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Background:Cellular senescence is a typical irreversible form of life stagnation,

and recent studies have suggested that long non-coding ribonucleic acids

(lncRNA) regulate the occurrence and development of various tumors. In the

present study, we attempted to construct a novel signature for predicting the

survival of patients with hepatocellular carcinoma (HCC) and the associated

immune landscape based on senescence-related (sr) lncRNAs.

Method: Expression profiles of srlncRNAs in 424 patients with HCC were

retrieved from The Cancer Genome Atlas database. Lasso and Cox

regression analyses were performed to identify differentially expressed

lncRNAs related to senescence. The prediction efficiency of the signature

was checked using a receiver operating characteristic (ROC) curve,

Kaplan–Meier analysis, Cox regression analyses, nomogram, and calibration.

The risk groups of the gene set enrichment analysis, immune analysis, and

prediction of the half-maximal inhibitory concentration (IC50) were also

analyzed. Quantitative real-time polymerase chain reaction (qPCR) was used
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to confirm the levels of AC026412.3, AL451069.3, and AL031985.3 in normal

hepatic and HCC cell lines.

Results:We identified 3 srlncRNAs (AC026412.3, AL451069.3, and AL031985.3)

and constructed a new risk model. The results of the ROC curve and

Kaplan–Meier analysis suggested that it was concordant with the prediction.

Furthermore, a nomogrammodel was constructed to accurately predict patient

prognosis. The risk score also correlated with immune cell infiltration status,

immune checkpoint expression, and chemosensitivity. The results of qPCR

revealed that AC026412.3 and AL451069.3 were significantly upregulated in

hepatoma cell lines.

Conclusion: The novel srlncRNA (AC026412.3, AL451069.3, and AL031985.3)

signatures may provide insights into new therapies and prognosis predictions

for patients with HCC.
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1 Introduction

Cancer is one of the leading causes of death worldwide (Bray

et al., 2021). More than 19 million new cancer cases and nearly

10 million cancer-related deaths have been reported in 2020,

including over 900,000 new liver cancer cases and 800,000 related

deaths (Sung et al., 2021). Liver cancer has the seventh highest

incidence among all cancer types and the third highest mortality

rate. Hepatocellular carcinoma (HCC) is the most common type

of liver cancer. East Asia and Africa have the highest incidence

rates of HCC, and its incidence and mortality rates are still

increasing in Europe and other parts of the world (Llovet et al.,

2021; Sung et al., 2021). Owing to the progress of surgery and

chemotherapy, the prognosis of patients with HCC has greatly

improved, and the progress of tumor immunotherapy and the

use of immune checkpoint inhibitors have also improved the

treatment strategies for HCC treatment (Bagchi et al., 2021).

However, more efficient molecular biomarkers for the early

diagnosis of HCC are crucial for improving the clinical

outcomes of patients with HCC.

Cellular senescence is a typical irreversible form of life

stagnation that helps inactivate and eliminate diseased,

dysfunctional, and other unnecessary cells. It is usually

induced by various conditions, such as microenvironmental

stress, damage to organelles and cellular infrastructure, and an

imbalance of cellular signal networks. However, all these

conditions are related to the increase in senescent cell

abundance in various organs observed during the aging

process. It is considered to be one of the basic hallmarks of

cancer (Hanahan, 2022).

Long non-coding ribonucleic acids (lncRNAs) are composed

of >200 nucleotides that cannot be translated into functional

proteins (Iyer et al., 2015). In the human genome, there are more

than 100,000 identified lncRNAs, many of which have been

characterized (Heery et al., 2017). lncRNAs are usually the

main regulators of gene expressions and functions through

post-transcriptional, transcriptional, and epigenetic regulation

(Castro-Oropeza et al., 2018). Previous studies have shown that

lncRNAs can influence the immune microenvironment;

therefore, they may have a role in the occurrence and

development of malignancy (Atianand et al., 2017). The HOX

transcript antisense RNA was found to be upregulated in colon

tumor tissues and correlated with the tumor stage, invasion,

metastasis, and survival time of patients (Luo et al., 2016;

Tatangelo et al., 2018; Wei et al., 2020); it is also associated

with cancer growth and metastasis (Wei et al., 2020). Zhao et al.

(2019) reported that the knockdown of lncRNA myocardial

infarction–associated transcript significantly promoted cellular

senescence and inhibited HCC progression. Montes et al. (2021)

identified MIR31HG as a potential therapeutic target in the

treatment of senescence-related pathologies. The effects of

senescence-related (sr) lncRNAs on malignant tumors have

not been well studied; therefore, obtaining more knowledge

on srlncRNAs will help us better understand their roles in

cancer therapy.

In recent years, many studies have developed signatures for

predicting cancer prognosis based on coding genes or non-

coding RNAs. Kandimalla et al. (2020) identified a signature

for predicting the survival in pancreatic ductal adenocarcinoma.

Chen et al. (2021) constructed a prognosis index for head and

neck tumors using immune-related genes. Zhou et al. (2021)

identified an immune-related lncRNA signature to predict the

survival and the immune landscape in patients with HCC.

However, only a few studies have focused on signature

development using srlncRNAs.

This study aimed to determine the value of srlncRNAs in

predicting the prognosis and immune landscape of HCC, thus

contributing to this growing area of research. Our findings may
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help improve our understanding of the role of cellular senescence

in HCC and lead to progress in treatment strategies.

2 Materials and methods

2.1 Data collection

RNA-seq expression data derived from patients with HCC,

including 374 tumors and 50 non-cancerous samples, were

collected from The Cancer Genome Atlas (TCGA) database

with the TCGA-Assembler. Based on the patients’ IDs, the

clinical data of the patients were compared to their

transcriptome data, which were screened using the following

inclusion criteria: [1] histological diagnosis of HCC, [2] available

expression profiles, and [3] a minimum overall survival of

30 days (Song et al., 2021). The data satisfying the inclusion

criteria were extracted from the TCGA dataset (344 patients) for

subsequent analysis, and 279 senescence-related genes (explained

in Supplementary Table S1) were retrieved from the literature

search and the CellAge public database.

2.2 Identification of senescence-related
long non-coding ribonucleic acids

The association between lncRNAs and senescence-related

genes (SRGs) was assessed using Pearson’s correlations to

identify srlncRNAs. Using the Bioconductor limma package in

R software (version 4.1.3), HCC and non-neoplastic samples

were compared, and differentially expressed lncRNAs

(DElncRNAs) were defined with the following criteria: |log2

(fold change, FC) | >1 and false discovery rate < 0.05 (Ritchie

et al., 2015). A total of 279 senescence-related genes and those of

DElncRNAs were identified by using the correlation analysis.

Hence, 422 srlncRNAs were selected based on the following

criteria: Pearson’s correlation coefficients > 0.5 and p < 0.001.

2.3 Construction of the senescence-
related lncRNA prognostic model

First, we randomly divided the patients from the entire

sample (n = 342) into training or testing sets at a rate of 1:1.

Second, srlncRNAs (related to survival) in the training set were

screened using univariate Cox (uni-Cox) regression (p < 0.05).

Third, least absolute shrinkage and selection operator (LASSO)

and multivariate Cox (multi-Cox) regression analyses were used

for further filtering. Finally, a prognostic model for srlncRNAs

was established in HCC. We calculated the risk score for HCC as

follows: risk score=∑n k=1expression (lncRNAk) × coefficient

(lncRNAk) (Hong et al., 2020). Using the median value, we

divided the cases into two groups: high and low. Moreover,

testing sets were employed for signature validation. The signature

was associated with clinical variables using the chi-square test.

The Wilcoxon signed-rank test was performed to identify

differences in the risk scores between the groups for clinical

characteristics. Furthermore, the R package “rms” was used to

build a nomogram model that connected the signature risk score

and clinical factors, and calibration curves were used to assess the

model (Iasonos et al., 2008).

2.4 Gene set enrichment analysis

Using the curated gene set (kegg.v7.4.symbols.gmt),

broad GSEA v.4.2.3 was applied to detect high- and low-

risk group-correlation pathways with the criteria: NOM p <
0.05 and | NES |> 1 (Subramanian et al., 2005).

2.5 Infiltrating immune cell analysis

The immune infiltration statuses calculated in the datasets

(XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT, and CIBERSORT) and the infiltration

estimation downloaded in TIMER2.0 (http://timer.cistrome.

org/) were used to analyze the differences in immune

infiltrating cell content using the Wilcoxon signed-rank test.

Using the profile of infiltration estimation for HCC on that

website, a bubble chart was created showing the differences in

immune infiltrating cell content using the Wilcoxon signed-rank

test and the following R packages—“limma”, “scales”, “ggplot2”,

and “ggtext” (Bagchi et al., 2021).

2.6 The investigation of the immune
checkpoints and immune-related gene
prognostic index

The “ggpubr” R package was used to compare the expression

of immune checkpoint-related genes between the two groups.

The multi-Cox regression analysis was used to construct an

IRGPI model to validate the impact of the prognostic model

on immunotherapy.

2.7 The sensitivity of different subgroups
to chemotherapeutic agents

We used the half-maximal inhibitory concentration (IC50) to

evaluate the therapeutic effects of common chemotherapeutic

drugs (paclitaxel, doxorubicin, bexarotene, bicalutamide,

imatinib, and tipifarnib) using the R package “pRRophetic”

with data collected from the Genomics of Drug Sensitivity in

Cancer.
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2.8 RNA isolation and quantitative real-
time PCR

Total RNA was extracted from hepatoma cell lines (Huh7,

HepG2, and Hep3B) and a normal hepatic cell line (LO2) using

TRIzol reagent (Life, United States). NanoDrop 2000 (Thermo

Scientific, America) was used to measure RNA purity and

content. Complementary DNAs were synthesized using a

RevertAid RT kit (Thermo, United States), and qPCR was

performed on a Bio-Rad CFX system using qPCR Master mix

(Universal, China). The sequences of the primers used for qPCR

were as follows: AC026412.3, forward: 5′-TGTGAGGTGAGG
GAGCGAT-3′, reverse: 5′-TGAGCCAAAGGGATCTACGC-3′;
AL451069.3, forward: 5′-GGGACACGGACCTAGACACT-3′,
reverse: 5′-CCTGCAAGACCGTAGCCTC-3′; ALO31985.3,

forward: 5′-TCTCACTATGTTGCTGGACTGG-3′, reverse: 5′-
CCACAGATCACTAACACGCC-3′. We used glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as the internal reference,

and the data were analyzed using the 2–ΔΔCt approach. The

expression levels of the three lncRNAs were compared using

an unpaired t-test.

3 Results

3.1 Defining senescence-related lncRNAs

The flow-diagram of our study is shown in Figure 1. We

downloaded 50 normal samples and 374 tumor samples from the

TCGA database to identify the srlnRNAs. Next, 422 srlncRNAs

(Figure 2A) were obtained by using the co-expression analysis of

279 senescence-related genes and DElncRNAs between normal

and tumor samples. Of these, 402 were up-regulated

(Figures 2B, C).

3.2 Establishment and validation of the
model

Using the univariate-Cox regression analysis (Figure 3A),

33 srlncRNAs that significantly associated with the overall

survival were identified and are displayed in a heatmap

(Figure 3B). LASSO and multi-Cox regression analyses were

used to further screen these lncRNAs, and three lncRNAs related

FIGURE 1
Flow diagram of the study (LIHC: Liver hepatocellular carcinoma; N: Number; OS: Overall suvival).
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to senescence were extracted in HCC (Figures 3C, D). In

addition, all lncRNAs were up-regulated in the Sankey

diagram (Figure 3E).

The risk score was calculated using the following formula:

risk score = AC026412.3 × (1.6474) + AL451069.3 × (0.6620) +

AL031985.3 × (1.0340).

We then compared the distribution of the risk scores, survival

status, survival time, and associated expression criteria of these

lncRNAs for the low- and high-risk groups in the training,

testing, and entire sets. These results suggested that the high-

risk group had a poorer prognosis (Figures 4A–L).

According to chi-square tests (Figure 5A) and Wilcoxon

signed-rank test, the risk score was significantly associated with

the clinical grade (Figure 5B), American Joint Committee on

Cancer stage (Figure 5C), and T stage (Figure 5D). In addition,

conventional clinicopathological characteristics, including age,

sex, and stage, also showed that the high-risk group had worse

prognoses (Figures 5E–J). These results indicate that the risk

model is highly consistent with the American Joint Committee

on Cancer staging system and has a better ability to predict

prognosis.

Prognostic factors were detected in the uni- and multi-Cox

regression analyses (Figures 6A,B) and a nomogram was

constructed using the risk scores and other clinical

characteristics to better predict the survival of patients with

HCC (Figure 6C). What’s more, the nomogram correlated

with the actual observations, as shown in the calibration curve

(Figure 6D). The 1-, 3-, and 5-year areas under the ROC curve of

the entire set were 0.754, 0.675, and 0.670, respectively

(Figure 6E). Compared to other clinicopathological features,

FIGURE 2
(A)The network showing the correlation between DEsrlncRNAs and mRNAs and (B,C) the heatmap and volcano plots of DEsrlncRNAs from the
TCGA dataset.
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the risk score had the largest area under the ROC curve

(Figure 6F).

3.2.1 Gene set enrichment analysis
To explore the different biological functions in the two risk

groups, the GSEA software was used to identify the top five

pathways in the two risk groups with the criteria of false

discovery rate < 0.25, |NES| >1.5, and p < 0.05. In fact, most of

the pathways were associated with tumorigenesis or

immunity, such as the “fatty acid metabolism”,

“peroxisome proliferator-activated receptors signaling

pathway”, and “complement and coagulation cascades”

(Figure 7A). Therefore, we performed an immunity analysis

of the model.

3.3 The exploration of the risk model for
immunotherapy

Using Spearman’s correlation and Wilcoxon signed-rank

tests, the risk score was found to be related to several widely

studied immune cells (such as B cells, CD8+ T cells, and cancer-

associated fibroblasts) on different platforms (Figures 7B,C). The

expression of the immune checkpoint-related genes was higher in

the high-risk group than in the low-risk group (Figure 8A). This

implies that patients in the high-risk group could select

checkpoint inhibitors that are more appropriate for

immunotherapy (Kono et al., 2020). Moreover, the high-risk

group had a larger proportion of immune subtypes (IS) 1 and 2 in

the immunity landscape and a smaller proportion of 3

FIGURE 3
(A) 33 lncRNAs extracted by using the uni-Cox regression analysis, (B) the heat map of 33 prognostic lncRNAs, (C,D) senescence-related
lncRNAs screened by the Lasso regression analysis, and (E) the Sankey diagram of 33 senescence genes and related lncRNAs.
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(Figure 8B), which means that it had a poorer prognosis (the

immune landscape of cancer). Consistent with previous reports,

there were more chemotherapeutics with lower IC50 values in the

high-risk group (Figure 8C), such as paclitaxel (Liu et al., 2020)

(Figure 8C).

3.4 Validating the expression levels of
AC026412.3, AL451069.3, and AL031985.3

To explore the expression levels of AC026412.3,

AL451069.3, and AL031985.3, qPCR was performed to test

the normal hepatic and hepatoma cell lines. The expression

levels of AL451069.3 and AC026412.3 in hepatoma cell lines

were much higher than those in a normal hepatic cell line

(Figure 9). Furthermore, the expression levels of these

srlncRNAs were different in diverse hepatoma cell lines

(Supplementary Figure S1).

4 Discussion

4.1 Resource identification initiative

Cellular senescence has been found to play a role in the

development and progression of various types of malignant

tumors, including HCC, and is considered a barrier to the

progression from a chronic liver disease to HCC. Xiang et al.

(2021) reported that the lncRNA PINT87aa was upregulated in

senescent HCC cells and could induce cell cycle arrest by

blocking FOXM1-mediated PHB2. Mittermeier et al. (2020)

described the characteristics and functions of cellular

senescence in the development of novel drug targets for HCC

therapies. Karakousis et al. (2020) suggested that hepatitis B is a

link between cellular senescence and HCC development. A better

understanding of the role of cellular senescence in HCC may

provide a new perspective for HCC treatment and aid in the

development of new therapeutic methods.

FIGURE 4
The heat map (A–C), risk score (D–L), survival status (G–I), and Kaplan–Meier curves (J–L) of the two groups in the training, testing, and entire
sets, respectively.
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The expression patterns and clinical information of 377 patients

with HCC were downloaded from the TCGA database, senescence-

related genes were identified from the CellAge public database, and a

co-expression analysis was performed to identify the genes

potentially involved in HCC. Three prognosis-related

DEsrlncRNAs were screened to construct a signature using

FIGURE 5
The strip chart (A) and Scatter diagram (B–D) showing significant correlation of the tumor grade, American Joint Committee on Cancer stage,
and T stage with risk scores. *p < 0.05 and **p < 0.01. (E–J) The Kaplan–Meier analysis showing a longer survival time in low-risk group patients.
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LASSO and uni-Cox regression analyses: AC026412.3, AL451069.3,

andAL031985.3. Among the three srlncRNAs,AL031985.3 has been

identified as a potential therapeutic target in HCC in a previous

study (Jia et al., 2020). Moreover, the Sankey diagram showed that

the three srlncRNAs were associated with a few coding genes,

including PPT1, PTGDS, and ELOVL1. High PPT1 expression is

FIGURE 6
(A, B) Forest plots of the uni- and multi-Cox regression analyses in HCC, (C) the nomogram-combined risk score, age, and tumor stage to
predict the 1-, 3-, and 5-year OS in HCC and (D) evaluation of the nomogram by correlating it with the calibration curves. (E) The ROC curves of the
model for prognosis, and (F) the ROC curves of the risk score and clinicopathologic features.

FIGURE 7
(A) The top five pathways with enrichment in the high- and low-risk groups with the GSEA analysis, (B) the bubble chart showing risk groups and
immune cells, and (C) line graph demonstrating risk score and immune cells.
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associated with poor prognosis in patients with HCC, and

PPT1 inhibition could enhance the sensitivity to sorafenib

therapy in HCC (Xu et al., 2022). PTGDs are prognostic

biomarkers of breast cancer (Adekeye et al., 2022). Hama et al.

(2021) demonstrated that the expression of ELOVL1 was

significantly higher in CRC tissues than in normal tissues. These

FIGURE 8
(A) The difference of 38 checkpoint expressions in the risk groups, (B) the immune subtype of high- and low-risk groups, and (C) the
immunotherapy prediction of the risk groups.

FIGURE 9
The relative RNA level of AL031985.3 (A), AC026412.3 (B), and AL451069.3 (C) in normal hepatic and hepatoma cell lines. Data is presented as
Mean with SD, *p < 0.05, **p < 0.01, ***p < 0.001.
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results suggest that the three identified srlncRNAs may serve as

potential biomarkers for cancer diagnosis and treatment.

The risk score was calculated based on the expression levels

of the three srlncRNAs, and patients in each cohort were

separated into high- and low-risk groups according to the

calculated risk score. The Kaplan–Meier curve showed that

patients with a low risk score had a better prognosis. Based

on the results of the uni- and multi-Cox regression analyses, the

risk score could be an independent prognostic factor for patients

with HCC. In addition, nomograms are widely used as tools in

oncology, particularly for survival prediction (Iasonos et al.,

2008; Balachandran et al., 2015). The nomogram model and

calibration plot showed good prediction efficiency for HCC

prognosis. Moreover, the correlation between risk scores and

clinical features of HCC was also analyzed; the risk score was

significantly related to the tumor grade, AJCC stage, and T stage,

indicating that the risk score can be used for predicting the

occurence and development of HCC. However, the results of the

Wilcoxon signed-rank test showed that the advancing stages (G4,

stage IV, and T4) were not significantly related to the calculated

risk score. Because the sample content of the TCGA database is

too small, we will have to collect more samples to re-validate.

Based on the results of GSEA, we focused our attention on the

immunity factors. Previous research has suggested that tumor-

infiltrating CD4+ T cells can upregulate the immune checkpoint

genes (Toor et al., 2019). We used TIMER2.0 to assess the

relationship between the risk score and tumor-infiltrating

immune cells (Van Veldhoven et al., 2011; Newman et al.,

2015; Becht et al., 2016; Aran et al., 2017; Li et al., 2017;

Finotello et al., 2019; Tamminga et al., 2020). The results

revealed that the risk score was positively related to B cells,

CD8+ T cells, and cancer-associated fibroblasts. To further

explore the potential of checkpoint blockade therapy and

chemotherapy, we compared the two groups’ expression levels

of the immune checkpoint genes and found 38 checkpoint genes

that were differentially expressed between the two groups in this

study. Consistent with the alteration of the checkpoint genes, the

IC50 values of six common chemotherapeutics were higher in the

low-risk group. These findings suggest that patients with high-

risk scores may be more suitable for immunotherapy and

chemotherapy.

Thorsson et al. (2018) identified the ISs, including wound

healing (IS1), IFN-γ dominant (IS2), inflammatory (IS3),

lymphocyte-depleted (IS4), immunologically quiet (IS5), and

TGF-β dominant (IS6) types of cancer. It was observed that

IS1 and IS2 had worse outcomes, IS3 had a favorable prognosis,

and IS3 was enriched in PBRM1 mutation. Moreover, patients

with PBRM1 mutations were more responsive to

immunotherapy (Miao et al., 2018). Our study indicated that

patients with low-risk scores had a larger proportion of IS3,

which comports with the Kaplan–Meier curve.

However, our study has few limitations. First, our analysis

was based on public datasets and retrospectively collected

samples, which may have caused an inherent case selection

bias. Second, further experiments are required to confirm our

findings. Finally, clinical features related to surgery, neoadjuvant

chemotherapy, and tumor markers were not included in our

study, and clinical cases are required to further validate our

conclusions.

In conclusion, the cellular senescence-based prognostic

signature constructed in this study may be useful for

predicting the survival and guiding clinical therapies for HCC.

Our findings may improve the understanding of cellular

senescence in HCC and provide more effective treatment

strategies. However, additional experiments and clinical cases

are required to validate these findings.
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