
Analysis of the Prognostic
Significance and Immune Infiltration of
the Amino Acid Metabolism-Related
Genes in Colon Adenocarcinoma
Zhenling Wang1,2, Changzhi Huang1,2, Jingyu Wu1,2, Hongqiang Zhang1,2, Yu Shao1,2 and
Zan Fu1,2*

1The First College of Clinical Medicine, Nanjing Medical University, Nanjing, China, 2Department of General Surgery, The First
Affiliated Hospital of Nanjing Medical University, Nanjing, China

Amino acid metabolization is verified to be a part in the progression of cancer. However,
genes related to the amino acid metabolism have not been identified in colon
adenocarcinoma (COAD). A systematic prognostic model of COAD becomes a
pressing need. Among genes related to the amino acid metabolism, RIMKLB, ASPG,
TH, MTAP, AZIN2, PSMB2, HDC, ACMSD, and PSMA8 were identified to construct a risk
model. Kaplan–Meier (K–M) analyses demonstrated that the high-risk group achieved a
poor prognosis. Area under the respective ROC (AUC) values indicated the robustness of
the model. To highlight its clinical value, multivariate Cox was used to obtain the optimal
variables to construct a nomogram. A higher tumor mutation burden was observed in the
high-risk group. However, the low-risk group had a stronger immune infiltration. Seven
molecular subtypes were found by consensus cluster. Twenty-two hub genes were
identified related to the ESTIMATE score using WGCNA. In brief, our research
constructed a stable prognostic model related to the amino acid metabolism in COAD,
revealing its connection to the immune microenvironment. The model guided the outcome
of COAD and the direction of immunotherapy.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent carcinomas and is the third cause of cancer-
related death globally. Annually, more than 1.85 million occurring cases of colorectal carcinoma
increase, among which 850000 end in death (Biller and Schrag, 2021). The incidence of
colorectal cancer varies widely between different geographic regions owing to various risk
factors, screening modalities, and access to health care (Favoriti et al., 2016). COAD, the main
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type of colorectal cancer, shows a younger trend recently
(Siegel et al., 2020). The prognosis of COAD has been
improved significantly as breakthroughs in surgical
technique and adjuvant treatment emerged (Jahanafrooz
et al., 2020). However, the 5-year overall survival (OS) is
still less than 40% in colon cancer with advanced stage,
which is to blame for the postoperative recurrence and
metastasis (Mejri et al., 2018). Recognized as the prognostic
indicator, the American Joint Committee on Cancer (AJCC)
TNM staging system is updated continually, while patients
with analogous clinicopathologic features share different
prognoses (Lino-Silva et al., 2020). Thence, the discovery of
new prognostic markers in colon cancer has become a key
point.

The recoding of energy metabolism has been considered a
hallmark of cancer (Hanahan and Weinberg, 2011).
Proliferation, invasion, and metastasis of cancer are tied to
a series of biological processes, in which energy metabolic
reprogramming plays a critical role (Boroughs and
DeBerardinis, 2015). Amino acid and its metabolism not
only participate in protein synthesis but are also involved in
metabolic reprogramming to regulate the proliferation of
cancer by variable pathways (Li and Zhang, 2016). For
example, asparagine synthetase (ASNS) is involved in the
synthesis of aspartic acid to asparagine. The silence of
ASNS has been verified as an origin of tumor-specific
auxotrophy (Vettore et al., 2020). In addition,
BCAT1 catalyzes the transamination of branched-chain
amino acids (BCAAs) to α-ketoglutarate (α-KG), and it is
confirmed to have a positive correlation with a high expression
of c-Myc, thereby supporting cell invasion (Zhou et al., 2013).
Moreover, glutamine synthetase (GS) synthesizes glutamine
using glutamate and NH4+, which is of great importance to
continued tumor proliferation, especially when glutamine may
be limiting (Tardito et al., 2015). All these results verify that
amino acid metabolism is of vital importance in the
metabolism reprogramming of carcinoma.

Amino acid metabolism closely participates in the
development of colon cancer with variable pathways. For
instance, this study proves that SNX10 controls mTOR
activation in CRC by controlling the amino acid metabolism
depending on CMA (Le et al., 2018). Furthermore, it is universally
known that aspartate turns into asparagine through ASNS. CRC
cells with mutated KRAS are capable of becoming accustomed to
glutamine consumption by the overexpression of ASNS (Toda
et al., 2016). Similarly, SLC25A22, a gene inducing intracellular
synthesis of aspartate, can promote proliferation in KRAS-
mutant CRC cells (Wong et al., 2016). As is shown earlier, the
glutamine metabolism plays an outstanding role in colorectal
cancer. In addition, other amino acid metabolism pathways also
play a part that cannot be underestimated. CircMYH9 promotes
the growth of CRC by regulating the metabolism of serine/glycine
and reactive oxygen species (ROS) in a p53-dependent way (Liu
X. et al., 2021). Thus, targets for the metabolism of COAD
patients are under exploration. A recent study shows that a
combination of blockade of EGFR and glutamine metabolism
shows a new direction of therapy for advanced metastatic COAD

(Cohen et al., 2020). Recently, plenty of studies have been focused
on the immune microenvironment of colon carcinoma (Li et al.,
2020; Geng et al., 2021; Yan et al., 2021). In addition to TNM
staging, the assessment of colon cancer recurrence and mortality
also needs to include the degree of immune cell infiltration
(Galon et al., 2006; Mlecnik et al., 2011). The regulation of
immune microenvironment to tumor cells can even determine
the outcome of tumor (Yuan et al., 2021). However, based on the
importance of the amino acid metabolism, a lack of the evaluation
model for amino acid metabolism-related gene signatures on the
prognosis of colon carcinoma still exists, whose connection with
the immune microenvironment of colon carcinoma has not been
confirmed.

MATERIALS AND METHODS

Datasets
Gene expression quantification data (FPKM and counts format)
for TCGA-COAD and corresponding statistics on survival and
clinical outcomes were obtained from the UCSC Xena browser
(http://xena.ucsc.edu/), from which 453 cases of COAD tumor
tissues and 41 cases of normal tissues were extracted. Among
them, HTSeq-FPKM of 430 COAD samples with survival data
were converted to log2(FPKM+1) formation for subsequent
analysis. HTSeq-counts were utilized for differential expression
profiling. GSE17538 datasets along with clinical data obtained
from https://www.ncbi.nlm.nih.gov/geo/ were used as the
external validation set, which included 232 tumor samples
with OS.

A total of 374 genes related to amino acid metabolic processes
were obtained from the MSigDB team
(REACTOME_METABOLISM_OF_AMINO_ACIDS_
AND_DERIVATIVES): http://software.broadinstitute.org/gsea/
index.jsp (Subramanian et al., 2005). The entire process was
conducted by R (version 4.1.1).

Gene Ontology Analysis of the Differentially
Expressed Genes in the Normal and Tumor
Tissue Samples
Gene expression fold-change between tumor and healthy tissues
was accessed for each gene using the “Desq2” R package. Adjusted
p-value < 0.05 and FC > 1.5 were the screening criteria of genes
enrolled for further analysis. The “clusterProfiler” R package was
carried out to perform GO analyses on DEGs, which is to describe
the roles that genes and proteins play inside cells. The p-value
along with the q-value <0.05 was believed as a statistical
significance. The “GOplot” R package was utilized to achieve
the results.

Construction and Verification of a
Prognostic Gene Model
The training and test sets were TCGA-COAD and GSE17538,
respectively. In the training set, univariate Cox regression
analyses were first implemented with a criterion of “p < 0.05.”
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Multivariable Cox regression using stepwise selection
modeling was also applied to further select predictive
genes. All Cox regression models were established by the
“survival” R package. The “glmnet” R package was for
LASSO analysis, which ultimately obtained the most useful
predictive genes and their coefficients. The risk score of each
sample based on genes screened was reckoned utilizing the
following formula:

RiskScore � ∑
i

n�1(Coefi
pExpGenei)

“Coef” was referred to the regression coefficient derived from
the LASSO analysis, and “ExpGene” represented the expression
of the selected genes. In TCGA-COAD, we obtained the risk
score of each sample and divided the cohort into two groups
according to the median risk score. Each group contains
215 patients. K–M curves using the log-rank test were
applied to compare the survival probability of patients
between the two groups. The time-dependent ROC was
drawn employing the “timeROC” R package to appraise the
accuracy of the prognostic model. In GSE17538, the formula
was applied to distinguish between high (n = 111) and low (n =
121) groups. K–M plots were implemented to further validate
previous results. Finally, the applicability of the model was
confirmed to be valid in the external validation set.

Validation of the Prognostic Gene Model in
Clinical Subgroups and Univariable and
Multivariate Cox Regressions With Clinical
Features
Stratified by the clinicopathological index, K–M curves were
plotted to explore the feasibility of the model for different
subgroups of patients. Patients were divided into two
categories based on age >65 years and age ≤65 years, female
and male, T1+T2 and T3+T4, N0 and N1+N2, M0 and M1, and
Stages I + II and Stages III + IV, respectively. Then the p-value
was calculated in K–M curves between the two groups in each
category so as to confirm the applicability of risk scores. To better
perform Cox regression, samples with missing clinical
information have been removed. “Tis” and “Mx” were deleted
to acquire a clear stratification. A total of 375 samples were
included in the follow-up clinical related analysis.

Development and Evaluation of a
Nomogram for Predicting the Overall
Survival
A nomogram depending on the result of multivariable regression
was drawn. We construct the figure using the “rms” package to
calculate the 1-, 3-, and 5-year survival rates of COAD. To assess

FIGURE 1 | All the procedures of this study.
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the discrimination and accuracy of the nomogram, the ROC
diagrams and the calibration curves were plotted. The DCA
(decision curve analysis) plotted through the “ggDCA” package
was performed to assess the suitability of clinical application and
help guide clinicians in decision-making. We use the “ggalluvial” R
package to draw an alluvial plot to better reveal the flow of each
patient with different clinicopathological features.

Functional and Pathway Enrichment
Analysis
DEGs in low- and high-risk groups were achieved using the
“DESeq2” R package with the standard of FDR <0.05 and
log2 fold change ≥1. The GO analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
were conducted with the “clusterProfiler” package. To further

FIGURE 2 | Establishment of a risk model according to amino acid metabolism-related genes in TCGA-COAD and corresponding TMB analysis. (A) Intersection of
DEGs of TCGA-COAD and GSE17538 and amino acid metabolism-related genes. (B,C) LASSO analysis to obtain the nine gene signatures and corresponding
coefficients to build the risk model. (D,E) TMB of high- and low-risk groups. (F) Comparison of the significant mutation genes between the two groups.
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analyze gene set differences between the two groups, we
conducted gene set enrichment analysis (GSEA) with p <
0.05, FDR <0.25, and NES value >1.

Estimation of the Immune Cell Infiltration
The association between risk grouping and the infiltration of
immune cells was in estimation. We performed three methods:

FIGURE 3 | Validation of the risk model in TCGA-COAD and GSE17538. (A,B) The distribution of risk score in COAD patients. (C,D) Distribution of survival time in
COAD patients. (E,F) Expression of the nine genes between the two groups in two datasets (***p < 0.001, **p < 0.01, *p < 0.05, ns: p ≥ 0.05). (G,H) K–M curves of the
two groups in two datasets (TCGA-COAD: p < 0.001, GSE17539: p = 0.008). (I,J) Time ROC of 1, 3, and 5 survival years of COAD patients in the training and validation
sets. The area under the curve is the AUC value (AUC of TCGA-COAD: 1 year = 0.695, 3 years = 0.703, and 5 years = 0.695; AUC of GSE17538: 1 year = 0.647,
3 years = 0.595, and 5 years = 0.613).
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ESTIMATE, CIBERSORT, and ssGSEA, utilizing R package
“estimate,” “GSVA.” ESTIMATE shows the immune and
stromal scores of the specimen through RNA-seq data based
on ssGSEA. CIBERSORT is a deconvolution algorithm that uses
gene expression profiling data to count the abundance of 22 types

of immune cells. In every sample, the total of 22 immune cell type
fractions was 100%. Single sample gene set enrichment analysis
(ssGSEA) was performed to quantify the tumor-infiltrating
immune cell subgroups and immune function between the two
groups, among which 28 types of immune cells were quantified.

FIGURE 4 | K–M curves of the risk model classified by clinicopathology features (A), including age (≤65 years and >65 years), gender (female and male), T
(T1+T2 and T3+T4), N (N0 and N1+N2), M (M0 and M1), and stages (I + II and III + IV). (B) Univariable Cox regression of the risk score linked with clinicopathology
characters (age, gender, T, N, M, stage, and risk score). (C)Multivariable Cox regression of the risk score combined with the screened clinicopathology characters (age,
T, stage, and risk score).
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TMB Analysis, Protein–Protein Interaction
Network, and Consensus Clustering of the
Screened Nine Genes
TMBwas calculated as mutations per megabase (mut/Mb), which
leads a unique role in mediating antitumor immunity. A total of
399 samples with mutation information were classified into two

groups in line with the prognostic model. The “maftools” R
package was utilized to perform TMB analysis. The PPI
network between the nine genes was performed on
GeneMANIA (https://genemania.org). Consensus unsupervised
clustering was performed according to the expression of the nine
genes, and different molecular subtypes were obtained using the R
package “ConsensusClusterPlus.”

FIGURE 5 | Establishment of a nomogram using the screened variable and the validation analysis. (A,B) The constructed nomogram and its correction curves. (C)
AUC of the time ROC at 1, 3, and 5 years are 0.831, 0.830, and 0.803, respectively. (D) Alluvial plot shows the outcome of each COAD patient.
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Drug Sensitivity Analysis
To explore the clinical value of chemotherapeutic drugs, the
“pRRophetic” package was utilized to calculate semi-inhibitory
concentration (IC50) values for common drugs.

Weighted Gene Co-Expression Network
Analysis
We conducted WGCNA utilizing the “WGCNA” R package
(Langfelder and Horvath, 2008). We selected 2 as the soft power

FIGURE 6 | Enrichment analysis using DEGs of the two groups showed an association with immunity. (A) A dot chart of the KEGG. (B) GSEA illustrated that there
was a connection between low-risk group and the tumor immunity. (C) The correlation between the nine genes and immune cells. (D,E) CIBERSORT and ssGSEA
verified the connection (***p < 0.001, **p < 0.01, *p < 0.05, ns: p ≥ 0.05).
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to fit the standard of the scale-free distribution. Five modules were
acquired, and their relationshipwith risk score, stromal score, immune
score, ESTIMATE score, and tumor purity was plotted. Twenty-two
immune-related hub genes were obtained with appropriate values of
module membership (MM) and gene significance (GS).

Statistical Analysis
The Wilcoxon rank-sum test was performed to calculate the
difference between the two groups. The Kruskal–Wallis test was
performed to compare three or more groups. The Spearman test
was used to identify correlations between genes screened. The

FIGURE 7 | Interrelationships of nine genes involved in the amino acid metabolism. (A) TMB analysis of the nine genes in 399 samples of TCGA-COAD. (B)
Spearman correlation analysis of the nine genes (***p < 0.001, **p < 0.01, *p < 0.05). (C) Protein interaction network analysis. (D–F) Consensus cluster analysis divides
the gene signature into seven categories. (G) Validation of the seven clusters in the K–M plot.

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9514619

Wang et al. Amino Acid Metabolism Gene Signature

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kaplan–Meier method was utilized to evaluate the association
between the two groups. Univariate and multivariate Cox
regressions distinguished whether the risk score, age, gender,
stage, T, N, and M can become independent prognostic factors.
All of the statistical analyses were conducted using R 4.1.1 (p< 0.05).

RESULTS

Flowchart of the Study
RNA-seq along with clinically relevant data was obtained from the
TCGA-COAD dataset. The common genes in the DEGs of TCGA-

COAD and genes in GEO17538 were extracted and intersected with
the amino acid metabolism gene set enriched by GSEA to obtain
145 related genes. The genes were screened to nine by univariate
and multivariate regression models, and finally, a prognostic model
based on nine genes was constructed by LASSO regression. First, we
utilized these nine genes to analyze the protein-to-protein
interaction network, along with the TMB situation, and intend
to explore the prognostic value between groups by consensus
clustering. Second, the K–M and ROC curves are drawn
according to the risk model. Combined with clinically relevant
data, the significance of the K–M curve between each group was
discussed in groups, and then a nomogram was constructed. We

FIGURE 8 | immune-related genes were identified in WGCNA. (A) Filtering of soft power. (B) Diagram of five modules with different colors. (C) Heatmap of the
correlation between modules and immune-related scores. (D) Identification of genes with high GS and MM (GS > 0.25, MM > 0.85).
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verified it in the GEO database. Finally, GO analysis, KEGG
analysis, and GSEA were performed using the risk model.
According to the enriched pathways, we chose to perform
subsequent immune-related analysis (Figure 1).

Identification of Common Genes Related to
the Metabolism of Amino Acids in
Differentially Expressed Genes of
TCGA-COAD
First, 453 tumor and 41 normal samples with expression profile
(counts format) downloaded from the TCGA-COADwere subjected
to differential analysis (FC > 1.5, adjusted p-value <0.05), and
8,514 differentially expressed genes were obtained. Then genes
were subjected to the GO enrichment analysis, and the following
meaningful metabolic pathways were achieved (p-value<0.05,
q-value<0.05) (Supplementary Figure S1A; Supplementary
Table S1): amine transport, amino acid transport, amino acid
transmembrane transport, amino acid import, and amino acid
transmembrane transporter activity. It was revealed that the
metabolism of amino acids occupied an important part in the
progression of colon cancers. The obtained differentially
expressed genes were intersected with the amino acid and
derivative metabolism-related genes obtained from the GSEA
official website and then combined with all the genes in the
validation set GEO17538 expression profile. A total of 145 amino
acidmetabolism-related genes were intersected (Figure 2A). Second,
we eliminated 23 tumor samples without survival data, and the
remaining 430 samples were used for the subsequent Cox regression
analysis. The screening standard of univariate Cox regression is p <
0.05, and 10 genes with related HR values are obtained
(Supplementary Table S2). Then, multivariate Cox regression
utilizing the stepwise method was carried out, and gene
DUOX1 was deleted (Supplementary Table S2). The final nine
genes (RIMKLB,ASPG,TH,MTAP,AZIN2, PSMB2,HDC,ACMSD,
and PSMA8) were obtained by LASSO regression. Among them,TH,
MTAP, PSMB2, and ACMSD are highly expressed in COAD
samples, while RIMKLB, ASPG, AZIN2, HDC, and PSMA8 are
on the contrary (Supplementary Figure S1B).

Establishment of a Prognostic Model in the
Training Set and TMB Analysis
The risk model was created by the LASSO regression analysis
(Figures 2B,C). The risk score of each sample was obtained
utilizing the following formula: (0.601934345258193) * RIMKLB
+ (−1.22749614731757) * ASPG + (0.331574905784151) * TH +
(0.440528442325098) * MTAP + (0.665293956039793) * AZIN2
+ (−0.559861290284593) * PSMB2 + (−1.19852726039675) *
HDC + (0.650942798766232) * ACMSD + (1.99376791470084)
* PSMA8. The samples in TCGA-COAD were bisected into two
equal groups (n = 215) based on the median risk score, and the
optimal cutoff value is 0.5464642. Subsequently, the somatic
mutation profiles of the two groups were drawn separately
(Figure 2E). Among 197 samples in the high-risk group, 23
(11.68%) were mutated, while only 10 (5.71%) of 175 in the low-
risk group were mutated, which demonstrated that the group

scoring more had a higher rate of mutation. Among genes
screened, ASPG was the gene with the highest mutation
frequency in the group scoring higher; however, it had a less
mutation rate in the group scoring lower. RIMKLB has a
relatively high mutation frequency in both groups, while
MTAP had the lowest mutation frequency. Then, the
comparison of differentially mutated genes between the two
groups was displayed with a forest plot (p < 0.005), and
22 significantly mutated genes are shown in Figure 2F.

Prognostic Evaluation of the Training and
Validation Sets
The evaluation of the risk model on the training and validation sets
will be carried out in this part. First, we plotted the distribution of
risk scores in the two cohorts: TCGA-COAD and GEO17538
(Figures 3A,B). The relationship between the patient’s survival
time and survival status is shown in Figures 3C,D so that the
survival information of each patient can be observed more
intuitively. Subsequently, the expression of nine genes related to
the amino acidmetabolism in the two divided groups was exhibited
with a heatmap. The expression of RIMKLB, HDC, and ASPG was
relatively significant in the two groups of the two cohorts (Figures
3E,F). Next, the KM curve of the patients and the ROC at 1, 3, and
5 years were drawn. The distribution of survival curves in both
training and validation sets was consistent: the group scoring
higher had a poorer prognosis, and the group scoring lower had
longer survival (TCGA: HR = 0.41, CI: 0.27–0.64; GEO: HR = 0.57,
CI: 0.38–0.87). The two groups exhibited a different OS (TCGA:
p < 0.01; GEO: p = 0.008) (Figures 3G,H). The 1-, 3-, and 5-year
ROC splines were plotted; as a result of that, the robustness of the
prognostic model was further confirmed (AUC of TCGA: 1 year =
0.695, 2 years = 0.703, and 3 years = 0.695; AUC of GEO: 1 year =
0.647, 2 years = 0.595, and 3 years = 0.613) (Figures 3H,I).

Associations Between Risk Model and
Clinicopathological Variables
The discrepancy of risk scores by age, sex, pathological stage, and
TNM stage of malignancy as defined by the AJCC is shown in
Supplementary Figures S2A,B. Despite the indistinctive discrepancy
in the risk score by age and sex, there were significant correlations in
T, N, M, and stage (p-value: T: <0.01, N: <0.01, M: <0.01, stage:
<0.01). The risk score increased with TNM and stage. Then, to verify
whether the prognostic model would be different in subgroups with
different clinical characteristics, KM curves grouped according to
clinical information were drawn, including age ≤65 years vs.
age>65 years, female vs. male, T1+T2 vs. T3+T4, N0 vs. N1+N2,
M0 vs. N1, and Stage I + II vs. Stage III + IV (Figure 4A).
Interestingly, no difference in age, M, and stage grouping was
observed. In gender, the risk model had a higher accuracy of
prediction for the outcome of male COAD patients (p < 0.01).
For the T stage, the prognostic model was more suitable in COAD
patients with a higher degree of invasion (p< 0.01). In theN stage, the
N0 group is more suitable for the application of the prognostic model
than the N1+N2 group. In conclusion, this prognostic risk model is
more suitable for male COAD patients with a higher degree of local
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invasion but no lymph node metastasis. We then performed a
univariate Cox regression on age, gender, T, N, M, stage, and risk
score (Figure 4B), and it showed that gender was not a prognostic
risk factor, but risk score along with age, TNM, and stage was
qualified with a higher HR value (HR = 2.91, CI: 2.16–3.93, p < 0.01).
Through the multivariate Cox analysis, clinically relevant variables
were screened to age, T, stage, and risk score. The risk score still had a
higher risk fold (HR= 2.18, CI: 1.60–2.95, p< 0.01), drawn by a forest
plot (Figure 4C). This illustrated that the calculated score was equal
to becoming an independent risk factor.

Development of a Nomogram for Survival
Prediction
Compared with conventional clinical characteristics, the
nomogram can directly use the graph to calculate the values of
variables and then add them together, finally calculating the
survival probability of the individual through the functional
transformation relationship between the total points and the
probability of the outcome event. Here we built a scoring
system for each TCGA-COAD patient, which could calculate
the total score according to the variables of age, T, stage, and
risk score screened out by multivariate Cox regression, to predict
patients’ OS of 1, 3, and 5 years (Figure 5A). In addition, to
evaluate the precision of the nomogram predictions, calibration
plots (Figure 5B) and ROC curves (Figure 5C) at 1, 3, and 5 years
were drawn. The 1-, 3-, and 5-year AUC values all illustrated the
credible specificity and sensitivity of the nomogram (AUC: 1 year =
0.831, 3 years = 0.830, and 5 years = 0.803). The alluvial plot
visualized the shunting and OS of each COAD patient based on
clinical features and group of risk score (Figure 5D). The DCA
chart was used to evaluate the net benefit of the nomogram in
predicting survival, demonstrating the high clinical efficacy of the
constructed nomogram (Supplementary Figure S2C).

The Enrichment of Immune-Related
Pathways and the Relationship Between the
Prognostic Risk Model and Immune Cell
Infiltration
Differential genes between the classified two groups of TCGA-
COAD were used for GO analysis, KEGG analysis, and GSEA. GO
enriched 505 pathways, including external encapsulating structure
organization, mitochondrial inner membrane, tubulin binding
most significantly enriched in biological process (BP), cell
component (CC), and molecular function (MF)
(Supplementary Figure S3A; Supplementary Table S3).
Meanwhile, 334 pathways were also enriched in KEGG, of
which Herpes simplex virus 1 infection was the most significant
(Supplementary Table S4). Interestingly, the group scoring higher
was related to the calcium, Ras, Rap1, and TGF-beta signaling
pathway (Figure 6A). Subsequently, 667 pathways were enriched
by GSEA (|NES| >1, p-value <0.05, q-value <0.25)
(Supplementary Table S5). Particularly, the low group was
associated with the cell killing risk pathway, production of
molecular mediator of immune response pathway, myeloid
leukocyte-mediated immunity pathway, leukocyte-mediated

immunity pathway, humoral immune response pathway, cell
activation involved in the immune response pathway, and
antimicrobial humoral immune response mediated by the
antimicrobial peptide pathway (Figure 6B). This illustrated that
our risk model was tightly linked to the immune of COAD. Then,
ESTIMATE was applied to assess the tumor microenvironment
(TME). In StromalScore and ESTIMATEScore, the scores between
the two risk groups were not significant (p > 0.05). On the contrary,
it was relatively significant in ImmuneScore (p = 0.057), with a
higher trend seen in the low-risk group (Supplementary Figure
S3B). To further estimate the association between the proportion
of immune cells and the two groups, we utilized “Cibersort” to
calculate tumor immune cell infiltration proportionally. In higher
risk samples, the proportion of Macrophages M0 was higher. In
lower risk samples, plasma cells, T cells, CD4 memory activated
cells, NK cell activated, mast cell resting, eosinophils, and
neutrophils are more aggregated (Figure 6C). An immune
infiltration rainbow diagram of 430 patients is presented in
Supplementary Figure S3C, with the horizontal axis
representing samples, the left half representing the low-risk
group, and the right half on behalf of the high-risk group. The
vertical axis was the proportion of immune cell infiltration. The
figure vividly exhibited the aggregation of immune cells in each
patient.Meanwhile, the correlation analysis of nine genes related to
the amino acid metabolism and 22 types of immune cells was
carried out, the results of RILKMB, AZIN2, PSMB2, and HDC
were more associated with these immune cells (Figure 6D).
ssGSEA showed that compared to samples with a higher risk
score, there existed significant differences in the expression of
activated CD8 T cells, activated B cells, activated dendritic cells,
CD56dim natural killer cell, gamma delta T cell, mast cell,
monocyte, neutrophil, and type 17 T helper cell in samples with
lower scores (Figure 6E). In conclusion, the group scoring lower
showed a stronger immune infiltration response than the group
scoring higher. Paclitaxel and Shikonin are common
chemotherapeutic drugs screened with significant differences.
Paclitaxel has a higher sensitivity in the high-risk group, while
Shikonin has a higher sensitivity in the low-risk group
(Supplementary Figure S4).

Identification of Molecular Subtypes
Employing the Amino Acid
Metabolism-Related Nine Genes
This part presented the relationship between the nine amino acid
metabolism-related genes and TMB, as well as the connection and
interaction between the nine genes, and finally used consensus
clustering to determine whether these nine genes could divide
patients into different molecular subtypes. First of all, TMB
analysis showed that the mutation frequency of RIMKLB,
ASPG, PSMA8, and TH was higher than that of the remaining
genes in 399 samples. It is worth mentioning that RIMKLB also
has a certain degree of correlation with immune cells, which
means that this gene may be used as an immune drug target
(Figure 7A). The Spearman correlation coefficients of the nine
genes are presented in Figure 7B. RIMKLB, HDC, and AZIN
share a significant positive correlation (p < 0.001; Figure 7B).
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Through the PPI network analysis, AZIN2 correlated with four
other genes, which may function as a hub gene. Meanwhile,
PSMA8was strongly associated with PSMB2 (Figure 7C). Finally,
consensus clustering analyses were performed to form different
molecular subtypes. The results suggested considerably seven
categories (Figures 7D–F). Based on survival analysis,
molecular subtypes exhibited various OS, which well
demonstrated the possible biological contribution of molecular
subtype classification methods (Figure 7G). The analysis also
showed that the selected nine genes have a high potential to be
biomarkers for COAD, demonstrating that the amino acid
metabolism-related genes may possess a part to play in clinical
contribution.

Hub Genes Associated With Immunity and
Amino Acid Metabolism Identified in
Weighted Gene Co-Expression Network
Analysis
A total of 1283 DEGs were yielded between the two risk groups.
The modules related to immune-related score were obtained by
WGCNA (Figures 8A–C). Correlation between the Turquoise
module and ESTIMATE score (R = 0.64, P = 2E-51), and risk
score (R = 0.25, P = 2E-07) is shown in Figure 8C. After that, we
obtained 22 hub genes in the Turquoise module (PRELP, PLN,
AOC3, COL8A1, MPDZ, STON1, LMOD1, RNF150, MSRB3,
CACNA2D1, NAP1L3, BNC2, SGCD, FNDC1, HSPB8, FBN1,
CCDC80, TNS1, MYLK, DDR2, MAP1A, and BOC) using a
criterion of MM > 0.85 and GS > 0.25.

DISCUSSION

Metabolism reprogramming is considered a hallmark of cancer. This
biochemical process is ruled by oncogenic and tumor suppressor
genes, which offered energy, reducing equivalents and biosynthetic
precursors for tumors (Vander Heiden and DeBerardinis, 2017).
Amino acid metabolism, taking part in metabolism
reprogramming, proves to participate in the proliferation of cancer
(Li and Zhang, 2016; Vettore et al., 2020). Glutamine, serine, and
glycine, which are recently being focused on, act as raw materials for
protein synthesis as well as metabolic regulators to control cell
development (Li and Zhang, 2016). Recoding of the amino acid
metabolism also applies to colorectal cancer. In CRC with mutated
KRAS, the upregulation of ASNS enables the tumor to adapt to high
glutamine demands (Toda et al., 2016). In addition, PKCζ can
negatively regulate serine–glycine biosynthesis in colorectal cancer
in the absence of glucose, thereby promoting intestinal tumorigenesis
in Apcminmice (Ma et al., 2013). CRC occupies a third in incidence
and mortality worldwide. Although its mortality rates are decreasing,
the decline has slowed down in recent years (Sung et al., 2021). It is
worthy to mention that the 5-year survival rate with distant advanced
colon cancer is down to 14%, which indicates that how to evaluate the
prognosis of COADhas becomeone of the key points (Mattiuzzi et al.,
2019). Given the valuable potential that the amino acid metabolism
demonstrates in COAD, we built a prognosis risk model for assessing
COAD patients’ outcomes.

Our study collected RNA-seq expression profiles of TCGA-
COAD as well as GEO17538 and corresponding clinical data.
Through the GSEA website, we acquired genes related to the
amino acid metabolism, applying them to obtain the intersection
of three gene sets. Then, univariable and multivariable Cox
regressions, as well as LASSO analysis, were applied to select
genes concerning prognosis. Finally, nine prognostic related genes
were obtained to establish a risk model. Among the nine genes,
ribosomal modification protein rimK like family member B
(RIMKLB) is a protein-coding gene involved in the glutamine
family amino acid metabolic process and cellular protein
modification process, which is proved to be associated with
prognosis and clinical stage (Li et al., 2021). Asparaginase
(ASPG) is known to be related to asparagine degradation. A
study discovered that asparaginase is highly noxious to CRC with
WNT-activating mutations inhibiting GSK3 (Hinze et al., 2020).
Tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis
of catecholamines, is possible to be down-regulated in COAD, which
may affect the neural integrity of the perivascular plexus (Chamary
et al., 2000). As the first step of the salvage pathway for methionine,
methylthioadenosine phosphorylase (MTAP) accelerates the
proliferation and metastasis of CRC through
epithelial–mesenchymal transition (EMT) (Chamary et al., 2000).
Antizyme inhibitor 2 (AZIN2) takes part in the ornithine metabolic
process and is identified to be an element for a poor prognosis in
CRC, actuating aggressiveness of cancer cells with morphological
characters of EMT (Kaprio et al., 2019). Proteasome 20S subunit
alpha 8 (PSMA8) is predicted to participate in the meiotic cell cycle
and proteasomal protein catabolic process, and its genetic variants
are identified to link with the survival of CRC (Jiao et al., 2018).
Histidine decarboxylase (HDC), which plays a role in the process of
histidine catabolic, correlates with CRC stage and blood supply
(Masini et al., 2005). Moreover, HDC-expressing granulocyte
myeloid cell subsets regulate CD8 T cells by the regulation of
Tregs and therefore are of vital importance in suppressing
tumoricidal immunity (Chen et al., 2017). In summary, our study
corroborated again that RIMKLB, TH, MTAP, AZIN2, HDC, and
PSMA8 are directly or indirectly associated with the progression and
prognosis of CRC. However, research on proteasome 20S subunit
beta 2 (PSMB2) and aminocarboxymuconate semi-aldehyde
decarboxylase (ACMSD) are waiting to be explored in bowel cancer.

We then utilized the prognostic risk model acquired by the
former analysis to divide patients into two groups utilizing the
median risk score. The OS of the two groups was evaluated, and as
a result of that, the prognosis of the two showed significant
discrepancy (p < 0.0001). This difference was verified in
GEO17538, which proved that to a certain degree, the amino
acid metabolism partakes in the prognosis of COAD patients.
With analyses related to clinicopathological features further
conducted, we concluded that risk scores derived from genes
associated with the amino acidmetabolism can become ameasure
of COAD patient prognosis. The model is suitable for male
patients with higher T stage but no metastasis of lymph node
(Figure 4A), which is more convincing than using one single gene
as a grouping criterion to estimate the outcome. To better
evaluate the adaptability and scientificity of the risk model, we
compared our research with other prognostic signatures of the
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amino acid metabolism in different cancers. In hepatocellular
carcinoma, the identification of amino acid catabolism-related
genes was performed to construct a risk model (Zhao et al., 2021).
They applied LASSO analysis, built a nomogram combined with
clinical data, put functional enrichment analysis into practice,
and added experiments in validating genes’ expression. However,
immune cell infiltration analysis they explored had not been
conducted more in-depth. In osteosarcoma, Wan et al. created a
risk model for osteosarcoma using glutamine metabolism-related
genes. While immune microenvironment analysis was still
waiting to be verified (Wan et al., 2022), Jiang et al.
investigated genes related to branched-chain amino acid
(BCAA) metabolism in pancreatic cancer. They constructed
the risk model by the univariable Cox regression and LASSO
analysis while lacking definite specificity and sensitivity tests and
relatively convincing immune cell analysis (Jiang et al., 2022).
Therefore, combining the methods and results of these studies, we
explored the prospect of our prognostic model in clinical
applications, corresponding immune infiltration analysis,
which may exhibit the close contact between amino acid
metabolism and tumor microenvironment.

Cell proliferation, continued growth, and avoidance of cell death
are hallmarks of cancer, which require massive energy (Hanahan
and Weinberg, 2011). Growing evidence suggests that interactions
between immune cells and metabolites might be significant in
regulating immunity and tumor immunoevasion (DePeaux and
Delgoffe, 2021). Meanwhile, the screening of immune targets
plays a key role in the immunotherapy of MSI-H colorectal
cancer (Liu J. et al., 2021; Liu et al., 2022). In our study, the
group scoring lower had more immune cell infiltration, the cause
of which can be explained as follows. Glutamine acts as a principal
amino acid for energy generation and functions as a metabolic
intermediate. A study shows that the blockage of glutamine in mice
with colon cancer inhibits the metabolic process of tumor cells in
oxygen and glucose. Oppositely, effector T cells adapt to glutamine
antagonism by altering their oxygen metabolism for a long-live,
more activated phenotype (Leone et al., 2019). RIMKLB participates
in the glutamine family amino acid metabolic process. The low-risk
group had a relatively low expression of RIMKLB but achieved a
stronger T-cell infiltration (Figure 6E), which justified the lack of
glutamate and the self-adaptation of T cells. In addition, TMB
analysis revealed that RIMKLB may have the potential to be an
immune target (Figure 7A). MTAP is involved in methionine
catabolism. Methionine is required for T-cell differentiation, and
a reduction in methionine results in the decrease of the level of
epigenetic methyl donor S-adenosyl-l-methionine (Roy et al., 2020).
Studies demonstrate that CD8+ T cells isolated from methionine-
deficient tumors are also deficient in S-adenosyl-l-methionine,
leading to lower expression of STAT5, a signaling pathway that is
essential for T cells’ response to IL-7 and IL-15 (Tripathi et al., 2010).
Colorectal tumor cells are discovered to contend with T cells for
methionine simultaneously in TME (DePeaux and Delgoffe, 2021).
Our study revealed that the group scoring higher had more
expression of MTAP, which indicated a shortage of methionine.
It is consistent with the depletion of methionine due to the massive
demand for tumor cells and T cells. Meanwhile, this matches the
result of the disruption of the T-cell methionine metabolic pathway

by tumor cells (Bian et al., 2020). Furthermore, PSMA8 predicts
favorable outcomes in cancer and is associated with immune
response signaling, which corresponded with our study (Chiao
et al., 2021). In addition, PSMB2 shares the same conclusion
with PSMA8. ACMSD ultimately regulates the metabolic
outcome of tryptophan (Trp) catabolism. Depletion of Trp and
Trp-Kyn-AHR-related metabolism results in cancer immunity
evasion (Wang and Zou, 2020), which shares consistency with
our study. L-asparaginase (ASPG) is used to treat acute
lymphoblastic leukemia (Couturier et al., 2015; Touzart et al.,
2019), where a significant up-regulated relationship with the low-
risk group is observed. The massive immune infiltration of the low-
risk group indicated an association between ASPG and TME, which
is worthwhile exploring. In conclusion, our research established that
a prognostic marker of amino acid metabolism is closely linked to
the tumor immune microenvironment. The signature provides
guidance for the evaluation of the survival of patients along with
the direction and targets of treatment. PSMB2 and ACMSD were
newly identified in COAD as prognostic related genes, the
mechanism of which can be further explored.

There are some limitations to our study. First, we used public
databases for analysis. Therefore, the genes related to the amino
acid metabolism had not been verified in vitro experiments. The
underlying mechanisms associated with immune regulation have
not been elucidated. In addition, as a retrospective study, there is
some potential bias compared to prospective studies. Research with
more COAD patients should be conducted for further validation.

CONCLUSION

In summary, we identified nine novel amino acid metabolism-
related gene signatures in COAD. Then a riskmodel was built and
combined with clinical features. Furthermore, we discussed the
relationship between the model and tumor immunity. While
more samples should be included to increase credibility, a
deeper mechanism should be explored.
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Supplementary Figure S1 | GO analysis and expression of nine genes in tumor and
cancer tissues. (A) GO enrichment analysis of DEGs of the TCGA-COAD, revealing that
amino acid metabolism partakes in COAD development. (B) The expression of the nine
screened genes in tumor and healthy tissues showed a significant difference.

Supplementary Figure S2 | The relationship between the risk score and clinical
features and DCA plot of the nomogram. (A,B) The relationship between risk score
and clinical characters. T, N, M, and stage were in positive correlation with the risk
score. (C) DCA of the nomogram exhibited a robust nomogram.

Supplementary Figure S3 | GO analysis in risk model and ESTIMATE along with
the rainbow figure of CIBERSORT. (A) GO plot of the DEGs of risk groupings. (B)
ESTIMATE of the risk model, which revealed a relatively meaningful outcome in
ImmuneScore (p = 0.057). (C) The distribution of immune cells in 399 samples.

Supplementary Figure S4 | IC50 analysis were calculated. (A) Relationship
between paclitaxel and risk score. (B) Relationship between Shikonin and risk score.

Supplementary Table S1 | 1353GO analysis between tumor and normal tissues of
colon cancer in TCGA.

Supplementary Table S2 | Univariable andmultivariable COX regressions of amino
acid metabolism-related genes. Nine genes were selected to construct the
prognostic model (HR: hazard ratio; HR.95L and HR.95H: 95% confidence interval).

Supplementary Table S3 | 505GO pathways obtained between high- and low-risk
groups.

Supplementary Table S4 | 334 KEGG pathways obtained between high- and low-
risk groups.

Supplementary Table S5 | 667 GSEA pathways obtained between high- and low-
risk groups.
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