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Background: Increasing evidence supports that lactate plays an important role

in tumor proliferation, invasion and within the tumor microenvironment (TME).

This is particularly relevant in lung adenocarcinoma (LUAD). Therefore, there is a

current need to investigate lactate metabolism in LUAD patients and how

lactate metabolism is affected by different therapies.

Methods: Data from LUAD patients were collected from The Cancer Genome

Atlas (TCGA) and patients were divided into two subtypes according to

12 lactate metabolism-related genes to explore the effect of lactate

metabolism in LUAD. We established a lactate-related prognostic indicator

(LRPI) based on different gene expression profiles. Subsequently, we

investigated associations between this LRPI and patient survival, molecular

characteristics and response to therapy. Some analyses were conducted

using the Genomics of Drug Sensitivity in Cancer (GDSC) database.

Results: The two LUAD subtypes exhibited different levels of lactate

metabolism, in which patients that displayed high lactate metabolism also

had a worse prognosis and a poorer immune environment. Indeed, LRPI was

shown to accurately predict the prognosis of LUAD patients. Patients with a high

LRPI showed a poor prognosis coupled with high sensitivity to chemotherapy

using GDSC data. Meanwhile, these patients exhibited a high responsiveness to

immunotherapy in TMB (Tumor mutation burden) and TIDE (Tumor Immune

Dysfunction and Exclusion) analyses.
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Conclusion: We validated the effect of lactate metabolism on the prognosis of

LUAD patients and established a promising biomarker. LRPI can predict LUAD

patient survival, molecular characteristics and response to therapy, which can

aid the individualized treatment of LUAD patients.

KEYWORDS

immune-related genes, immune checkpoint blockade therapy, lung adenocarcinoma,
prognosis biomarker, immune cell infiltration

Introduction

Lung cancer is the leading cause of cancer-related deaths in

the United states, with an estimated 609,360 deaths from 2019 to

2022, and 350 deaths per day (Siegel et al., 2022). Histologically,

lung cancer is often divided into two types: small cell lung cancer

(SCLC) and non-small cell lung cancer (NSCLC). Lung

adenocarcinoma (LUAD) is the most common subtype of

NSCLC, displaying a high tumor heterogeneity, which poses a

great obstacle to the elucidation of its oncogenic mechanisms

(Calvayrac et al., 2017). Before the wide-scale clinical application

of immunotherapy, the treatment methods available for LUAD

patients included surgical resection, chemotherapy, radiotherapy

and targeted therapy, with very limited efficacy (Ha et al., 2016;

Hellmann et al., 2017; Chen et al., 2020). Nevertheless, the surge

of novel immune checkpoint inhibitors and targeted therapy has

improved the survival of LUAD patients (Herbst et al., 2018).

Given the heterogeneous biology of tumor cells and the tumor

microenvironment (TME) of LUAD, the response of different

patients to various treatments is also variable (Marusyk et al.,

2020). Therefore, it is necessary to segment this disease into

different subtypes and build models to predict patient prognosis

and treatment response (Tang et al., 2017).

Lactate was long regarded as an end product of cellular

glycolysis. Otto Warburg was the first to propose lactate as a

cancer biomarker and coined the term Warburg metabolism,

thus elucidating how tumor cells produce lactate. Recent

evidence suggests that lactate broadly affects different

biological processes during tumor development (Ippolito

et al., 2019). Lactate promotes the proliferation and

invasion of LUAD by promoting the metabolic activity of

tumor cells (Chen et al., 2016; Morandi et al., 2016), driving

tumor drug resistance (Apicella et al., 2018), and inhibiting

the cytolytic activity of immune cells (Crane et al., 2014; Brand

et al., 2016). Therefore, the stratification of LUAD patients

according to lactate-related genes could predict survival

outcomes and guide treatment.

In this study, we constructed a lactate-related gene

prognostic indicator (LRPI) for LUAD patients to predict

patient prognosis, molecular characteristics, and response

to treatment. We screened genes related to prognosis that

were also related to lactate metabolism to classify LUAD

patients into two subtypes. Next, we assessed the

association between different patient subtypes and survival

to construct the LRPI. We subsequently conducted an

extensive study of the stratified survival characteristics of

LUAD patients, analyzed patient mutational spectrum and

predicted driver mutation genes to assess patient response to

multiple treatments. Altogether, we show that LRPI is a good

prognostic tool for LUAD patients and that it might be helpful

to guide treatment.

Materials and methods

Data acquisition

RNA-seq data from LUAD and normal lung tissues, clinical

data, LUAD simple nucleotide variation (“Masked Somatic

Mutation” data preprocessed by VarScan2), and “Masked

Copy Number Segment” data were downloaded from the

TCGA GDC database (https://portal.gdc.cancer.gov/).

Moreover, data were also downloaded from the Gene

Expression Omnibus (GEO) cohort (GSE72094, https://www.

ncbi.nlm.nih.gov/geo/). The list of lactate-related genes was

extracted from the GOBP LACTATE METABOLIC PROCESS

and HP INCREASED SERUM LACTATE gene sets, both of

which were downloaded from the MsigDB database (http://www.

gsea-msigdb.org). A flowchart for this design is presented in

Figure 1.

Identification of lactate-related subtypes
in LUAD samples

First, we constructed an expression matrix of lactate-

related genes for all samples within the TCGA dataset. To

screen genes associated with the prognosis of LUAD patients,

we performed an univariate Cox regression on the obtained

expression matrix to identify genes that were correlated with

patient prognosis. We performed a consensus clustering of all

tumor patients in the TCGA cohort based on the expression

matrix of lactate genes related to prognosis.

ConsensusClusterPlus function of ConsensusClusterPlus

package of R software (Wilkerson and Hayes, 2010) is used

for consensus clustering and the important parameters are set

as follows: K-means was used as the clustering algorithm, the

subsampling number was set to 50, k value varied between

Frontiers in Genetics frontiersin.org02

Chang et al. 10.3389/fgene.2022.949310

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org
http://www.gsea-msigdb.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.949310


2 and 9, and the proportion of each resampling was 80% of the

total sample. Subsequently, we used the elbow method to

determine the optimal k value of partition by evaluating

the consensus matrix and the consensus cumulative

distribution function. Within this analysis we were able to

determine a suitable number of patients per cluster.

Survival and enrichment analyses of
patients stratified by lactate-related genes

LUAD patients were stratified in two different subtypes

according to their expression of lactate-related genes. We used

the survminer package of the R software to perform the survival

analysis on the two identified subtypes. Kaplan-Meier (K-M)

survival curves were employed to compare the survival of LUAD

patients.

Hallmark gene sets (downloaded from the MSigDB

database: http://www.gsea-msigdb.org) are rich in gene

signatures of abundant biological states and processes. To

investigate the biological activity and process patterns of

LUAD samples, we performed a single sample gene set

enrichment analysis (ssGSEA) of the two subtypes based on

the hallmark gene set. The clusterProfiler package of R

software (Yu et al., 2012) was used to calculate the

enrichment scores.

FIGURE 1
The flowchart showed the design of the study.
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Tumor purity and immune infiltration of
different subtypes

ESTIMATE is an algorithm that uses gene expression

signatures to quantify the proportion of stromal and

immune cells in tumor tissues. By using the estimate

package of R software (Yoshihara et al., 2013), we obtained

the immune score, stromal score, ESTIMATE score (the sum

of immune and stromal scores), and tumor purity for each

TCGA-LUAD sample in the two lactate-related subtypes.

To obtain the landscape of immune cell infiltration in

LUAD tissues, we performed an ssGSEA on the expression

matrix of TCGA-LUAD patients. By using the GSVA package

of R software (Hanzelmann et al., 2013), we calculated the

enrichment fraction of 28 immune cells in each sample.

Construction of the lactate-related
prognostic index

We identified genes with a differential expression among

the two lactate-related subtypes by using the limma package of

R software. Differentially expressed genes (DEGs) were

identified as those genes presenting a logFC >2 and p < 0.05.

Using the glmnet package in R software, we performed a least

absolute shrinkage and selection operator (LASSO) analysis on

the expression of DEGs in the train group (TCGA-LUAD

cohort) to identify genes that could predict the overall

survival of LUAD patients and establish a lactate-related

prognostic index (LRPI). Then we used multivariate cox

regression analysis for genes included in the model to verify

their association with prognosis. Using the GEO cohort as the

test group, we divided the train and test groups into two

subgroups, namely an LRPI-high and an LRPI-low subgroup,

using the median of the risk score as a cutoff. To verify the

predictive ability of the model, we used the K-M method to

perform a survival analysis of the two subgroups, used the

timeROC package of R software to draw receiver operating

characteristic (ROC) curves for the two subgroups at 1-, 2- and

3-year and calculated their area under the curve (AUC).

Prognostic ability and stratified survival
analysis of lactate-related prognostic
index

To verify the independent prognostic ability of LRPI, we

performed univariate and multivariate Cox regressions using the

LRPI score and common clinical features in the TCGA-LUAD

cohort. To improve the prognosis prediction of LUAD patients,

we drew a nomogram using the rms package of R software.

Finally, to obtain different survival characteristics, we stratified

patients according to age, sex, and tumor stage and performed a

K-M survival analysis.

Molecular characteristics of the two
identified LUAD subgroups

To obtain the mutation landscape of LRPI genes in

both subgroups, we analyzed the simple nucleotide

variation dataset within the TCGA-LUAD cohort using

the Maftools package of R software (Mayakonda et al.,

2018). We calculated the tumor mutation burden (TMB)

for each sample and compared it between the two

subgroups. To identify mutated genes that have a

direct effect on tumor progression (driver mutated genes),

we used the MutSigCV software of matlab (Lawrence et al.,

2013). Subsequently, we performed a correlation analysis

on the amount of mutations present in driver

mutant genes, and calculated the correlation of these

mutations.

Drug sensitivity and immune therapy
response

The Genomics of Drug Sensitivity in Cancer (GDSC)

database (www.cancerrxgene.org/) was employed to assess

the sensitivity of samples to different drugs by

identifying biomarkers of drug sensitivity to different anti-

cancer drugs.

Using GDSC, we predicted the IC50 of commonly

used drugs in the treatment of LUAD patients. To

assess the response of the two subgroups of patients

to immune checkpoint therapy, we performed the

Tumor Immune Dysfunction and Exclusion (TIDE)

analysis to analyze the resistance to immunotherapy (Jiang

et al., 2018).

Statistical analysis

R software (version 4.1.1) (http://www.r-project.org/) and

its corresponding R packages were used for all statistical

data analysis and to generate graphs. A log-rank test

was used to compare K-M survival curves for survival

analysis. The Wilcoxon test was used to compare gene

expression, ssGSEA analysis scores, ESTIMATE analysis

scores, drug sensitivity, and TIDE analysis scores

between two groups of samples. The Cox regression

model was used to identify associated factors of survival

outcomes. p values less than 0.05 were considered

statistically significant.

Frontiers in Genetics frontiersin.org04

Chang et al. 10.3389/fgene.2022.949310

http://www.cancerrxgene.org/
http://www.r-project.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.949310


FIGURE 2
Identification of lactate-related subtypes of LUAD (A) Screening of prognostic lactate-related genes by univariate cox analysis (B) Comparison
of expression values of lactate-related prognostic genes between normal samples and tumor samples (C)Consensusmatrix heatmap when k = 2 (D)
Delta area plot showed the relative change in area under CDF curve as the value of k changes (E) CDF plot showed the cumulative distribution
function for different values of k (F) K-M survival curves showed that LSA patients have better prognosis than LSB patients (G) Different ssGSEA
analysis results of two isoforms on hallmark gene sets, different colors represent the different ssGSEA scores.
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Results

Stratification of LUAD patients according
to their expression of lactate-related
genes

In the univariate Cox regression of lactate-related genes we

found a significant correlation between 12 genes and patient

prognosis (Figure 2A). Among these genes, seven were

upregulated and three were downregulated (Figure 2B). To

identify different lactate-related subtypes of LUAD patients,

we performed a consensus clustering of the TCGA-LUAD

cohort based on the expression of these 12 identified genes

(Figure 2C-E). Based on the optimal number of clusters k = 2,

we divided patients into two subtypes: lactate-related subtype A

(LSA, n = 258) and lactate-related subtype B (LSB, n = 218).

Characteristics of the two identified
subtypes of LUAD patients

In the survival analysis, LSA patients showed better

prognostic outcomes than LSB patients (Figure 2F). In

parallel, LSB patients had a higher enrichment of lactate

metabolism-related pathways, cell cycle-related pathways,

PI3K/AKT/mTOR signaling pathways, and multiple cancer-

related pathways in the ssGSEA analysis (Figure 2G); all of

which may be associated with poor prognosis. Stromal and

FIGURE 3
Immune characteristics of two lactate-related subtypes (A–D) Differences in the results of the four ESTIMATE analysis scores between the two
subtypes (E) Landscape of 28 types of immune cell infiltration in patients with two subtypes, different colors represent different immune infiltration
fractions (F) Differences in immune cell infiltration fractions in patients of two subtypes.
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immune cells constitute an important part of the tumor tissue

as they interact with tumor cells, and play an important role in

tumor development and infiltration. Therefore, we explored

differences in the TME between the two subtypes. Results of

the ESTIMATE analysis showed that the immune, stromal,

and ESTIMATE scores were higher in LSA samples, indicating

that these samples displayed abundant immune cells and

intercellular substance. Meanwhile, the tumor purity of LSB

samples was significantly higher than that of LSA, indicating a

higher proportion of tumor cells (Figures 3A–D). Immune cell

infiltration analyses were in good agreement with ESTIMATE

(Figure 3E). The overall level of immune cell infiltration in

LSA was much higher than that of LSB samples. We found

12 cells that were more present in LSA samples and three cells

that were more prevalent in LSB samples(Figure 3F). This

suggests that, compared with LSB, LSA samples had more

FIGURE 4
Construction and validation of LRPI (A) The change trajectory of the independent variable coefficient as the log lambda value increases (B)
Change in misclassification probability as log lambda value changes (C)Multivariate cox analysis to validate the independent prognostic ability of
model genes (D and E) LRPI score and survival outcomes of patients in the TCGA cohort (F) K-M survival curves of two LRPI subgroups of the TCGA
cohort (G) 1-year, 2-years, and 3-years ROC curves and their area under the curve of LRPI in TCGA cohort (H and I) LRPI score and survival
outcomes of patients in the GEO cohort (J) K-M survival curves of two LRPI subgroups of the TCGA cohort (K) 1-year, 2-years, and 3-years ROC
curves and their area under the curve of LRPI in TCGA cohort.
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FIGURE 5
Survival prediction ability of LRPI and stratified survival analysis of two LRPI subgroups (A and B) Univariate and multivariate cox analysis to
validate the independent prognostic power of LRPI (C) The nomogram was established by clinical stage and LRPI to predict the survival rate of
patients at 1, 3, and 5 years (D–F) The calibration plot of nomogram at 1, 3, and 5 years (G and H) Age-stratified K-M survival curve analysis of two
subgroups of LRPI, age was divided into two groups ≤65 and >65 (I and J) Gender-stratified K-M survival curve analysis of two subgroups of
LRPI, gender is divided into female andmale two groups (K and L) Stage-stratified K-M survival curve analysis of two subgroups of LRPI, clinical stage
was divided into two groups, I-II and III-IV.
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immune cells infiltrated, increased levels of interstitial

components, and an active immune microenvironment that

could significantly improve patient prognosis.

Construction and validation of LRPI

To explore how gene expression affected the prognosis of

patients in the two lactate-related subtypes, and to quantify

differences in survival, we constructed an LRPI. First, the

differential expression analysis of expression profiles of LSA

and LSB patients identified 557 DEGs, which were further

screened by the LASSO analysis (Figures 4A,B). Then,

through multivariate Cox regressions, we found that genes

DNAH12, FBN2, IGFBP1, GDPD2, UNC5D, CYP17A1,

SYT10, KRT81, RTL1 and RHOV were significantly associated

with prognosis (Figure 4C). Therefore, the LRPI (a hazard ratio

regression model) was established based on these genes. The

formula of the model is expressed as: LRPI = (−0.2361) *

exprDNAH12 + (0.2201) * exprFBN2 + (0.1518) * exprIGFB1

+ (0.4469) * exprGDPD2 + (0.1886) * exprUNC5D + (−0.5209) *

exprCYP17A1 + (−0.5262) * exprSYT10 + (0.0738) * exprKRT81

+ (0.3176) * exprRTL1 + (0.1176) * exprRHOV. Samples from the

TCGA and the GEO cohorts were divided into two subgroups,

namely LRPI-high and LRPI-low groups, based on their median

model score (Figures 4D,E,H,I). The LRPI-low subgroup

displayed a better prognosis than LRPI-high patients in both

cohorts (Figures 4F,J). The AUC of the ROC curves at 1-, 3-, and

5-year in the TCGA cohort were respectively 0.749, 0.722, and

0.729 (Figure 4G), while corresponding values in the GEO cohort

were 0.653, 0.650, and 0.620 (Figure 4K). Altogether, these data

support that LRPI is an excellent prognostic indicator that can

accurately predict the prognosis of LUAD patients.

Independent prognostic ability and
survival characteristics of LRPI

To test whether LRPI is an independent prognostic factor

related to survival outcomes, we performed univariate and

multivariate Cox regressions using age, LRPI, tumor stage,

and gender (Figures 5A,B). Results evidenced that LRPI was

an independent prognostic factor with a good prognostic ability.

Subsequently, we established a prognostic nomogram for TCGA-

LUAD patients. By adding points corresponding to the clinical

stage and LRPI, the total score was used to predict the survival

rate of patients at 1-, 3-, and 5-year (Figure 5C). Calibration plots

for these time-points are shown in Figures 5D–F.

Next, we performed a stratified survival analysis to explore

whether LRPI was an accurate predictor under different clinical

factors. Survival of the LRPI-low subgroup was better than that of

the LRPI-high subgroup in both cohorts of patients

aged ≤65 years as well as in those aged ≥65 years (Figures

5G,H). The low LRPI subgroup also displayed an improved

survival than the high LRPI subgroup in both cohorts when

patients were stratified by sex (Figures 5I,J). When patients were

stratified according to their clinical stage, we found that the

survival of LRPI-low patients was better than that of LRPI-high

ones for patients in stages I and II. However, there were no

differences among subtypes in stage III or IV patients (Figures

5K,L). Altogether, results showed that LRPI could accurately

predict the prognosis of patients stratified according to age and

gender. With regards to clinical stage, LRPI was demonstrated to

be an accurate predictor only for patients in stages I and II.

Molecular characteristics of LRPI-high and
LRPI-low subgroups

We explored the overall mutational landscape of TCGA-

LUAD and its distribution between the two subgroups according

to their LRPI scores (Figure 6A). In the two subgroups, missense

mutation, multi hit, and nonsense mutation occurred most

frequently, while mutations of TP53, TTN, MUC16, and

CSMD3 exceeded 30%. In this regard, TMB is an excellent

biomarker to help predict the effect of immunotherapy.

Interestingly, the LRPI-high subgroup showed a higher TMB

(Figure 6B), suggesting that its response to immunotherapy was

stronger than that of the LRPI-low subgroup. Next, we used

MutSigCV to predict driver-mutated genes in LUAD patients

(Figure 6C). The mutation frequency of TP53, KRAS, COL11A1,

KEAP1, STK11, EGFR and other driver mutation genes was

above 10%. Among driver mutant genes, COL11A1 showed a

strong correlation with the mutations of CDKN2A, ZNF735,

ARID1A, MGA, SMARCA4, EPHA6, KEAP1 and other genes.

Therefore, COL11A1 might be a central gene that drives

mutations in other genes in LUAD patients (Figure 6D).

Treatment efficacy of LRPI-high and LRPI-
low subgroups

In order to explore the sensitivity of the two identified patient

subgroups to conventional treatment and to formulate improved

treatment strategies, we performed a GDSC analysis to obtain the

IC50 of different drugs (Figures 7A–F). Lower IC50 values mean

better tumor responsiveness to anti-tumor drugs. Compared

with the LRPI-low subgroup, the LRPI-high subgroup showed

lower IC50 values for several chemotherapy drugs such as

Cisplatin, paclitaxel, gemcitabine and docetaxel, indicating

that these patients have an improved response to

chemotherapy. Based on the results of drug sensitivity

analysis, we recommend patients in LRPI-high subgroups to

receive chemotherapy as adjuvant therapy. Compared with the

LRPI-low subgroup, the LRPI-high subgroup displayed a lower

TIDE dysfunction score (Figure 7G). Of note, the TIDE score has
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been correlated with lower responsiveness towards

immunotherapy of hot tumors (Fu et al., 2020). Conversely,

the LRPI-high group had a higher TIDE exclusion score

(Figure 7H), suggesting a poorer response to immunotherapy

in cold tumors (Fu et al., 2020).

Discussion

LUAD is the leading cause of cancer-related deaths

worldwide. Due to its high tumor heterogeneity, its

carcinogenic mechanism has not been fully elucidated

FIGURE 6
Molecular characteristics of two LRPI subgroups (A) The gene mutation landscape of two LRPI subgroups (different colors represent different
mutation modes) (B) Boxplots showed the differences in TMB between two subgroups (C)Mutation landscape of driver-mutated genes of two LRPI
subgroups (D) Correlations of mutation frequencies among driver-muted genes mutation.
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(Calvayrac et al., 2017; Huang et al., 2020), hindering efforts to

develop individualized treatment. Recently, the role of lactate

metabolism in multiple biological processes during tumor

progression was revealed. Indeed, lactate metabolism is key to

immune and inflammatory responses, leading to the

development of tumor resistance to a variety of conventional,

targeted, and immunological therapies (Balgi et al., 2011; Xie

et al., 2016; Certo et al., 2021). Lactate was originally considered

a metabolic waste product of glycolysis, until Otto Warburg

first identified this metabolite as a characteristic product released

by tumors. Considering the multiple roles of lactate metabolism

in TME on tumor progression, and the impact of antitumor

therapies, we believe it is essential to build a Biomarker based on

lactate metabolism patterns in lung adenocarcinoma to predict

patient survival outcomes, predict disease characteristics, and

guide therapy. In our study, most of the lactate-related genes

related to prognosis were upregulated in tumors when compared

to normal tissues, which further confirmed the high correlation

between lactate metabolism and tumor development. Therefore,

the investigation of the effects of lactate metabolism on LUAD

patients may uncover novel targets and biomarkers useful for

individualized therapy. It would also be possible to generate

models to predict patient survival and responsiveness to

treatment and develop more efficacious treatment strategies.

In previous studies, lactate metabolism was highly correlated

with tumor cell proliferation and invasion and patient poor

prognosis (Faubert et al., 2017; Hui et al., 2017). In our study,

LSB patients were enriched in lactate metabolism-related

pathways and had a poorer prognosis than LSA patients. This

is similar to results of a previous studies, confirming that

increased lactate metabolism in LUAD is associated with

poorer patient prognosis. In addition to promoting the

development of tumor cells, lactate metabolism also influences

the TME (Ippolito et al., 2019). Indeed, lactate negatively

regulates the immune microenvironment, and displays a great

inhibitory effect on the normal function of immune cells (such as

the cytolysis function of T cells and NK cells) (Husain et al., 2013;

Crane et al., 2014; Brand et al., 2016). Therefore, we analyzed

immune infiltration within LSA and LSB LUAD patients. LSB

patients, which displayed higher lactate metabolism, presented

higher tumor purity, lower interstitial component and decreased

immune cell components. In parallel, the majority of immune

cells in the LSB subtype had a significantly lower infiltrating

fraction, while only a few cells that do not play a major role in

tumor immunity were enriched. These data validate the negative

impact of lactate metabolism in LUAD as well as on the normal

biological function of immune cells within TME.

Between the two LUAD subtypes, LSA and LSB, we found

prognostic differences that were significantly associated with

lactate metabolism. We next constructed models to predict

patient outcome, explore molecular and immunological

features and assess the efficacy of different treatment regimens

FIGURE 7
Response of two LRPI subgroups to antitumor therapies (A–F) Comparison of IC50 for different antitumor drugs (Cisplatin, Etoposide,
Paclitaxel, Gemcitabine, Docetaxel, Gefitinib) in two LRPI subgroups (G and H)Comparison of dysfunction score and exclusion score in TIDE analysis
of two LRPI subgroups.
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correlated with lactate metabolism. Therefore, according to

DEGs identified in the two subtypes, we screened model genes

and established a prognostic model using LASSO and Cox

regression analyses, so that the model (LRPI) could fully

reflect differences according to lactate metabolism levels. LRPI

was validated by the GEO cohort and was also shown to be an

independent prognostic factor, prompting us to draw a

nomogram based on two independent prognostic factors,

LRPI score and clinical stage, to more accurately predict the

survival rate of LUAD patients.

According to their LRPI score, LUAD patients were divided

as LRPI-high and LRPI-low subgroups, which showed distinct

prognoses. Interestingly, the prognosis of both subgroups was

different when patients were stratified by age and gender, but

were similar in stage III-IV patients. Indeed, higher clinical stage

affects the prognosis of LUAD patients (Rami-Porta et al., 2018).

In the multivariate Cox analysis, the hazard ratio of stage was

greater than that of LRPI, indicating that higher clinical stages

display collinearity with LRPI, thus masking its impact on

prognosis.

Patients in the LRPI-high subgroup had improved sensitivity

to a variety of drugs such as cisplatin, paclitaxel, gemcitabine and

docetaxel, revealing that these patients would benefit more from

chemotherapy than LRPI-low ones. The clinical use of immune

checkpoint inhibitors has brought a new perspective to the

treatment of lung cancers, and has shown excellent efficacy in

NSCLC (Sharma and Allison, 2015), therefore we explored the

relationship between the two subgroups and their benefit with

regards to immunotherapy. The LRPI-high subgroup had a

significantly higher TMB, which has been shown to be an

important biomarker associated with a high sensitivity to

immunotherapy (Samstein et al., 2019). Meanwhile, the LRPI-

high subgroup presented a lower TIDE dysfunction score.

Compared with the severe T cell dysfunction present in LRPI-

low patients, LRPI-high patients showed improved sensitivity to

immunotherapy. Based on these results, we recommend

chemotherapy and immunotherapy for LRPI-high patients to

improve their prognosis.

Although we extensively analyzed the role and impact of

lactate metabolism in LUAD, there are two major shortcomings

in the research. First, the study was based on bioinformatics

analysis and lacked validation of the basic experiments, which we

will further explore in future studies. Secondly, considering the

different technologies and platforms used between

transcriptomic datasets and the huge batch effect between

different datasets, we used only the TCGA-LUAD dataset for

the major analysis, which is one of the limitations of our article.

In conclusion, we established two LUAD patient subtypes

with different levels of lactate metabolism, validating the role of

lactate metabolism in the prognosis and immune function of

LUAD, which is similar to that of other tumors. Based on

differences in gene levels, we established a prognostic model

to assess patient prognosis, molecular characteristics and

response to treatment. LRPI could accurately predict the

prognosis of LUAD patients, and, when combined to patient

clinical stage, the accuracy of LRPI increased. Finally, LRPI can

be used as a novel biomarker and as a tool for the individualized

treatment of LUAD patients.
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