulate RNA

polymerases, and oncoproteins (e.g., Myc) can further

stimulate these systems. Such events may have a significant

impact on the growth of cancer cells (White, 2005). And the

basal transcription factors play a vital role in the initiation of

transcription of the encoded genes. They are a group of protein

molecules necessary for RNA polymerase to bind the promoter

(Reese, 2003). As for DNA replication and damage repair, their

involvement in cancer and as features of cancer is an accepted

fact and therefore does not require more elaboration (Modrich,

1994; Gaillard et al., 2015; Jeggo et al., 2016; Carbone et al.,

2020). Cancer is also a metabolic disease due to a metabolic

disorder (Boroughs and DeBerardinis, 2015). Then HCC is

destined to be inextricably linked to metabolic disorders, as the

liver is the central metabolic organ of the body (Ng et al., 2017).

The prognosis-related pathways derived in our study again

supported the idea that metabolism may be another

determinant of the impact of PUSs on HCC. Interestingly,

the effect of PUSs on nucleotide metabolism appeared to be

distinct from its effect on the metabolism of other substances,

although they both ultimately lead to a poorer prognosis.

Overall, the pathways regulated by PUSs in HCC are likely

to be very broad and interconnected. And it is also unknown
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whether these functions are dependent on the catalytic activity

of PUS. In future, research should focus on the effect of PUS on

the above pathways in HCC.

TME also plays crucial roles in the pathogenesis, malignant

features, and treatment of HCC (Hernandez-Gea et al., 2013).

Therefore, the link between PUSs and TME should also be

considered. The correlation between cell cycle and immune

response, the enrichment of immune-related pathways in GSEA,

the differential expression of PUSs in different immune subtypes of

tissues, the correlation between PUSs expression and immune cell

infiltration as well as immune function, and the association of PUSs

expression with the ESTIMAT score, they all suggested that PUSs

may be potential regulators of TME. Among them, the expression of

RPUSD3 seemed to imply a lack of immune cells and a low level of

many immune functions in the TME. This was supported by the

positive correlation between its expression and tumor purity. Sowhat

does the association of PUSs with TME lead to? Some examples, it

was found that NK cell was the main antitumor cell type in the liver

(Sonnenberg and Hepworth, 2019). The IFN response plays crucial

roles in promoting host antitumor immunity and is considered a

critical component of the cancer elimination phase of cancer

immunosurveillance (Dunn et al., 2006). Therefore, we

hypothesized that the role of PUSs in HCC may be partly

through influencing antitumor immunity. Nevertheless, the TME

is very complex. Some ingredients can even have opposite effects

under different conditions. The mechanisms by which PUSs shape

the TME are yet to be further explored.

There is now consensus that mutation of TP53 converts it from

a tumor suppressor gene to an oncogene. Themutated TP53 loses its

original regulatory functions, which are mainly focused on cell cycle,

apoptosis, DNA repair, etc. (Vaddavalli and Schumacher, 2022).

This also coincides with the findings of our study. As for the CNV of

PUSs, its impact on the prognosis of HCC patients has also been

revealed. Hence, more emphasis should be placed on the CNV of

PUSs in future.

Certain limitations of our study are to be acknowledged. First,

due to data limitations, some critical risk factors, such as HBV

infection, were not included in the analysis, which may have led to

biased conclusions. Second, the proteomic analysis was based on

only one Chinese HBV-related HCC cohort. Therefore, there is a

need to further dissect the value of PUS proteins in a larger sample.

Third, the molecular mechanisms underlying the role of PUSs in

HCC need to be further investigated through comprehensive in

vivo and in vitro experiments. We will continue to focus on these

issues in future research.

Conclusion

In conclusion, multiple PUS genes expression was upregulated in

HCC. Among them, DKC1, PUS1, PUS7, PUSL1, and RPUSD3 were

independent risk factors for OS. At the protein level, the expression of

DKC1, PUS1, andPUS7was upregulated inHCCand correlatedwith

poor prognosis. Moreover, both mRNA expression and protein

expression of PUSs were highly diagnostic of HCC. Further

functional analysis revealed that PUSs might be involved in the

regulation of multiple pathways in HCC. Therefore, PUSs may play

essential roles inHCC and can be used as potential biomarkers for the

diagnosis and prognosis of patients.
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