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To evaluate the application potential of high-density SNPs in rice distinctness, uniformity,
and stability (DUS) testing, we screened 37,929 SNP loci distributed on 12 rice
chromosomes based on whole-genome resequencing of 122 rice accessions. These
SNP loci were used to analyze the DUS testing of rice varieties based on the correlation
between the molecular and phenotypic distances of varieties according to UPOV option 2.
The results showed that statistical algorithms and the number of phenotypic traits and SNP
loci all affected the correlation between the molecular and phenotypic distances of rice
varieties. Relative to the other nine algorithms, the Jaccard similarity algorithm had the
highest correlation of 0.6587. Both the number of SNPs and the number of phenotypes
had a ceiling effect on the correlation between the molecular and phenotypic distances of
varieties, and the ceiling effect of the number of SNP loci was more obvious. To overcome
the correlation bottleneck, we used the genome-wide prediction method to predict
30 phenotypic traits and found that the prediction accuracy of some traits, such as the
basal sheath anthocyanin color, glume length, and intensity of the green color of the leaf
blade, was very low. In combination with group comparison analysis, we found that the key
to overcoming the ceiling effect of correlation was to improve the resolution of traits with
low predictive values. In addition, we also performed distinctness testing on rice varieties
by using the molecular distance and phenotypic distance, and we found that there were
large differences between the two methods, indicating that UPOV option 2 alone cannot
replace the traditional phenotypic DUS testing. However, genotype and phenotype
analysis together can increase the efficiency of DUS testing.
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INTRODUCTION

Rice (Oryza sativa L.) is one of the most important staple food
crops for half of the population across the world (Hu et al., 2002).
Rice production in China accounts for about 28.22% of the
world’s total production (Food and Agriculture Organization,
2020). China is not only the largest rice producer and consumer,
but it also has advanced rice breeding techniques and plenty of
rice varieties. As of 1 April 2021, China had a total of
10,702 certified rice varieties, of which 3,243 varieties were
under the protection of plant variety rights (Ministry of
Agriculture and Rural Affairs of People’s Republic of China,
2021).

Distinctness, uniformity, and stability (DUS) are the basic
requirements for the certification of a plant variety. In the DUS
testing process, uniformity testing and stability testing are the
foundation and distinctness testing is the core. Currently, rice
DUS testing requires at least two independent growth cycles as
per the standard DUS testing protocols. The current DUS testing
is only based on phenotypic trait analysis. Although
morphological analysis is very direct, it is easily affected by
environmental conditions. The phenotypes of the same variety
may vary significantly depending on time and location; in
addition, morphological analysis is time consuming, laborious,
and inefficient. Moreover, as a result of the consistent breeding
goals, breeders often use backbone parents with the similar
genetic relationships for cross-breeding, which results in low
genetic diversity of the bred varieties (Liu and Zhang, 2010)
and brings challenges for phenotypic testing. However, in
comparison with morphological characteristics, molecular
markers can be used at various developmental stages and they
are not affected by the environment. Moreover, molecular
markers are abundant and genetically stable, and they are
most widely used for genetic diversity analyses in almost all
crops (Hayward et al., 2015; Hong et al., 2021). Molecular
markers have diverse applications in breeding programs, such
as F1 confirmation, cultivar/hybrid purity testing, DNA finger
printing (Gangurde et al., 2017), foreground and background
selection (Shasidhar et al., 2020), marker-assisted selection
(Cockram et al., 2012; Wagh et al., 2021), and genetic
mapping (Dodia et al., 2019; Jadhav et al., 2021). Molecular
markers are also widely used in the identification of rice varieties.

Pourabed et al. (2015) reported that SSR markers could assist
in rice DUS testing. Zheng et al. (2022) reported that 40 SNP
markers could be used to successfully discriminate between indica
and japonica rice, with a correlation coefficient of 0.86 with
Cheng’s index method. Steele et al. (2021) developed a set of
KASP markers for rapid genotyping and identification of basmati
rice varieties.

The International Union for the Protection of New
Varieties of Plants (UPOV) also proposed three options to
incorporate molecular marker technology into DUS testing
(UPOV INF/18/1, 2011): prediction of phenotypic
characteristics by using linked diagnostic markers (option1);
calculation of molecular distance thresholds to reproduce
phenotypic distinctness determination (option 2); and use
of an unlimited number of molecular markers to

reconstruct a new test system (option 3). In the case of
option 1, because the current development of diagnostic
markers for rice mainly focuses on important agronomic
traits, such as yield, quality, and disease resistance, and
there are few additional studies on other non-major
agronomic traits, there are not enough diagnostic markers
to evaluate and analyze this option. In the case of option 3,
there is also much controversy because setting the threshold
for determination of distinctness at 1 base pair difference could
lead to impractical determination in uniformity and stability
testing. Currently, research into rice DUS testing is mainly
focused on option 2, which is based on a high correlation
between the molecular and phenotypic distances of varieties.
Previous studies have conducted in-depth research on option
2. By using 3,072 SNP markers for barley variety-distinct
analysis, Jones et al. (2013) found that the correlation
between the molecular and phenotypic distances of barley
varieties was between 0.557 and 0.637. It was also believed
that the correlation was affected by kinship and the number of
molecular markers. Liu et al. (2019) used morphological traits
and SSR markers to analyze the genetic diversity of peanut
varieties and found that the correlation between them was
0.36. Guan et al. (2020) used 384 SNPs to perform maize DUS
testing and found that the correlation was only 0.21. The
results of previous studies showed that the correlations
between phenotypic distances and molecular distances were
generally not significantly high, which directly affected the
application of UPOV option 2.

With the advances in sequencing technologies and the
reduction of sequencing costs, SNP markers have become
popular molecular markers in genome research. They have
been widely used in genetic structure analysis (Ebana et al.,
2010), genome-wide association analysis (Huang et al., 2012;
Gangurde et al., 2020; Pujar et al., 2020; Wang et al., 2020), and
genome-wide selection (Cui et al., 2020). Compared with SSR
markers, SNPs have the advantages of genome-wide distribution
and high density, and they are more suitable for efficient
automated analysis. In the present study, on the basis of
whole-genome sequencing of 122 rice accessions, we analyzed
the correlation between the molecular and phenotypic distances
of rice varieties by screening 37,929 SNP loci, and we also
evaluated UPOV option 2 for the DUS testing of rice.

MATERIALS AND METHODS

Experimental Materials
A total of 122 japonica rice varieties, most from China and Japan
(Table 1), were used as the main experimental materials. These
rice varieties were provided by the China National Rice Research
Institute and the National Engineering Research Center of Plant
Space Breeding of South China Agricultural University. The
varieties selected for this study contained both elite lines and
landraces, as well as breeding lines, some of which were sister
lines. As all varieties were phenotypically distinct from each
other, these varieties were suitable to evaluate UPOV option
2 for the DUS testing of rice.
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Extraction of Genomic DNA and SNPCalling
In this study, 30 plump seeds per accession were selected,
sterilized with 1% sodium hypochlorite for 10 min, and then
reconstituted three times with distilled water. The sterilized seeds
were placed in germination bottles, an appropriate amount of
distilled water was added, and then the bottles were placed in a
germination box at 28°C for 14 days. High-quality genomic DNA
was then extracted from 25 seedlings of each line by using a plant
genomic DNA extraction kit (TIANGEN, China), and the quality
was checked on a Nano-drop spectrophotometer. A Covaris
sonicator was used to break the qualified DNA samples into
approximately 350-bp fragments. An NEB Next® Ultra DNA
Library Prep Kit (NEB, United States) was then used to prepare a
DNA library, which included the processes of end repair, polyA
tail addition, and ligation of adapter. Finally, the constructed
library was sequenced with an Illumina NovaSeq
PE150 sequencer at a sequencing depth of 10×. According to
the alignment results of sequencing data on the rice reference

genome (MSU-RGAP 7.0), SNPs were called by using the GATK
software toolkit (McKenna et al., 2010). Furthermore, VCFtools
software (Danecek et al., 2011) was used to filter 738,341 SNPs
with a minimum allele frequency (MAF) greater than 0.05 and
missing rate less than 0.2. Finally, after comparing these SNPs
with the 3K rice core SNPs (The 3K RGP, 2014), we selected a
total of 37,929 SNPs (Supplementary Table S1) to evaluate
UPOV option 2 in rice.

Morphological Survey
The experimental rice varieties were planted during
September–December 2021 at the Wushan experimental base
of South China Agricultural University, according to the
requirements of the UPOV test guide for rice (UPOV TG/16/
8, 2004; UPOV TG/16/9, 2020). Each plot was 1.5 m long and 1 m
wide, with a row spacing of 20 cm and a plant spacing of 10 cm.
Phenotypic data were recorded for 30 morphological traits
(Table 2; Supplementary Table S2). Among them, visual

TABLE 1 | Rice accessions used in the present study.

No. Cultivator Country No. Cultivator Country No. Cultivator Country

A1 Tailangpingweiju Thailand A42 Nonglin-9 Japan A83 Chaozhiguang Japan
A2 Boyo Indonesia A43 Beinian Japan A84 Aizhi-78 Japan
A3 RT103 Congo A44 Qingfeng Japan A85 Aizhi-80 Japan
A4 UDEK Indonesia A45 Libingnuo Japan A86 Guandong-11 Japan
A5 Xiaohongnuo China A46 Dongfengnian-17 Japan A87 Nonglin-93 Japan
A6 Huangsinuo China A47 Fangzhu-5 Japan A88 Fengguang Japan
A7 Cungunuo China A48 Xinrong Japan A89 Yueguang Japan
A8 Zaonuo China A49 Nonglin-268 Japan A90 Yusuibo Japan
A9 Gaogannuo China A50 Kujiuwang-3 Japan A91 Xushi Japan
A10 Baokanglengshuihong China A51 Yulong Japan A92 Misui Japan
A11 Zaohongnuo China A52 Guijin Japan A93 Youjinjin Japan
A12 Sanlicun China A53 Songmunuo Japan A94 Aizhi-53 Japan
A13 JR7729-2 Philippines A54 Suwecn Japan A95 Nonglin-288 Japan
A14 JW60 India A55 Jisa-1 Japan A96 Nonglin-218 Japan
A15 Erbaixuan China A56 Tengban-4 Japan A97 Bifeng Japan
A16 Lengshuibai China A57 Aoyu-187 Japan A98 Guobao-P2 Japan
A17 Lengshuinuo China A58 Yuxingnuo Japan A99 Rizhiguang Japan
A18 Bingshuibai China A59 Xinfangjiu-4 Japan A100 Yuanye-4 Japan
A19 Jiuyuehuang-1 China A60 Weihuamin-2 Japan A101 Nanjingnongda-W30 China
A20 Zhangdianzaonuogu China A61 Qingxinuo-107 Japan A102 Nanjing-16 China
A21 Kawluyoeng Thailand A62 Chaofeng-1 Japan A103 Milyang63 South Korea
A22 Dongnong-363 China A63 Nonglin-276 Japan A104 Omc-9 Vietnam
A23 Zixiangnuo China A64 Qiutianxiaodin Japan A105 Duzi-129 Soviet Union
A24 Yuanzizhandao China A65 Xinan-72 Japan A106 Chendao China
A25 Yuli Japan A66 Feiqinian Japan A107 Bodao-1 China
A26 Hejiang-18 China A67 Sanliyannuo Japan A108 Bodao-2 China
A27 Hanlundao China A68 Nonglin-277 Japan A109 Aenmetan-2 Indonesia
A28 Guihuahuang China A69 Aoyu-324 Japan A110 Salazana-3 Madagascar
A29 Tsukushiakamochi Japan A70 Luyu-42 Japan A111 Xuelihong China
A30 Koshihikari Japan A71 Aoyu-191 Japan A112 Heimi-2 China
A31 Heuknambyeo South Korea A72 Nonglin-289 Japan A113 Xinyidanuo China
A32 Beniroman Japan A73 Xiaobei Japan A114 Hainanhong China
A33 Asamurasaki Japan A74 Xiannan-1 Japan A115 Hainannuo China
A34 Lemont United States A75 Aoyu-334 Japan A116 Hainanhei China
A35 Aizhixiang Japan A76 Nonglin-285 Japan A117 HN-27 China
A36 Ludaononglin-2 Japan A77 Dadao Japan A118 HN-10 China
A37 Chunnuo Japan A78 Fengxu Japan A119 HN-54 China
A38 Youliujiannuo Japan A79 Luorongdao Japan A120 HN-107 China
A39 Fenghei Japan A80 Changqi Japan A121 HN-31 China
A40 Ludaononglinnuo-1 Japan A81 Aoyu-2 Japan A122 HN-61 China
A41 Ludaononglinnuo-21 Japan A82 Xingnian Japan
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traits were investigated by inspection and recorded with grade
codes 1–9, and quantitative traits were measured with scale tools
and converted into grade codes 1–9 based on standard varieties
(UPOV TG/16/8, 2004; UPOV TG/16/9, 2020).

Statistical Analysis
In this study, Admixture software (Alexander et al., 2009) was
used to analyze the population structure of accessions based on
37,929 SNPs. First, the number of clusters K of the tested
materials was set to be 1–10, and then the cross-validation
error (CVE) rate for each number of clusters was calculated.
Finally, the K value corresponding to the minimum cross-
validation error rate was determined as the optimal number of
clusters. Principal component analysis (PCA) was performed by
using the GCTA software (Yang et al., 2011), first by using the
parameter “--make-grm” to obtain a genetic relationship matrix
(GRM) and then by performing a plot analysis based on the first
two principal components.

A phenotype 0–1 matrix was constructed based on
investigation data of morphological traits. The variety that
occurred on the level i of a trait was recorded as 1; otherwise,
it was recorded as 0. Similarly, the SNP 0–1matrix of rice varieties
was constructed based on the SNP loci information, and the
missing loci were filled with mode. Loci with the same
information as the reference genome were marked as 0;
otherwise, they were marked as 1, and heterozygous loci were
marked as 0.5. R software (R Core Team, 2012) was used for
statistical analysis. Initially, the Euclidean, Manhattan, Gower,
Canberra, Harmonic_mean, Jaccard, Squared_euclidean, Person,
Cosine, and Dice distances of morphological traits and SNP loci
were calculated with the R package “philentropy” (Drost, 2018).
Furthermore, the correlation between molecular and phenotypic
distances of rice varieties was calculated, and the optimal
similarity algorithm was screened. On the basis of the above
analysis, the effect of trait number and SNP loci number on the
correlation was analyzed. Then, 10%, 20%, 40%, 60%, 80%, and
100% of phenotypic distances were set as the thresholds to
compare with the corresponding molecular distances (Jones
et al., 2013), and UPOV option 2 was evaluated according to

the efficiency of reproducibility. In this study, the R package
“dendextend” (Galili, 2015) was used to analyze the phenotypic
and molecular clustering results.

The rrBLUP (ridge regression best linear unbiased prediction)
data package (Endelman, 2011) was used to perform genome-
wide prediction analysis on 30 DUS traits based on 37,929 SNP
loci. The formula is y � μ + Xα + e, where y is the best linear
unbiased predictor vector for the trait of the tested variety, µ is the
population mean, α is the additive effect of the markers, X is the
genotype matrix, and e is the residual term. The training group
comprised 90 randomly selected varieties, and the remaining
32 varieties were used as the testing group. The analysis was
performed 100 times to calculate the prediction value of each
trait. The correlation coefficient between the predicted value and
the actual observed value for the trait in the testing group was
used as the prediction accuracy.

RESULTS

Analysis of Sequencing Results and
Distribution of SNP Loci
A total of 699.14 Gb of raw data was generated by whole-
genome sequencing 122 rice varieties, with an average of
5,730.7 Mb of data per sample. After filtration, 697.56 Gb of
clean data was recovered, with an average of 5,717.7 Mb per
sample; Q20 (the base call accuracy is 99%) was greater than
96%, and Q30 (the base call accuracy is 99.9%) was greater
than 91% (Supplementary Table S3). On the basis of
sequencing, a total of 37,929 SNPs were then obtained by
alignment to the reference genome. Most of the SNP loci were
low heterozygosity (Figure 1) and uniformly distributed in
the genome with an average distribution density from 6.20 to
20.26 kb/SNP (Table 3; Supplementary Figure S1). For these
SNPs, 33.87% of the inter-loci distances were in less than 1kb,
and 45.68% were in more than 3 kb (Figure 2A). In addition,
most of the SNP loci were located in intergenic regions, and
the rest were in introns, coding regions, and UTR regions
(Figure 2B).

TABLE 2 | 30 Morphological traits used for the DUS testing of rice.

No. Trait No. Trait

1 Basal leaf sheath: anthocyanin coloration 16 Panicle: exsertion
2 Plant: growth habit 17 Glume: length
3 Leaf blade: intensity of green color 18 Lemma: color
4 Leaf blade: anthocyanin coloration 19 Grain: ratio length/width
5 Leaf blade: pubescence 20 Grain: color
6 Time of panicle emergence 21 Grain: aroma
7 Awn: length 22 Plant: number of panicles
8 Lemma: color of tip 23 Stem: thickness
9 Stigma: color 24 Stem: length
10 Stem: anthocyanin coloration of nodes 25 Flag leaf: length of blade
11 Lemma: pubescence 26 Flag leaf: width of blade
12 Flag leaf: attitude of blade 27 Panicle: length
13 Panicle: attitude 28 1000 seed weight
14 Panicle: number of secondary branches 29 Grain: length
15 Panicle: attitude of branches 30 Grain: width
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Diversity Analysis Based on SNP Loci
Using Admixture software (Alexander et al., 2009), the genetic
structure of 122 accessions was analyzed based on 37,929 SNPs.
The results showed that the CVE showed a downward trend with
an increase of the K value.When the K value was 4 and 8, the CVE
reached the valley value (Figure 3B), and after further
combination with PCA (Figure 3C), phylogenetic tree analysis
(Figure 3D), and material source information, the tested
materials were finally divided into four subgroups
(Figure 3A). Among them, the composition of the
POP1 subgroup was more complex, with 25 accessions from
eight countries including China, Japan and the United States. The
POP2 subgroup had 23 accessions, mostly from China. The
POP3 subgroup had 28 accessions, mainly from Japan. The

46 accessions of the POP4 subgroup were mainly from
Japanese breeding lines. According to the analysis results,
varieties from the same country tended to be clustered together.

Comparison of the Correlations Between
Molecular and Phenotypic Distances of
Rice Varieties by Different Similarity
Algorithms
We used 10 different similarity algorithms to analyze the
correlation between the molecular and phenotypic distances of
rice varieties and found that the algorithms had a significant
impact on the correlations. Among them, the Jaccard algorithm
had the highest correlation of 0.6587, whereas the correlation of
the Pearson algorithm was only 0.5541 (Figure 4A).
Furthermore, we found that some variety pairs showed small
molecular distances but higher phenotypic distances, or small
phenotypic distances but higher molecular distances (Figure 4B),
suggesting that the phenotypic differences did not match the
molecular differences. This might be an important reason for the
low correlation.

Effect of Numbers of SNP Loci and
Phenotypic Traits on the Correlation
Between Molecular and Phenotypic
Distances
To investigate the factors that influence the correlation between
molecular and phenotypic distances, we analyzed the effect of the
numbers of SNP loci and phenotypic traits on the correlation by
using the Jaccard algorithm. The results showed that as the

FIGURE 1 | A histogram showing the normal distribution of heterozygosity of 37,929 SNPs.

TABLE 3 |Chromosome distribution of SNP loci used for calculating the molecular
distance.

Chromosome Chr. length (Mb) Number of SNP Density (kb/SNP)

Chr.1 44.36 3822 11.61
Chr.2 37.76 3366 11.22
Chr.3 39.69 1959 20.26
Chr.4 35.85 4582 7.82
Chr.5 31.24 1770 17.65
Chr.6 32.47 2490 13.04
Chr.7 30.28 2976 10.17
Chr.8 29.95 3517 8.52
Chr.9 24.76 1946 12.72
Chr.10 25.58 3412 7.50
Chr.11 31.78 5126 6.20
Chr.12 26.60 2963 8.98
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number of SNP loci increased, the correlation increased rapidly at
the beginning and became consistent at approximately 6.5; after
that, the correlation did not change significantly even when the
loci number continued to increase (Figure 5A). In terms of the
number of phenotypic traits, there was also a plateau effect. The
correlation initially increased with an increasing number of traits
and then gradually leveled off (Figure 5B). The above results
suggest that a certain number of SNP loci or phenotypic traits
were enough to effectively improve the correlation between the
molecular and phenotypic distances.

Correlation Analysis of DUS Traits in Rice
Analysis results of the correlations of 30 DUS traits (Figure 6)
showed that there was a positive correlation between the color of
brown rice and the coloration of anthocyanins in the leaves, basal
leaf sheaths, and stem nodes. Strong positive correlations were
observed among grain length, grain aspect ratio, heading date,
flag leaf width, stem length and thickness, and panicle length. The
pubescence of the lemma was negatively correlated with the
heading date, flag leaf width, stem length and thickness, and
panicle length. The above results indicated that many phenotypic
traits were closely related, and too strong a correlation might have
a negative impact on the phenotypic clustering analysis of
varieties.

Genome-Wide Prediction Analysis of DUS
Traits in Rice
To further analyze the effect of SNP loci on trait expression, we
used the correlation coefficient between the predicted trait
value and the actual phenotypic value as the standard of
prediction accuracy. We used 37,929 SNP loci to predict
30 DUS traits (Table 4) with rrBLUP. The results showed
that the prediction results of morphological traits were quite
different, and the prediction accuracy ranged from 0.102 to
0.840, with an average of 0.479. Traits such as stem length and
stem thickness showed an accuracy of over 0.8, and the
accuracy of stem length was the highest at 0.840. Traits
such as the basal sheath anthocyanin color, glume length,
and intensity of green color of the leaf blade showed an

accuracy of less than 0.2, and the accuracy of the intensity
of green color of leaf blade was only 0.102.

To analyze the effect of different traits on the correlation,
we divided the phenotypic traits into A and B groups with a
prediction accuracy threshold of 0.443 (Table 4). The
prediction accuracy of group A was less than 0.443, with an
average of 0.310, and the prediction accuracy of group B was
more than 0.443, with an average of 0.648. Furthermore, we
performed correlation analysis between the molecular and
phenotypic distances separately (Figure 7). The results
showed that the correlation in group A (0.3786) was
significantly less than that in group B (0.7098), suggesting
that the key to improving the correlation between molecular
and phenotypic distances of rice varieties was to improve the
resolution of traits.

Evaluation and Analysis of UPOV Option 2
The key to UPOV option 2 is to reproduce the phenotype
distinctness determination by setting molecular distance
thresholds. As all varieties were phenotypically distinct from
each other, we conducted distinctness determination analysis
separately by setting different gradients of phenotypic
distances and molecular distances, and we then counted the
number of shared “D” varieties (phenotypically or molecularly
distinct varieties according to artificially set distances). Finally,
UPOV option 2 was evaluated based on the above method. The
results (Table 5) showed that to identify 12 or 24 phenotypic “D”
varieties, at least 72 molecular “D” varieties were needed, whereas
to identify 48, 72, and 96 phenotypic “D” varieties, 122 molecular
“D” varieties were needed. Furthermore, phenotypic and
molecular clustering analyses were performed on the
122 varieties based on the Jaccard distance (Figure 8). The
results showed that only nine pairs of cultivars (A29 and A32,
A43 and A45, A42 and A50, A41 and A72, A79 and A80, A83 and
A84, A105 and A107, A106 and A108, A114 and A115) had the
same cluster analysis results. Among them, A79 and A80 were a
pair of varieties from Japan, their molecular distances were very
small, and the phenotypic differences were mainly reflected in the
stem height and the attitude of the flag leaf blade. The phenotypic
and molecular clustering results of A105, A106, A107, and

FIGURE 2 | Genome-wide SNP density and distribution of 37,929 SNPs. (A) Interval statistics between SNPs. (B) Illustration of the ratio of SNPs in the intergenic
region and different positions in the gene region.
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FIGURE 3 | Details of population structure analysis by using 37,929 SNPs based on 122 rice genotypes. (A) Population structures. (B)Cross-validation error value
of different subgroups. (C) Principal component analysis. (D) Evolutionary tree diagram. Red, green, orange, and blue represent POP1, POP2, POP3, and POP4,
respectively.
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A108 were the same; A107 and A108 were from the same
breeding institutes. The phenotypic differences for the four
varieties were mainly reflected in the heading date, stem
length, and panicle length.

These results suggested that the determinations based on
phenotypic distances and molecular distances were quite
different, and phenotype distinctness testing could not be
reproduced by setting molecular distance thresholds.
Therefore, UPOV option 2 would not be sufficient for DUS
testing in rice.

DISCUSSION

DUS testing is an important scientific basis for the authorization
of new plant varieties. In order to improve the testing efficiency
and quality, researchers have conducted in-depth studies on the
correlation between molecular distances and phenotypic
distances of varieties (Jones et al., 2013; Hong et al., 2021).
Earlier reports showed that there was low correlation between
phenotypic and molecular distances (Gupta et al., 2018; Guan
et al., 2020), which might be related to the low number of

FIGURE 4 | Correlations between the molecular and phenotypic distances based on different algorithms. (A) Correlations based on 10 similarity algorithms. (B)
Correlation between the molecular and phenotypic distances of varieties based on the Jaccard algorithm. The red oval represents small molecular distances but large
phenotypic distances, and the yellow oval represents small phenotypic distances but large molecular distances. P is the significance level, and r is the correlation
coefficient.

FIGURE 5 | Scatter plot of the effect of different numbers of SNPs and traits on the correlation. (A) A scatter plot of the correlation between molecular and
phenotypic distances shows that the correlation improves as the number of SNP loci increases until a ceiling is reached. (B) A scatter plot of correlation between
molecular and phenotypic distances shows the correlation growth trend with an increasing number of traits; the blue line shows a gradual increase of correlation and the
red line shows a reduced increase.
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molecular markers. With the development of sequencing
technology and the reduction of sequencing costs, SNPs have
become important molecular markers for diversity analysis. SNPs
can be used to perform genome-wide association studies (Huang
et al., 2012;Wang et al., 2020) and the rapid identification of high-
throughput varieties (Yuan et al., 2022). In this study, based on
the whole-genome resequencing of 122 rice germplasms, the
screened 37,929 SNP loci were used to analyze the correlation
between the molecular and phenotypic distances of rice
varieties. The results showed that as the number of SNP
loci increased, the correlation rapidly increased up to a
level of approximately 6.5 and then entered a plateau
phase. This finding indicated that although the number of
SNP loci had an impact on the correlation, it could not be the

most critical factor influencing the correlation. In addition, we
also analyzed the effect of statistical algorithms on the
correlation between the molecular and phenotypic
distances. The results showed that relative to the other nine
algorithms, the Jaccard similarity algorithm could achieve a
higher correlation.

To decipher the ceiling effect of the correlation, we used the
genome-wide prediction method to predict 30 phenotypic traits
and found that the prediction accuracy of some traits, such as
the basal sheath anthocyanin color, leaf blade anthocyanin
color, stigma color, awn length, glume length, and intensity
of green color of the leaf blade, was low. Furthermore, in
combination with group comparison analysis, we found that
the key to overcoming the correlation ceiling effect was to

FIGURE 6 | Correlation analysis of trait expression. Only values with a correlation greater than 0.35 or less than −0.35 are displayed.

TABLE 4 | Correlation between predicted and true values of traits achieved by using rrBLUP.

No. Trait Correlation (predicted vs.
measured traits)

Group No. Trait Correlation (predicted vs.
measured traits)

Group

1 Basal leaf sheath: anthocyanin coloration 0.129 A 16 Panicle: exsertion 0.608 B
2 Plant: growth habit 0.760 B 17 Glume: length 0.186 A
3 Leaf blade: intensity of green color 0.102 A 18 Lemma: color 0.540 B
4 Leaf blade: anthocyanin coloration 0.232 A 19 Grain: ratio length/width 0.565 B
5 Leaf blade: pubescence 0.447 B 20 Grain: color 0.360 A
6 Time of panicle emergence 0.765 B 21 Grain: aroma 0.287 A
7 Awn: length 0.307 A 22 Plant: number of panicles 0.315 A
8 Lemma: color of tip 0.384 A 23 Stem: thickness 0.817 B
9 Stigma: color 0.307 A 24 Stem: length 0.840 B
10 Stem: anthocyanin coloration of nodes 0.354 A 25 Flag leaf: length of blade 0.378 A
11 Lemma: pubescence 0.648 B 26 Flag leaf: width of blade 0.740 B
12 Flag leaf: attitude of blade 0.563 B 27 Panicle: length 0.760 B
13 Panicle: attitude 0.614 B 28 1000 seed weight 0.443 B
14 Panicle: number of secondary branches 0.441 A 29 Grain: length 0.605 B
15 Panicle: attitude of branches 0.439 A 30 Grain: width 0.433 A
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improve the resolution of low predictive value traits. In fact, we
also screened SNPs near many known genes, such as
Chr6_5311542 near the key anthocyanin regulator OSC1
(Ithal and Reddy, 2004), Chr8_23986899 near the awn
growth factor GAD1 (Jin et al., 2016), and
Chr5_16510158 near the chlorophyll synthase YGL1 (Wu
et al., 2007). However, the phenotype prediction effect of
these SNPs in the above traits was not ideal. The reason for
this problem was not only related to the low heritability of some
traits (Jones and Mackay, 2015) but also to the expression state
setting of some traits. For example, the setting of the expression
state of the anthocyanin color in the basal leaf sheath was not
linear, including both the degree of anthocyanin deposition and
the presence or absence of purple lines. Therefore, it is necessary
to further analyze this in future research.

The purpose of UPOV option 2 is to reproduce phenotypic
distinctness determinations by calibrating molecular distances.

Therefore, a high correlation between molecular and phenotypic
distances is the key to implementing this option. Jones et al. (2013)
found that when the correlation was lower than 0.6, the distinctness
determination using the phenotypic distance differed by 80%
compared to that using the molecular distance. Our study also
found that evenwhen the correlation reached 0.6587, there was still a
large difference in the determination results. Therefore, at the
current research level, the phenotypic and molecular distances
cannot match perfectly, and UPOV option 2 is not able to
replace the traditional phenotypic DUS testing for the time being
(Guan et al., 2020). However, we also found that the genome-wide
prediction method could be used to predict some traits more
accurately. Therefore, in order to improve the application level of
UPOV option 2, the whole-genome prediction method should be
combined into the option. On the other hand, with the rapid
reduction of sequencing costs, large numbers of SNP loci are
being continually developed, and UPOV options 1 and 3 have
also attracted much attention. For UPOV option 1, the functional
marker Pi54 MAS was used to improve the rice blast-resistant
restorer line (Ramalingam et al., 2020). Selection analysis was
conducted for rice grain size based on the novel functional
markers of 14 genes (Zhang et al., 2020). A new mutation site
was identified through sequence analysis of the rice SD1 gene. On
this basis, a new functional molecular marker for marker-assisted
selection was developed by Bhuvaneswari et al. (2020). Since the
current development of functional molecular markers in rice mainly
focuses on important agronomic traits such as yield, quality, and
resistance, and there are few studies on other non-major agronomic
traits, the application of UPOV option 1 in rice variety distinctness
testing has not yet been reported. In addition, there may also be a
certain relationship between the effect of functional molecular
markers and the genetic background of the material. Studies have

FIGURE 7 | Correlation between molecular and phenotypic distances in different groups. (A) Correlation based on 15 traits with predicted values less than 0.443.
(B) Correlation based on 15 traits with predicted values more than 0.443. P is the significance level, and r is the correlation coefficient.

TABLE 5 | Comparisons of distinctness decisions made by using either
morphological or molecular distances.

Number of
phenotypic “D”
varieties

Number of molecular “D” varieties

12 24 48 72 96 122

12 4 7 11 12 12 12
24 5 13 23 24 24 24
48 12 23 40 45 47 48
72 12 24 47 60 69 72
96 12 24 48 66 83 96
122 12 24 48 72 96 122

“D” varieties are expressed as artificially set phenotypically or molecularly distinct
varieties.
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shown that there is a close linkage between the color of the apiculus
and stigma in rice (Zhao et al., 2016; Tong et al., 2021). However,
Zhao et al. (2016) transferred the chromogen for anthocyaninOSC1

to the japonica variety Kitaake (white apiculus and stigma) and
found that the apiculus of the transgenic plant exhibited red
coloration but the stigma was achromatic. Therefore, the

FIGURE 8 | Correspondence between molecular (left of figure, calculated by using the Jaccard distance) and phenotypic (right of figure, calculated by using the
Jaccard distance) cluster analysis. Identical colored lines indicate the same cluster results.
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combination of UPOV options 1 and 2 for DUS testing is of great
significance for the development of molecular identification
technology.

For option 3, although variety authorization can be completed
within a few weeks by using this option, the distinctness of a
variety defined by molecular markers is meaningless if the variety
is not phenotypically unique. In addition, for rice varieties, it is
normal and acceptable to have a certain number of off-type
plants. If molecular markers are used for uniformity testing, it will
be hard to evaluate the heterogeneity (Xu, 2014). Therefore, to
establish a test system based entirely on molecular markers, it is
necessary to fully consider the influences of various factors such
as traits, distinctness thresholds, variety protection purposes, and
sampling methods. This is why there is much controversy (UPOV
INF/18/1, 2011) about UPOV option 3.

CONCLUSION

In this study, based on the whole-genome resequencing of
122 rice accessions, the 37,929 SNP loci screened were used to
analyze the correlation between the molecular and
phenotypic distances of rice varieties, and UPOV option
2 was also evaluated. The results showed that statistical
algorithms, the number of phenotypic traits, and the
number of SNP loci all affected the correlation between
the molecular and phenotypic distances of the rice
varieties. Among the statistical algorithms, the Jaccard
similarity algorithm had the highest correlation of 0.6587.
In terms of the number of SNP loci and phenotypic traits, we
found that the correlation between the molecular and
phenotypic distances had a ceiling effect, and the ceiling
effect for the number of SNPs was more obvious.
Furthermore, to overcome the ceiling effect of correlation,
we predicted 30 DUS traits by using genome-wide prediction
and performed a comparative analysis based on prediction
accuracy. The results suggested that improving the resolution
of traits with low predictive value might be the key to
overcoming the ceiling effect of correlation. In addition,
we also used molecular distances and phenotypic distances
to analyze the distinctness of rice varieties, and we found that
the results of the two methods were quite different, indicating

that UPOV option 2 could not be used alone for DUS testing,
whereas genotype and phenotype analysis together could
improve the efficiency of DUS testing.
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