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Data integration using hierarchical analysis based on the central dogma or

common pathway enrichment analysis may not reveal non-obvious

relationships among omic data. Here, we applied factor analysis (FA) and

Bayesian network (BN) modeling to integrate different omic data and

complex traits by latent variables (production, carcass, and meat quality

traits). A total of 14 latent variables were identified: five for phenotype, three

for miRNA, four for protein, and two for mRNA data. Pearson correlation

coefficients showed negative correlations between latent variables miRNA 1

(mirna1) and miRNA 2 (mirna2) (−0.47), ribeye area (REA) and protein 4

(prot4) (−0.33), REA and protein 2 (prot2) (−0.3), carcass and prot4 (−0.31),

carcass and prot2 (−0.28), and backfat thickness (BFT) and miRNA 3 (mirna3)

(−0.25). Positive correlations were observed among the four protein factors

(0.45–0.83): between meat quality and fat content (0.71), fat content and

carcass (0.74), fat content and REA (0.76), and REA and carcass (0.99). BN

presented arcs from the carcass, meat quality, prot2, and prot4 latent variables

to REA; from meat quality, REA, mirna2, and gene expression mRNA1 to fat

content; from protein 1 (prot1) and mirna2 to protein 5 (prot5); and from

prot5 and carcass to prot2. The relations of protein latent variables suggest

new hypotheses about the impact of these proteins on REA. The network also

showed relationships amongmiRNAs and nebulin proteins. REA seems to be the

central node in the network, influencing carcass, prot2, prot4, mRNA1, and

meat quality, suggesting that REA is a good indicator of meat quality. The

connection among miRNA latent variables, BFT, and fat content relates to the

influence of miRNAs on lipid metabolism. The relationship between mirna1 and

prot5 composed of isoforms of nebulin needs further investigation. The FA

identified latent variables, decreasing the dimensionality and complexity of the

data. The BN was capable of generating interrelationships among latent

variables from different types of data, allowing the integration of omics and
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complex traits and identifying conditional independencies. Our framework

based on FA and BN is capable of generating new hypotheses for molecular

research, by integrating different types of data and exploring non-obvious

relationships.
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Introduction

Meat quality traits, which include meat tenderness, are an

important aspect for consumers and are related to the

customer’s acceptability and beef repurchase (Rust et al.,

2008). Meat quality traits are complex and influenced by

diet, pre- and post-slaughter management, meat processing,

storage methods, genetic factors, and genotype-by-

environment interaction (Wheeler et al., 2005; Adzitey, 2011;

Guerrero et al., 2013; Njisane and Muchenje, 2016). Most of the

biological mechanisms involved in meat quality traits are not

completely understood. In this context, systems biology has

been proposed to elucidate the flux of molecular information,

generating a holistic point of view for complex traits (Ideker

et al., 2001). Data from the genome, transcriptome, proteome,

microRNAome, and metabolome have been used

independently to study the molecular architecture of

complex traits and identify important genes, pathways, and

networks that underlie economic livestock traits in the last

decade (Tizioto et al., 2013; Carvalho et al., 2014; Cesar et al.,

2014, 2016; Novais et al., 2019). However, studies using single

omic data disregard the interactions among different levels of

biomolecules, postulated by the central dogma of molecular

biology (Ritchie M. D. et al., 2015).

Complex traits are regulated at different molecular levels, and

considerable effort has been made to generate multi-level studies,

integrating different omic data to understand the inherent

biological meaning of livestock traits (Widmann et al., 2013;

Suravajhala et al., 2016). However, omic data integration using a

hierarchical analysis approach or considering just the common

pathway enrichment may not reveal non-obvious relationships

that exist among omic data (Misra et al., 2018). In this context,

efforts to develop approaches to data omic integration have been

proposed (Huang et al., 2017).

Factor analysis (FA) reduces the dimensionality of data,

inferring latent (hidden) variables to explain dependencies

among observed variables that share common variations

(Meng et al., 2016). Furthermore, the Bayesian network (BN)

has the potential to generate relationships among phenotypes

and molecules by a graph-based model of joint multivariate

probability distributions that represent conditional

independence between variables (Rodin and Boerwinkle,

2005). Here, phenotypes of production, carcass, meat quality,

and multi-omic data were fitted into the FA and BN framework

to explore the potential biological interrelationships to generate

new hypotheses for complex traits in beef cattle.

Materials and methods

Animals and phenotypes

A total of 386 Nellore steers born between 2009 and 2011 at

the Brazilian Agricultural Research Corporation (EMBRAPA/

Brazil) were initially included in this study. The animals were

raised in feedlots under identical diets, and environmental

conditions, and slaughtered at age of 25 months. More details

regarding animals, diet, and experimental design can be found in

Cesar et al. (2014). The animals were handled and managed

according to the Institutional Animal Care and Use Committee

Guidelines from the Brazilian Agricultural Research

Corporation—EMBRAPA approved by the president, Dr. Rui

Machado.

Carcass ultrasound evaluations were performed by trained

field technicians and followed the standards set by the

Ultrasound Guidelines Council (UGC; www.ultrasoundbeef.

com). An Aquila Pie Medical (Pie Medical Inc., Maastricht,

Netherlands) equipped with a 172 mm-long linear transducer

with a frequency of 3.5 MHz was used to measure the initial

ribeye area (REAi) and initial backfat thickness (BFTi) obtaining

sectional images of the longissimus dorsi (LD) muscle between

the 12th and 13th ribs. The images were stored and

measurements were obtained by ODT Eview R (Pie Medical

Inc., Maastricht, Netherlands).

The details of carcass and meat quality trait evaluations were

previously described by Nascimento et al. (2016). The visceral

organs were removed during slaughter, and the heart, kidney,

liver, and perirenal, pelvic, and inguinal fats were weighed.

Carcasses were weighed and chilled for 24 h at 5°C. The

carcass was weighted at 24 h, and the carcass depth was

measured on the fifth rib from top to bottom, measuring the

distance from the sternum to the middle of the spine where the

marrowbone passes.

Steaks of 2.54 cm thick from the LDmuscle between the 12th

and 13th ribs were collected 24 h after slaughter. Steaks were

vacuum packed and used to measure the shear force (SF; Kg),

backfat thickness (BFT; mm), ribeye area (REA; cm2),

myofibrillar fragmentation index (MFI), color parameters
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(L* = lightness, a* = redness, and b* = yellowness), intramuscular

fat (IMF; percentage), pH at 24 h, moisture, water holding

capacity, and cook loss. Briefly, the final backfat thickness

(BFTf) was measured using a ruler in millimeters (Filho,

2000). Color parameters L*, a*, and b* were measured after

exposing the steaks to atmospheric oxygen for 30 min prior to

analysis using a Hunter Lab colorimeter model MiniScan XE

with Universal Software v. 4.10 (Hunter Associates Laboratory,

Reston, VA), illuminant D65, and 10° standard observer.

Additionally, muscle pH was measured at three locations

across the steak using a Testo pH measuring instrument

model 230 (Testo, Lenzkirch, Germany). The final ribeye area

(REAf) was calculated as the area of LD muscle using a grid.

Cooking losses were measured as the weight difference between

the steaks before and after cooking. For IMF, approximately

100 g of muscle samples, previously lyophilized and ground, were

obtained using an Ankom XT20 extractor as described in AOCS

official procedure Am 5-04 (Horwitz, 2000). The myofibrillar

fragmentation index was determined according to Hopkins et al.

(2000). The SF values were obtained from 2.54 cm thick steaks

after 24 h of aging at 2°C in a cold chamber using the texture

analyzer TA-XT2i coupled to a Warner–Bratzler blade with

1.016 mm thickness.

mRNA data processing and WGCNA

For total RNA extraction, a sample of 100 mg of the LD

muscle was processed using the Trizol reagent (Life

Technologies, Carlsbad, CA, United States), following the

manufacturer’s guidelines. After extraction, RNA integrity was

verified using the Bioanalyzer 2100 (Agilent, Santa Clara, CA,

United States), and the samples presenting RNA integrity

numbers lower than 7.0 were removed from further analysis.

A total of 2 µg of RNA from each sample was used for the cDNA

library preparation, in accordance with the protocol described in

the TruSeq RNA Sample Preparation kit v2 guide (Illumina, San

Diego, CA, United States). The libraries were sequenced using the

HiSeq2500 ultra-high-throughput sequencing system (Illumina,

San Diego, CA, United States) with the TruSeq SBS kit v3-HS

(200 cycles). All sequencing analyses were performed at the

ESALQ Genomics Center (Piracicaba, São Paulo, Brazil).

The FastQC software v0.10.1 (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) was applied to check the

quality of the sequencing data. Low-quality reads were filtered

and adapter sequences were trimmed using Seqyclean package

version 1.4.13 (Neapolitan, 2004). The details of data acquisition

were previously described by de Lima et al. (2020).

The read alignment was carried out against the bovine

reference genome Bos taurus ARS-UCD1.2 (available at the

Ensembl database https://www.ncbi.nlm.nih.gov/assembly/

GCF_002263795.1) and read counts using STAR software

(Spliced Transcripts Alignment to a Reference) version 2.7

(Dobin and Gingeras, 2015) with the Ensembl (release 95,

January 2019) gene annotation file. Subsequently, genes with

zero counts for all samples were removed. Next, the genes were

filtered by the counts different from zero in at least 70% of the

samples and counts per million (CPM) > 5 using the EdgeR

Bioconductor package (ChenH.-J. et al., 2018). This was followed

by normalizing counts using the DESEq2 Bioconductor package

(Love et al., 2014), and a batch effect was identified using the

limma R package (Ritchie M. E. et al., 2015).

Clustering analysis was performed on the mRNA dataset

using the weighted gene co-expression network analysis

(WGCNA) R package (Langfelder and Horvath, 2008). To

measure the connectivity among genes, an adjacency matrix

was generated by calculating the Pearson’s correlation

coefficients among all genes and raising it to a power ß (soft

threshold) of 6, which is chosen using a scale-free topology

criterion (R2 = 0.8). Modules containing at least 30 genes were

retained. Modules with hub genes that had a module

membership (MM) > 0.95 and gene significance (GS) with a

p-value < 0.001 were kept for further analysis. Enrichment

analysis was performed using MetaCore software (MetaCore,

2021) to elucidate biological processes and pathways represented

by the hub genes of modules.

miRNA and data acquisition

Small RNA libraries were constructed from 1 μg of total RNA

from each sample using the Illumina TruSeq small RNA Sample Prep

Kit (Illumina Inc, San Diego, CA, United States), in accordance with

the manufacturer’s protocol. High Sensitivity DNA Chip and an

Agilent 2100 Bioanalyzer (Agilent Technologies) was used to

determine library quality and qPCR with the KAPA Library

Quantification kit (KAPA Biosystems, Foster City, CA,

United States) for quantification. Sequencing was performed using

a Miseq Reagent Kit v3 for 150 cycles in an Illumina Miseq

Sequencing System (Illumina Inc., San Diego, CA, United States).

The Illumina CASAVA v1.8 was used to generate and de-multiplex

the raw fastq sequences. The quality of Illumina deep sequencing data

was determined using the FastQC program (version 0.9.5) (Andrews,

2010). Adapters and low-quality reads were trimmed using Cutadapt

(version 1.2.1) (Martin, 2011). Filtered reads were then processed

following the mirDeep2 analysis pipeline (Friedländer et al., 2012).

Sequences were aligned to the Bos taurus ARS-UCD.1.2 reference

genome (available at the Ensembl database (https://www.ncbi.nlm.

nih.gov/assembly/GCF_002263795.1). Only alignments with zero

mismatches in the seed region (first 18 nucleotides of a read

sequence) of a read mapped to the genome were retained. More

details about data acquisition were provided by Kappeler et al. (2019).

Briefly, miRNAs with zero counts for all samples were

removed. Next, the miRNAs were filtered by the counts that

are different from zero in at least 70% of the samples and

CPM >5 using the EdgeR Bioconductor package (Chen Y.
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et al., 2018). The miRNA counts were normalized using the

DESEq2 Bioconductor package (Love et al., 2014), and the limma

R package was used to identify a batch effect (Ritchie M. E. et al.,

2015).

Proteome and data acquisition

The details for data acquisition and processing are previously

described in Poleti et al. (2018). Frozen muscles (500 μg) of

106 animals were ground on liquid nitrogen, then transferred to a

microcentrifuge tube, and weighed to minimize protein

degradation. The muscle was homogenized in 2.5 ml lysis

buffer containing 8 M urea , 2 M thiourea, 1% DTT, 2%

CHAPS, and 1% protease inhibitor cocktails (Sigma-Aldrich)

in an ULTRA-TURRAX® IKA homogenizer on ice for 2 min. The

extracts were vigorously shaken for 30 min on ice and centrifuged

at 10,000 x g for 30 min at 4°C. The supernatants were collected,

the total protein concentration was determined by the PlusOne

2-D Quant Kit (GE Healthcare), and then stored at −80°C for

further analysis.

The protein extract was desalted with a 3-kDa cutoff

Amicon® Ultra centrifugal filter (Millipore, Ireland), where the

lysis buffer was exchanged using a solution of 50 mm ammonium

bicarbonate and 2 M urea five times. The concentration of the

retained protein solution was quantified using a Bradford Protein

Assay Kit (BioRad). For protein digestion, 50 μg of proteins of

each sample were denatured with 25 μL of 0.2% RapiGest SF

(Waters Corporation, United States) at 80°C for 15 min, reduced

with 2.5 μL of 100 mm dithiothreitol (DTT) (Sigma,

United States) at 60°C for 30 min, and alkylated with 2.5 μL of

300 mm iodoacetamide (AA) (Sigma, United States) at room

temperature in the dark for 30 min. Enzymatic digestion was

performed with sequencing grade modified trypsin (Promega) at

a 1:100 (w/w) enzyme: protein ratio at 37°C for 16 h. Digestion

was stopped by the addition of 10 μL of 5% (V/V) trifluoroacetic

acid and incubated at 37°C for 90 min to hydrolyze the RapiGest

(Yu et al., 2003). The peptide mixture solution was then

centrifuged at 18,000 x g for 30 min at 6°C. The supernatant

was transferred to a new vial, dried down in a vacuum centrifuge,

and stored at −20°C.

Qualitative and quantitative bidimensional nanoUPLC

tandem nanoESI-HDMSE analyses were conducted using both

1-h reversed-phase gradient from 7% to 40% (v/v) acetonitrile

(0.1% v/v formic acid) and 500 nL*min−1 on a nanoACQUITY

UPLC 2D Technology system (Gilar et al., 2005). A

nanoACQUITY UPLC HSS T3 1.8 μm, 75 μm × 15 cm

column (pH 3) was used in conjunction with a reverse-phase

(RP) XBridge BEH130 C18 5 μm 300 μm × 50 mm nanoflow

column (pH 10). The ion mobility cell was activated and filled

with nitrogen gas, which operates at the cross-section resolving

power of at least 40Ω/ΔΩ (Lalli et al., 2013). The effective

resolution has the conjoined ion mobility of >1.5 M FWHM

(Silva et al., 2014). The ionization of samples was performed

using a NanoLockSpray ionization source (Waters, Manchester,

United Kingdom) in the positive ion mode nanoESI (+). The

mass spectrometer was calibrated with an MS/MS spectrum of

[Glu1]-fibrinopeptide B human (Glu-Fib) solution

(100 fmol*uL−1) delivered through the reference sprayer of the

NanoLockSpray source. Data acquisition was performed using a

Synapt G2-S HDMS mass spectrometer (Waters, Manchester,

United Kingdom). A mass–charge value ranges from m/z

50 to 2000.

Mass spectrometry data were acquired with Waters

MassLynx v.4.1 software and processed using Progenesis QI

for Proteomics (QIP) 2.0 software (Nonlinear Dynamics,

United Kingdom). Progenesis QIP software was used to run

alignment, peak picking, ion drift time data collection, ion

abundance measurements, normalization, quantification,

peptide and protein identification, and statistical analysis.

The processing parameters for Progenesis included the

following: automatic tolerance for precursor and product

ions based on peptide identification and normal

distribution (Geromanos et al., 2009), one missed cleavage,

carbamidomethylation of cysteine as a fixed modification, and

oxidation of methionine as variable modification. For protein

identification and quantification, the obtained raw data were

searched against a Nellore transcriptome database built from

RNA-sequencing data from LD muscle. Data quality

assessment was performed accordingly (Souza et al., 2017),

and proteins were selected based on the detection and

identification in at least 80% of biological samples. The

assembled data were compared to the NCBI’s UniProt

database (https://www.uniprot.org/) as functional analysis.

Factor analysis

This section closely follows the work of Yu et al. (2020) and

Momen, et al. (2021). The exploratory factor analysis (EFA) was

applied to search the structure of underlying latent variables

(factors) that drive the observed phenotypes and omic data. First,

the caret R package (Kuhn, 2008) was used to check collinearity,

and one of the features with correlation >0.9 was removed. Then,

the Kaiser–Meyer–Olkin (KMO) test was applied to measure the

sampling adequacy using the psych R package (Revelle, 2017)

assessing the factor ability of the data (Cerny and Kaiser, 1977).

The measure of sampling adequacy ranges between 0 and 1, and

values closer to 1 are preferred. Here, KMO >0.7 was considered
acceptable. The number of underlying latent variables q was

determined using a parallel analysis (Horn, 1965) using the psych

R package, as described in more detail in a previous work of our

group (Momen et al., 2021). The EFAmodel is given as a function

of latent factor scores.

Y � ΛF + ε,
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where Y is a p × nmatrix of pmolecular features or phenotypes of

n animals, Λ is the p × q matrix of factor loading connecting the

relation between features and latent common factors, F is the q ×

nmatrix of latent factor scores, and ε is the p × n vector of unique

effects that is not explained by q underlying common factors. The

variance–covariance matrix of Y is

Σ � ΛΦΛ′ + Ψ,

where Σ is the p × p variance–covariance matrix of phenotypes,V
is the variance of factor scores, andѰ is a p × p diagonal matrix of

unique variance. The elements of Λ,V, and Ѱ are parameters of

the model to be estimated from the data. With the assumption of

F ~ Ɲ(0, I), Λ and Ѱ were estimated by maximizing the log-

likelihood of L (Λ, Ψ|Y) using the R package psych (Revelle,

2017) along with a varimax rotation (Kaiser, 1958). A parallel

analysis was performed to determine the number of underlying

factors. A feature having loading > |0.55| was assigned to only

one of the factors based on the factor loadings.

The Bayesian confirmatory factor analysis (BCFA) is an

alternative to frequentist CFA generating an important role

in the assessment of the reliability and validity of latent

variables. We fitted BCFA to estimate the factor scores

according to the phenotype-factor structure inferred from

the earlier EFA step. BCFA was applied to concatenated data,

including phenotypes, proteins, miRNA, and the hub genes

of modules obtained from WGCNA. Briefly, the blavaan R

package (Merkle and Rosseel, 2018) was used with three

Markov Monte Carlo chains, each with 6,000 Gibbs samples

after 6,000 burn-in. Then, the posterior means of the factor

scores of latent variables were estimated and treated as the

new phenotypes for further analysis.

Bayesian network

In the Bayesian network (BN), a direct acyclic graph is

generated, and each random variable is associated with a

node, the edges represent conditional dependency between

variables, whereas the absence of an edge implies that the

variables are conditionally independent of other variables

(Choi, 2015). The details of BN procedures can be found in

more detail in Yu et al. (2019) and Momen et al. (2021). Briefly,

the BN structure learning with the bnlearn R package (Scutari,

2010) was applied to study the probabilistic relationships among

the omic and latent variables. The BN is given by

BN � (G,XV),

where G represents a direct acyclic graph composed of nodes (V)

connected by edges (E), describing the probabilistic relationships

and the vector XV = (X1, ... , Xk) where k is the random variable

(Yu et al., 2019). The joint probability of distributions is therefore

given by

P(XV) � ∏
k

v�1
P(XV |Pa(XV)),

where Pa(XV) expresses a set of parent nodes of XV. The

score-based (hill climbing and tabu) and hybrid algorithms

(max–min hill climbing and general 2-phase restricted

maximization) were used to perform structure learning

(Scutari, 2010). Candidate networks were compared based

on the Bayesian information criterion (BIC) and Bayesian

Gaussian equivalent score (BGe). The BIC score was

calculated as a criterion for the selection of the candidate

model, and BGe reflects the posterior probability of the

networks. A larger BIC score is preferred since it is

rescaled by −2 in the bnlearn R package. In addition,

1,000 bootstrapping replicates were used to estimate the

uncertainty of the edge’s strength and the direction of the

network. Edges showing presence in at least 80% (strength)

among all the 1,000 models were kept in the BN through

model averaging.

Results

Data preprocessing for analysis

In this study, we investigated the effective application of FA and

BN framework to generate networks with biological meaning on for

three different phenotypic categories: 1) production trait category

included pre-feedlot body weight (BWi), post-feedlot body weight

(BWf), initial backfat thickness (BFTi), and initial ribeye area

(REAi); 2) carcass trait category included final backfat thickness

(BFTf), final ribeye area (REAf), hot carcass weight (carcass_hot),

cold carcass weight (carcass_cold), carcass depth (carcass_depth),

kidney fat content (fat_kidney), and pelvis fat content (fat_pelvis);

and 3) meat quality category included the shear force at 24 h (SF),

pH at 24 h (pH), meat moisture (moisture), free water (water_free),

water-holding capacity (w_ret_cap), cooking weight loss

(cook_loss), color parameters (L*, a*, and b*), myofibrillar

fragmentation index (MFI), and intramuscular fat (IMF) along

with three different omic datasets: 1) mRNA sequencing, 2)

miRNA sequencing, and 3) protein abundance.

Pearson’s correlations (Figure 1) showed that BWf, carcass_hot,

and water_free were highly correlated with carcass cold and water-

holding capacity (correlation>0.9), therefore; they were removed for

further analysis to avoid duplicate information. For example, the

correlation between water_free and w_ret_cap was −1 because both

traits represent oppositional and complementary information

(Pearce et al., 2011).

For the RNA-Seq (mRNA) data, after the quality control

and filtering procedure, 13,023 genes were included in

WGCNA. The WGCNA method identified 20 modules, and

two modules (mRNA1 and mRNA2) showed module

membership (MM) > 0.95 and gene significance p-value <
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0.001. The mRNA1 module was composed of seven hub genes

and the mRNA2 module of four hub genes (Supplementary

Table S1).

A total of 192miRNAs were used for further analysis after the

preprocessing steps. One animal was excluded as an outlier. After

normalization, limma was used to identify a batch effect

(Figure 2). Principal component analysis (PCA) revealed

clusters based on the total counts of samples (Figure 2A).

limma was applied to remove the batch effect in the miRNA

data for further analysis (Figure 2B).

For proteomic data, 159 proteins from 106 animals were used

in the analysis after the quality control steps. PCA was applied

and a batch effect due to the equipment used was identified

(Figure 3A). The batch effect was accounted for by normalizing

every data separately (Figure 3B).

Exploratory and Bayesian confirmatory
factor analysis

The factor analyses were performed using a subset of 102 animals

that have phenotypes, miRNA, mRNA, and protein data. First, the

phenotypes,miRNA, and protein data were used individually to fit an

exploratory factor analysis (EFA). EFA can reduce data dimension

without any prior assumptions about the observed data and latent

factors structures. The parallel analysis suggested that phenotypes,

FIGURE 1
Correlation plot of 22 phenotypes. The degree of shading and the value reported correspond to the correlations among the traits. BWi: pre-
feedlot body weight; REAi: initial ribeye area by ultrasonography; REAf: final ribeye area on steak; BFTi: initial backfat thickness by ultrasonography;
BFTf: final backfat thickness by carcass; fat_pelvis: pelvis fat content at carcass; fat_kidney: kidney fat content; carcass_hot: hot carcass weight;
carcass_cold: cold carcass weight; carcass_depth: carcass depth; pH: pH at 24 h; water_free: free water; w_ret_cap: water holding capacity;
moisture: meat moisture; SF: shear-force; MFI: miofibrilar fragmentation index; L*, a*, b*: color parameters; and IMF: intramuscular fat.
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miRNA, and protein data were composed of five, ten, and eight latent

variables, respectively. Each omic dataset was assigned to a factor

according to the highest loading value (>|0.5|), filtering some latent

variables composed of a few features. The final underlying latent

structures from EFA of the phenotype, miRNA, and protein data are

shown in Figures 4, 5.

The BCFA was used to estimate factor loadings and scores

based on the structure obtained from the EFA analysis, assuming

that these latent variables determine the observed phenotypes

and molecular profile levels (Supplementary Tables S2, S3).

The five phenotype latent factors showed strong

contributions to the observed phenotypes, with

FIGURE 2
Principal component analysis of total counts as a batch effect in miRNAs. Principal component analysis of miRNAs before (A) and after (B) the
limma batch effect normalization. The total counts refer to the total number of reads per sample. Three colors were used to represent 1) samples with
a higher total number of reads: higher than mean +standard deviation (345,281 reads) (blue); 2) samples with a lower total number of reads: lower
than mean—standard deviation (125,193 reads) (red); 3) samples with the average total number of reads: between mean > + standard deviation
and mean < + standard deviation (green).

FIGURE 3
Principal component analysis of proteomic data. (A) Principal component analysis with all animals normalized together. (B) Principal
component analysis when animals were normalized separately by equipment acquisition. The colors denote the equipment batch effect. The
samples in red, green, dark blue, and blue colors are from equipment 1. The samples in pink are from equipment 2.
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standardized regression coefficients ranging from 0.989 to

0.986 for backfat thickness, −0.993 to 0.956 for meat

quality, 0.654 to 1 for the carcass, 0.942 to 0.992 for fat

content, and 0.973 to 0.991 for ribeye area. The seven latent

variables for miRNA and protein also showed strong

contributions to the molecular level profiles, with

standardized regression coefficients ranging from -0.999 to

0.999 for factor mirna1 (miRNA), −0.971 to 0.979 for factor

mirna2 (miRNA), −0.914 to 0.989 for factor mirna3 (miRNA),

0.842 to 0.990 for factor prot1 (protein), 0.774 to 0.973 for

factor prot2 (protein), 0.963 to 0.997 for factor prot4 (protein),

and 0.976 to 0.990 for factor prot5 (protein).

FIGURE 4
Final underlying latent structures of phenotypes generated by exploratory factor analysis. BWi: initial body weight on feedlot trial; REAi: initial
ribeye area by ultrasonography; REAf: final ribeye area on steak; BFTi: initial backfat thickness by ultrasonography; BFTf: final backfat thickness by
carcass; SF: shear-force; MFI: myofibrillar fragmentation index; and L*, a*, b*: color parameters.

FIGURE 5
Final underlying latent structures of miRNA (yellow), proteins (green), and mRNA (blue) generated by exploratory factor analysis. N denotes the
total number of features in each latent variable.
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The latent factor backfat thickness (BFT) had a positive

contribution to BFTi and BFTf (0.989 and 0.986, respectively;

Supplementary Table S2), indicating that larger values for the

latent factor can be interpreted as a greater thickness on the

backfat content. The latent factor meat quality has a positive

contribution to shear force (0.956; Supplementary Table S2),

and a negative contribution to the colors b*, L*, and MFI

(−0.993, −0.959, and −0.785, respectively) indicating that

lower values on the latent factor can be interpreted as more

tender meat. The latent factor carcass showed the largest

positive contributions to traits describing carcass (e.g.,

weight to carcass cold, 1; weight to carcass depth, 0.990;

weight to the kidney’s fat content, 0.987; and pH of meat at

24 h, 0.863), suggesting that this latent factor is an overall

representation of carcass. The latent factor ribeye area (REA)

has a strong positive contribution to the REAf and REAi

(0.991 and 0.973, respectively; Supplementary Table S2),

indicating that larger values for the latent factor can be

interpreted as a greater ribeye area.

The latent factor mirna1 has a positive contribution to

18 miRNAs (0.876–0.999; Supplementary Table S2), and a

negative contribution to seven miRNAs (−0.995 to −0.999,

respectively). The mirna2 latent variable has a positive

contribution to miRNA “bta.let.7e” (0.979; Supplementary

Table S2), and a negative contribution to miRNA

“bta.miR.339b” (−0.971, respectively; Supplementary Table

S2). The latent factor mirna3 has a positive contribution of

two miRNAs, “bta.let.7 g” (0.889) and “bta.miR.26b” (0.987),

and a negative contribution to miRNA “bta.miR.423.5p”

(−0.914). The latent factors prot1, prot2, prot4, and

prot5 have a positive contribution to all proteins, including

28 proteins (0.842–0.990), 10 proteins (0.774–0.973), two

proteins (0.976–0.997), and two proteins (0.976–0.990),

respectively.

Correlation among latent variables

Pearson correlation coefficients were calculated to understand

the relationships among latent variables (Figure 6). Negative

correlations were observed between mirna1 and mirna2 (−0.47),

REA and prot4 (−0.33), REA and prot2 (−0.3), carcass and prot4

FIGURE 6
Correlation plot of 14 factor scores. The degree of shading and the value reported correspond to the correlation between each pair of latent
variables.
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(−0.31), carcass and prot2 (−0.28), and BFT and mirna3 (−0.25).

Positive correlations are observed between all protein factors; meat

quality and fat content (0.71), fat content and carcass (0.74), fat

content and REA (0.76), and mirna2 and mirna3 (0.59). The latent

variables REA and carcass correlated at 0.996. These results suggest

that protein levelsmight have a negative impact on carcass, REA, and

fat content factors.

Bayesian network

A BN was used to infer the interrelationships between

latent variables. The BN algorithm learned with the most

favorable network score in terms of BIC (1801.31) and BGe

(1903.46) was the score-based hill climbing algorithm

(Figure 7). The structure of BN was refined by model

averaging with 1,000 networks from bootstrap resampling

to reduce the impact of local optimal structures. The labels

of the arcs measure the percentage of the uncertainty,

corresponding to strength and direction (in parenthesis).

The strength measures the frequency of the arc presented

among all 1,000 networks from the bootstrapping replicates

and the direction is the frequency of the direction shown

conditionally in the presence of the arc.

We observed no difference in the structures between the

two score-based algorithms used, the hill climbing and tabu.

The two score-based algorithms produced a greater number

of edges than the hybrid algorithms. The hill climbing

algorithm produced 17 directed connections from the

14 latent variables.

Discussion

We integrated a multi-omic dataset with production,

carcass, and meat quality traits and explored non-

conventional relationships that led to new hypotheses in the

meat quality field. Here, we applied EFA, BCFA, and BN to

infer interrelationships among latent variables underlying

complex traits and omic data. First, EFA and BCFA were

used to reduce the dimensions of datasets by constructing

latent variables and estimating their factor scores (de los

Campos and Gianola, 2007). These latent variables represent

more straightforward biological meanings than the original

features measured in a population (Yu et al., 2019). Then, we

applied a BN to understand the interrelationships among the

latent variables (Neapolitan and others, 2004). We generated a

network with 14 latent variables involving 17 directed

connections. Moreover, this approach elucidated both direct

and indirect relationships among latent variables. However, a

precaution is essential to interpret the network as a causal

relationship because causal statements require more

assumptions (Pearl, 2009).

Yu et al. (2019) and Momen et al. (2021) applied a

similar approach to obtain genetic insights on rice and

wheat complex traits. Leal-Gutiérrez et al. (2018) studied

the potential of using latent variables, obtained by

structural equation analysis, on carcass and meat quality

traits in beef cattle. They reduced the complexity of the data

and reported biological mechanisms, such as postmortem

proteolysis of structural proteins and cellular

compartmentalization, cellular proliferation and

FIGURE 7
Bayesian network between latent variables based on the score-based (hill climbing and tabu) algorithms. The quality of the structure was
evaluated by bootstrap resampling and model averaging across 1,000 replications. Orange nodes: phenotype latent variables; yellow nodes: miRNA
latent variables; green nodes: protein latent variables; blue node: gene expression of mRNA1 module (WGCNA); and white node: gene expression of
mRNA2 module (WGCNA). The labels of the arcs correspond to the strength and direction (in parenthesis).
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differentiation of adipocytes, and fat deposition. In recent

work, Yu, et al. (2020) applied factor analysis to beef cattle

behavior to better understand latent factors underlying

temperament traits.

Biological meaning of latent variables and
their relationships

The latent variable for the carcass, mainly composed of

carcass cold weight, carcass depth, and fat kidney content

(Supplementary Table S2), can be interpreted as the overall

representation of the carcass, a higher value indicates a larger

and heavier carcass. Its direct and indirect relationships with the

latent variable REA (Figure 7) suggest the positive impact of the

carcass yield on the ribeye area. Aass (1996) reported a positive

phenotypic correlation (0.26) between the carcass depth and

ribeye area corroborating our findings. Dinkel and Busch (1973)

also estimated a positive genetic correlation (0.32) between

growth rate and carcass yield, impacting the ribeye area

positively.

The carcass has a relationship with the latent variable

prot2 that also impacts REA. The latent variable prot2 is

composed of 10 proteins (Supplementary Tables S2, S4),

including UQCRC2 related with proteolysis (GO:0006508);

ATP5F1A and ATP5F1B related with ATP synthesis coupled

proton transport (GO:0042776 and GO:0015986); TNNT1 and

TRIM72 related with muscle contraction (GO:0006936),

regulation of muscle contraction (GO:0006937), sarcomere

organization (GO:0045214), and muscle organ development

(GO:0007517); GOT1 and GOT2 related with aspartate

biosynthetic and catabolic processes (GO:0006532, GO:

0006533), cellular response to insulin stimulus (GO:0032869),

fatty acid homeostasis (GO:0055089), glutamate catabolic

process to aspartate (GO:0019550), glycerol biosynthetic

process (GO:0006114), and oxaloacetate metabolic process

(GO:0006107); and MDH1 and MDH2 related with the

carbohydrate metabolic process (GO:0005975), malate

metabolic process (GO:0006108), NADH metabolic process

(GO:0006734), oxaloacetate metabolic process (GO:0006107),

tricarboxylic acid cycle (GO:0006099), and aerobic respiration

(GO:0009060).

The ATP synthase F (0) complex subunit B1 (ATP5F1) has

been positively correlated with meat color parameter a*, which

impacts meat discoloration (Yu et al., 2017). Our findings

show an indirect relationship between prot2 and the fat

content latent variable that includes the parameter a*.

Although prot2 and meat quality are not directly connected

(Figure 7), both impact REA. However, prot2 is mainly

composed of enzymes involved with energy metabolism

that have been reported as putative candidate proteins for

meat tenderness. The aspartate aminotransferase (GOT1) has

been considered a putative candidate protein usable for meat

tenderness prediction (Boudon et al., 2020). Rodrigues et al.

(2017) reported that Nellore cattle have a higher abundance of

malate dehydrogenase (MDH1) compared to Angus. This

enzyme is important in gluconeogenesis, catalyzes the

oxidation of malate to oxaloacetate, and is a relevant player

in meat quality characteristics because this enzyme is involved

in energy metabolism and affects how pH drops, changing the

conversion of muscle to meat (Rodrigues et al., 2017). The

ubiquinol-cytochrome C reductase core protein 2 (UQCRC2)

gene, which is an important energy promoter for the

development of cell functions was reported as up-regulated

in a study analyzing gene expression on tough beef groups

compared to the tender group in Nellore cattle (Muniz et al.,

2021). The degradation of troponin T1 (TNNT1) proteins

during post-mortem has been associated with meat tenderness

(Zakrys-Waliwander et al., 2012; Contreras-Castillo et al.,

2016; Wright et al., 2018).

The prot4 latent variable also shows a relationship with REA,

which has two proteins (Supplementary Tables S2, S4) and

includes the TNNI2 and MYH4. Troponin I, fast-twitch

isoform (TNNI2) is a subunit of the troponin complex and

plays a role in calcium regulation during muscle contraction

and relaxation. The TNNI2 gene was associated with pH, meat

color value, and intramuscular fat content in pigs (Yang et al.,

2010). The myosin heavy chains are relevant to muscle

contraction velocity and power, MYH4 is one of the isoforms

associated with IIb fibers types (Cho et al., 2016) and myotube

hypertrophy in beef cattle (Bordbar et al., 2020). Our findings

suggest new hypotheses of the impact of these proteins of

prot2 could affect the REA and carcass traits.

The latent variable meat quality composed of shear force,

myofibrillar fragmentation index, and the color parameters L*

and b* can be interpreted as the overall representation of meat

tenderness, and lower levels of this factor indicate more tender

meat. It has a direct relationship with the latent variable REA and

fat content. The relationship among tenderness, REA, and fat

content has been discussed in the literature (Dinkel and Busch,

1973; Bonin et al., 2020). The mRNA1 latent variable has a

relationship with REA and fat content. The mRNA1 factor is

composed of the genes LTN1, NFIA, ATP11B, FILIP1, RANBP2,

N4BP2, and CERT1. The nuclear factor IA gene (NFIA) has been

studied indicating the potential to stimulate lipid accumulation

in cattle (Chen H.-J. et al., 2018). According to the enrichment

analysis (Supplementary Tables S5), these genes have been

associated with an important cholesterol pathway called

cholesterol and sphingolipid transport. Examples are the

RANBP2 gene which is associated with proteolysis and the

CERT1 gene which is related to intracellular cholesterol

transport and sphingolipid metabolism. A further

investigation is necessary to understand these relationships

with REA or fat content.

The latent variable mirna3 is a child node of BFT and

mirna2. The miRNAs are small RNA molecules that inhibit
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translation or induce degradation of protein-coding mRNAs

that contain complementary sequences to miRNAs. mirna3 is

constituted by three miRNAs, namely, bta. let.7g, bta.

miR.26b, and bta. miR.423.5p. bta. let.7 g was found in

studies related with lactation and infection in cattle (Ma

et al., 2019; Rani et al., 2020). mirna2 is composed of two

miRNAs, namely, bta. let.7e and bta. miR.339b. Gu et al.

(2007) identified the expression of bta. let.7e on adipose tissue

in cattle. bta. miR.339b was found in studies related to fatty

acid metabolism and lactation (Do et al., 2017; Palombo et al.,

2018; Poleti et al., 2018). mirna2 has a direct relationship with

fat content (Figure 7). Further studies are necessary to better

understand the functions of mirna2 and its association with

fat metabolism in beef cattle.

The latent variable prot5 is composed of two isoforms of

nebulin (NEBU) which are important structural components

involved in meat aging (Koohmaraie et al., 1984; Ouali et al.,

1995). Post-mortem degradation of nebulin has been associated

with meat tenderness in cattle in which animals with a lower

degradation have less tender meat (Anderson and Parrish, 1989;

Wu et al., 2014). The prot5 latent variable is an important node

that has relationships with prot2 and prot4 and has an indirect

relationship with REA and fat content.

The generated network identified interomic relationships,

bringing simplicity without losing complexity. This is one of the

challenges found in studies of this nature. Often a methodology

used ends up providing the interpretation of unfeasible results,

which was not in our approach. Additional investigations are

essential to understand the relationships of molecules and

phenotypes on latent variables REA, prot2, prot4, prot5,

mRNA1, carcass, mirna3, mirna2, and fat content. The

network demonstrated a relationship between miRNAs and

nebulin protein isoforms that will not be found in studies

using single or multi-level omics. Finally, REA appears as a

central node in the network, influenced by carcass, prot2, prot4,

and meat quality, suggesting that REA is a good indicator

phenotype for meat quality because it can be easily measured

during slaughter or by ultrasonography.

Conclusion

The FA identified latent variables, decreasing the

dimensionality and complexity of data. The BN analysis

was capable of identifying interrelationships among latent

variables from different types of data, allowing the

integration of different types of omic data and complex

traits. The EFA, BCFA, and BN approaches can be used to

generate new hypotheses on molecular research in the meat

quality area, by integrating different types of data and

exploring non-conventional relations.
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