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Introduction: Deep learning technology has been widely used in genetic

research because of its characteristics of computability, statistical analysis,

and predictability. Herein, we aimed to summarize standardized knowledge

and potentially innovative approaches for deep learning applications of genetics

by evaluating publications to encourage more research.

Methods: The Science Citation Index Expanded TM (SCIE) database was

searched for deep learning applications for genomics-related

publications. Original articles and reviews were considered. In this study,

we derived a clustered network from 69,806 references that were cited by

the 1,754 related manuscripts identified. We used CiteSpace and VOSviewer

to identify countries, institutions, journals, co-cited references, keywords,

subject evolution, path, current characteristics, and emerging topics.

Results: We assessed the rapidly increasing publications concerned about

deep learning applications of genomics approaches and identified

1,754 articles that published reports focusing on this subject. Among

these, a total of 101 countries and 2,487 institutes contributed

publications, The United States of America had the most publications

(728/1754) and the highest h-index, and the US has been in close

collaborations with China and Germany. The reference clusters of SCI

articles were clustered into seven categories: deep learning, logic

regression, variant prioritization, random forests, scRNA-seq (single-cell

RNA-seq), genomic regulation, and recombination. The keywords

representing the research frontiers by year were prediction (2016–2021),

sequence (2017–2021), mutation (2017–2021), and cancer (2019–2021).

Conclusion:Here, we summarized the current literature related to the status

of deep learning for genetics applications and analyzed the current research

characteristics and future trajectories in this field. This work aims to provide
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resources for possible further intensive exploration and encourages more

researchers to overcome the research of deep learning applications in

genetics.
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1 Introduction

Deep learning (DL) is a subfield of machine learning (ML)

that aims to avoid extensive manual processing in traditional

methods Wu et al., (2020). Different from machine learning,

deep learning is a form of representation learning in which a

machine is fed with raw data and develops its own

representations needed for pattern recognition—which is

composed of multiple layers of representations Esteva et al.,

(2019). The application of DL in medical healthcare has been

widely reported. For example, DL has been reported to be

successful in identifying a variety of histopathological features

and detecting the biomarkers (Berrar and Dubitzky, 2021). DL

has also been applied to predict diagnosis, prognosis, and

treatment response in certain cancers Tran et al., (2021). This

information could prove valuable in clinical decision-

making for cancer treatment and triage for in-depth

sequencing.

Genomic data had served as a biomarker for the onset and

progression of the disease. Various deep learning applications

in genomics had been reported, such as predicting gene

expression from genotype data and studying the splicing-

code model and the identification of long noncoding RNAs

(Tripathi et al., 2016; Xie et al., 2017; Vellido, 2020; Tang et al.,

2021). Recent advances in deep learning have emerged in

several applications, ranging from natural language to vision

processing Zou et al., (2019). Bibliometric approaches have

generated a considerable impact on the deep learning research

field, such as deep learning networks in identifying medical

images and histopathology images for breast cancer

classification (Khairi et al., 2021; Wang et al., 2022).

However, gaps exist for deep learning in genetics research,

and there is a dearth of information on associated bibliometric

development trends. Therefore, based on deep learning

technology advancements in genetics, a comprehensive

bibliometric overview is required to provide researchers

with new future research directions.

In the present study, we accessed the Web of Science Core

Collection (WoSCC) using bibliometric methods to review and

select deep learning studies in genetics research from 2000 to

2021. Specifically, co-word biclustering analysis was utilized to

identify the research hot spots of the application of DL in

genomics research. We hope this article can provide some

reference for future research on deep learning and genomics

research.

2 Materials and methods

On 22 December 2021, we downloaded data from the

Web of Science Core Collection (WoSCC); two authors

independently verified citations and retrieved studies. The

WoSCC is a frequently used authoritative database for

scientific information, from which we generated a

clustered network of 69,806 references cited by

1,754 studies. Between the publication years 2000 and

2021, literature searches were performed using the search

terms: [TS = (“deep learning” OR “machine learning” OR

“convolutional neural network*” OR CNN* OR RNN OR

“Recurrent neural network*” OR “Fully Convolutional

Network*” OR FCN*)], and The literature type = “Article

OR Review OR Opening Online”, WoS category = Genetic

heredity. Information on the following topics was collected:

title, abstract, authors, institution, country/region, journal,

keywords, and references. Articles were indexed in the

WoSCC and excluded meeting articles, repeated articles,

proceedings articles, book chapters, and unpublished

documents without enough information for further

analysis at the same time.

We described publication characteristics, including

institutes, countries, journals, and keywords. The Journal

of Citation Reports (JCR, 2021 version) was accessed to

identify impact factors that reflected the scientific value of

research (Eyre-Walker and Stoletzki, 2013). Retrieved data

were analyzed in VOS viewer (Leiden University, Leiden,

Holland) and CiteSpace V (Drexel University, Philadelphia,

FIGURE 1
Number of published articles about deep learning application
in genetics research from 2000 to 2021.
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PA, United States), which facilitated collaborative network

analyses connecting different publication

characteristics (Chen, 2006; Chen, 2017). From the

analysis and measures above, we obtain the current

characteristics, research hotspot, subject evolution path,

and future trajectories in deep learning applications of

genetics.

3 Results

3.1 Distribution of articles by publication
years

A total of 1,754 articles from 2000 to 2021 were published. As

shown in Figure 1, the line with points denoted by square shows

TABLE 1 Top 10 countries, institutions, and journals.

Rank Country Count H-index Institution Count H-index Cited
journal

Count If (2021)

1 United States 728 65 Chinese Academy of Sciences 41 13 BIOINFORMATICS 1,175 6.93

2 CHINA 407 35 Harvard Medical School 37 12 NATURE 1,082 49.96

3 GERMANY 118 33 Stanford University 29 18 NUCLEIC ACIDS RES 1,075 16.97

4 ENGLAND 101 35 University of Pennsylvania 28 11 P NATL ACAD SCI United States 868 11.20

5 CANADA 92 22 Harvard University 26 25 PLOS ONE 856 3.24

6 AUSTRALIA 54 19 University of Toronto 25 12 SCIENCE 780 47.72

7 INDIA 48 11 Columbia University 25 11 BMC BIOINFORMATICS 764 3.16

8 FRANCE 43 16 Yale University 24 14 NAT GENET 734 38.33

9 ITALY 41 15 University of Washington 24 13 CELL 683 41.58

10 JAPAN 41 16 Shanghai Jiao Tong
University

22 9 GENOME BIOL 622 13.58

FIGURE 2
Cooperation of countries in the field of Deep Learning application in genetics research from 2000 to 2021.
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the trend of publications from 2000 to 2021, and the line with

points denoted by circles shows the number of articles published

each year. The number of published articles showed a rapid

increase since 2018, and more than 70% of the total articles were

published in the last 4 years. This suggests that the studies of deep

learning applied in genetics research were new research hot

points in recent years.

3.2 Analysis of countries, institutions and
journals

A total of 101 countries and 2,487 institutes contributed

publications. The top 10 countries, institutions, and cited

journals are listed in Table 1. 728 (41.5%) articles published

in the United States ranked first place, which was 18.3% higher

than those in China, whose publication number was 407 (23.2%),

thereby ranking second. However, it is worth noting that the

research institution with the largest number (41 articles) of

published articles was the Chinese Academy of Sciences,

which indicated this institution had powerful scientific

research ability in the field of deep learning application in

genetics research. The collaborations between different

countries and institutions are shown in Figures 2, 3. The

bigger size of the circle represents the larger number of

articles published by this country. The shorter the distance

between two circles, the better the cooperation between the

two countries. As shown in Figure 2, the biggest circle belongs

to the United States of America which had close cooperation with

Germany, England, and France. Although the Chinese Academy

of Sciences published the largest number of articles, it was lack of

cooperation with other institutions. Harvard Medical School was

in a key position in this study field, which kept close cooperation

with multiple institutions, such as Columbia University and

Stanford University (shown in Figure 3).

3.3 Journal analysis

A total of 151 cited journals published publications related

to deep learning in genetics research. The top 10 cited journals

are presented in Table 1(with green background). The highest

cited count belonged to the BIOINFORMATICS

(1,175 times), followed by NATURE (1,082 times). Among

FIGURE 3
Cooperation of institutions contributed to publications for Deep Learning applications in genetic research.
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these journals, NATURE had the highest impact factor

(49.962). Collaborations among these cited journals are

shown in Figure 4.

In academic journals, referential relationships facilitate

knowledge exchange within the research field, where citing

articles form the knowledge frontier and cited articles form

the knowledge base. A journal dual-map overlay is shown in

Figure 5. The cluster analysis of citing articles (the left side)

belongs to journals focusing on the field of molecular/biology/

immunology research. Also, the cluster analysis of cited

articles (the right side) belongs to journals focusing on the

field of molecular/biology/genetics research. The primary

FIGURE 4
Network map of cited journals in the field of Deep Learning application in genetics research from 2000 to 2021.

FIGURE 5
Dual-map overlay of journals in the field of Deep Learning application in genetics research from 2000 to 2021.
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citation path colored orange represents the citation

relationship between the two clusters, which indicated that

based on genetics research, deep learning tends to be applied

to immunology.

3.4 Reference analyses

References are key bibliometric indicators as frequently cited

documents can greatly influence their research areas (Table 2).

The article was published on Nature which was cited 89 times,

ranking first. Summarizing the highly cited topics, the result

indicated that deep learning methods such as deep convolutional

nets and recurrent nets have dramatically improved drug

discovery and genomics research.

In network research, betweenness centrality is a major

indicator to determine the importance of nodes in the

network, and a higher betweenness centrality means that

the literature is more important Synnestvedt et al., (2005).

Table 2 also shows the betweenness centrality of these works

of literature.

In this article, a co-cited document-based clustering

analysis can be used to generate sub-fields and connect

nodes in the research. We constructed a network of co-

cited references to test the scientific relevance of related

publications (Figure 6). Cluster setting parameters were

TABLE 2 Top 10 cited references on VR in rehabilitation.

Rank DOI Title of
cited reference

Count Centrality Interpretation of
the findings

Year

1 10.1038/
nature14539

Deep learning 89 0.01 This article discussed deep learning methods such as
deep convolutional nets and recurrent nets that have
dramatically improved speech and visual recognition.
Other domains such as drug discovery and genomics
brought about breakthroughs

2015

2 10.1038/nbt.3300 Predicting the sequence specificities of DNA-
and RNA-binding proteins by deep learning

77 0.08 This study built a stand-alone software by using a
diverse array of experimental data and evaluation
metrics ascertained sequence specificities that is
essential for identifying causal disease variants

2015

3 10.1038/
nmeth.3547

Predicting effects of noncoding variants with a
deep learning-based sequence model

65 0.07 This document developed a deep learning–based
algorithmic framework that enables the prediction of
noncoding variants

2015

4 10.1145/
2939672.2939785

Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining

54 0 This study described a highly effective scalable tree
boosting machine learning method and proposes a
novel sparsity-aware algorithm for sparse data and
weighted quantile sketch for approximate tree
learning

2016

5 10.1101/
gr.200535.115

Basset: learning the regulatory code of the
accessible genome with deep convolutional
neural networks

47 0.1 This study offered a powerful computational
approach to annotating and interpreting the
noncoding genome. Researchers perform a single
sequencing by CNN’s assay to annotate every
mutation in the genome with its influence on present
accessibility and latent potential for accessibility

2016

6 10.1038/
nature19057

Analysis of protein-coding genetic variation in
60,706 humans

44 0.01 This study analysis protein-coding genetic variation
in 60,706 humans, and it can efficiently filtering of
candidate disease-causing variants and discover
human ‘knockout’ variants in protein-coding genes

2016

7 10.1093/nar/
gkw226

DanQ: a hybrid convolutional and recurrent
deep neural network for quantifying the
function of DNA sequences

36 0.05 This study proposed a novel hybrid convolutional
and bi-directional long short-termmemory recurrent
neural network framework for predicting non-coding
function de novo from the sequence

2014

8 10.1038/
nature14248

Integrative analysis of 111 reference human
epigenomes

36 0.08 The article described the integrative analysis of
111 reference human epigenomes generated and
profiled for histone modification patterns, DNA
accessibility, DNA methylation, and RNA expression

2015

9 10.15252/
msb.20156651

Deep learning for computational biology 34 0.03 This study reviewed the applications of this new
breed of analysis approaches in regulatory genomics
and cellular imaging

2014

10 10.1038/ng.2892 A general framework for estimating the
relative pathogenicity of human genetic
variants

34 0.05 This study discussed a framework that objectively
integrates many diverse annotations into a single,
quantitative score to differentiate 14.7 million
simulated variants

2015
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Top N% = 0.5, #Years Per Slice = 3, and the pruning

algorithm was chosen. The Modularity Q score = 0.7197,

which was > 0.5, indicated the network adopted loosely

coupled clusters. The Weighted Mean silhouette score =

0.9185, which was > 0.5, indicated acceptable cluster

homogeneity. From the literature, we used index items as

cluster markers (#0–#6); the largest cluster (#0) was “deep

learning”, #1 was “logic regression”, #2 was “variant

prioritization”, #3 was “random forests”, #4 was “scRNA-

seq”, #5 was “genomic regulation”, and #6 was

“recombination”.

3.5 Co-occurrence and burst keyword
analyses

We extracted and analyzed keyword co-occurrence in related

publications. The top 20, with highly linked strengths, are shown

in Table 3. The co-occurrence of any two terms indicates their

presence in the same publication. While identifying thematics in

research areas, keyword analyses of articles 1754) identified

27 keywords with a minimum of 40 occurrences (Figure 7).

The co-occurrence analysis based on author keywords was built

with occurrence times as a threshold. There are several distinct

FIGURE 6
Reference co-citation map of publications from 2000 to 2021.

TABLE 3 Highly link strength of the top 20 occurrence keywords.

Rank Keyword Occurrence Total link strength Rank Keyword Occurrence Total link strength

1 Machine learning 553 481 11 DNA methylation 36 44

2 Deep learning 201 194 12 Support vector machine 32 44

3 Classifications 54 90 13 Prediction 31 43

4 Random forest 52 69 14 Biomarker 30 45

5 Bioinformatics 48 68 15 Cancer 30 46

6 Gene expression 48 83 16 Rna-seq 24 38

7 Feature selection 46 80 17 Genomic prediction 23 42

8 Artificial intelligence 43 80 18 Breast cancer 22 32

9 Genomics 37 56 19 Gene regulation 19 26

10 Convolutional neural 36 24 20 Neural network 19 24
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FIGURE 7
Network map of keywords is divided into 6 clusters.

FIGURE 8
Keywords with the strongest citation bursts of publications from 2000 to 2021.
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clusters with different colors. The co-occurrence network map of

keywords is shown in Figure 7, given that the larger the size of the

circle, the higher the co-occurrence of keywords. Furthermore,

having closer keywords together shows a stronger

relationship. The average year of publication of the keywords

was determined using colors. Machine learning, deep learning,

and genetics constitute the largest circle of all keywords that are

identified through co-occurrence analysis. Our study also

investigated temporal trends in hotspot shifts using the top

19 keywords having the strongest citation bursts. These

included prediction (2016–2021), sequence (2017–2021),

mutation (2017–2021), and cancer (2019-2021) (Figure 8).

4 Discussion

4.1 General data

Between the publication years 2000–2021, we selected and

investigated 1754 SCIE articles related to deep learning in

genetics. Since 2015 with the development of gene sequencing

technology, biological genetic data have exploded. The number of

published articles showed a rapid increase. Another growth time

node is 2018, more than 70% of the total articles were published

in the last 4 years. This suggests that as deep learning technology

enters its mature stage, it has attracted widespread attention. The

highest number of studies (728) was generated by the

United States, with China in second place at 407. The top ten

institutions included seven in the United States and two in China.

According to our data, most of the research in deep learning in

genetics was produced by institutions and countries in developed

countries, such as United States, Germany, and France. The

reason for this trend is that better socioeconomic development

can be the premise of ensuring adequate funding, resources, and

human input to explore brand new scientific research.

Socioeconomic factors such as GDP, GDP per capita, research

and development funding, number of researchers, number of

physicians, or international collaboration are important decisive

factors of scientific productivity. There are many reasons for this

trend, such as GDP level Nature Genetics was themost frequently

used publishing journal; therefore, it significantly contributed to

research in this area. Additionally, we investigated the top

10 cited publications; the top-cited article was published by

Lec et al. on Nature and was cited 89 times. These high cited

articles will shed some light to this research field.

4.2 The knowledge base and current
research characteristics

In previous studies, different deep learning research

applications have been investigated in genetics and

generated significant results. As indicated (Figure 6), after

clustering co-cited references, key clustering nodes

successfully identified knowledge bases, namely: #0 “deep

learning”, #1 “logic regression”, #2 was marked as “variant

prioritization”, #3 was marked as “random forests”, cluster

#4 was marked as “scrna-seq”, cluster #5 was marked as

“genomic regulation”, and cluster #6 was marked as

“recombination”. We described the knowledge base

according to different clusters with time characteristics.

In the #0 “deep learning” cluster, applications of deep

learning methods show cutting-edge performance in a variety

of complex prediction tasks and large datasets in natural images.

Scientists propose a deep-learning framework for genetic

research events, e.g., distant metastasis in cancer, protein

subcellular localization, genome recombination map of

African Drosophila melanogaster, and DNA transcription

factor binding; the abovementioned aspects show the

advantages (Xiao et al., 2019; Adrion et al., 2020; Zhang et al.,

2021a; Chereda et al., 2021).

In the #1 “logic regression” cluster, Liu et al. proposed a logic

regression-based approach that was used to analyze the

gene–gene interaction of eight genes involved in cell adhesion

in 806 NSCL/P Chinese case-parent triad recruited to explore the

risk of non-syndromic cleft lip Liu et al., (2019). Nicodemus KK’s

team tested and discussed the interactions between these

susceptibility genes using four machine learning algorithms

(including random forest, generalized enhanced regression,

and Monte Carlo logistic regression) in a case-control study

of schizophrenia Nicodemus et al., (2010). Dasgupta et al.

reviewed machine learning and regression-based methods in

200 common or rare genetic variants from exome sequencing

data and discussed cross-validation for model assessment and

selection Dasgupta et al., (2011).

In the #2 “variant prioritization” cluster, key challenges in

genomics research are variant prioritization methods. Huang

et al. identified a deep learning framework, which was evolution-

based, for unified variant and gene prioritization. The authors

integrated constraints predicting missense variants and protein-

coding genes associated with dominant disorders and estimated

fitness effects for potential single-nucleotide variants, which

outperformed current methods Huang, (2020). Zhang et al.

formulated a disease-specific variant classifier that assessed

discriminate pathogenic variants from benign variants and

prioritized disease-associated variants Zhang et al., (2021b). In

their study, Mattia et al. proposed an automated computational

framework that identified causal genetic variants (small

insertions and deletions and coding/splicing single-nucleotide

variants) to improve causal variant prioritization methods and

variant pathogenicity classifications Bosio et al., (2019).

For the #3 “random forest” cluster, as a standard regression

model, which has been widely used in the machine learning (ML)

application, Jian Y’s team applied a random forest machine

learning algorithm to purity pediatric children central nervous

system tumor analysis, which helps with the clinical management

Frontiers in Genetics frontiersin.org09

Zhang and Fan 10.3389/fgene.2022.951939

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951939


of pediatrics Yang et al., ( 2021). Chen Z constructed a deep

learning network model based on the random forest classifier,

and it can easily identify malonylation sites, for predicting sites

shows high confidence Chen et al., (2018). Nicholls et al.

reviewed ML model (gradient boosting and random forests)

applications, dissected variant and gene signal heterogeneity,

prioritized complex disease-associated loci, and critically

evaluated prioritization issues for genome-wide association

investigations Nicholls et al., (2020).

For the #4 “scRNA-seq” cluster, as single-cell RNA-

sequencing (scRNA-seq) is used to analyze gene expression

with high resolution, scientists have comprehensively

exploited this area to dissect individual cell types in several

diseases. For example, Carlos et al. generated a Deep Neural

Network (DNN) model which quantified immune infiltration

levels in breast and colorectal cancer bulk RNA-seq samples and

identified improved and accurate survival prediction and

quantification data (Torroja and Sanchez-CaboDigitaldlsorter,

2019). Cédric et al., in an effort to accommodate increasing levels

of scRNA-seq data, designed a deep neural network–based

imputation algorithm that is more suitable for the ever-

increasing scRNA-seq data (Arisdakessian et al., 2019).

Additionally, Yao and Nelson’s teams generated unsupervised

deep learning methods for improved data integration which

showed improved performances in scRNA-seq datasets

(Johansen and Quon, 2019; He et al., 2020).

For the #5 “gene regulation” cluster, an ML modality was

adapted by Colbran et al. to impute gene regulation information

from genotype data and investigate 490 ancient Eurasian human

DNA samples and explore divergent gene regulation

mechanisms which contributed to skin pigmentation and

metabolic and immune functions. The authors identified gene

regulation roles in adaptation and associations between complex

traits and genetic diversity Colbran et al., (2021). Atak et al.

devised a deep learning approach and integrative genomics

strategy to analyze functional enhancer mutations with allelic

imbalance of gene expression and chromatin accessibility and

successfully interpreted and predicted the impact of a mutation

on gene regulation Atak et al., (2021). Godwin et al. devised a

deep learning–based model to predict the gene regulatory effects

of low-molecular-weight compounds; the model potentially

identified drug candidates inducing particular gene responses,

without prior interactional information on protein targets Woo

et al., (2020).

For the #6 “recombination” cluster, a central tenet of

genomics is the accurate assessment of genome-wide

recombination rates in natural populations. Andrew et al.

used ML algorithms to examine if DNA motifs across the

genome could be used to predict crossover variation and

identify genetic factors influencing variation in recombination

rates Adrian et al., (2016). Kha F proposed a DL intelligent

computational predictor based on the deep neural network

(DNN) as a classification engine for the identification of

recombination spots through an experimental benchmark

dataset with 10-fold cross-validation which achieved the

95.81% highest accuracy Khan et al., (2020).

4.3 Hotspots and frontiers in research

Keywords concentrate on contemporary research issues or

concepts, while burst keywords represent emerging trends and

frontiers in research. In our work, we used CiteSpace to capture

burst keywords, and four related research frontiers were

identified: four keywords with the strongest citation bursts,

such as prediction (2016–2021), sequence (2017–2021),

mutation (2017–2021), cancer (2019–2021), and these key

words cover the research frontier of the current topic.

4.3.1 Sequence (2017–2021)
Large-scale genetic datasets and deep-learning approaches

are increasingly exploited by bioinformatics approaches to model

protein structures and complexes. Zhao et al., using sequence

information, devised a deep forest-based protein location

algorithm to accurately predict protein subcellular locations

using only protein sequences, which outperformed

contemporary state-of-art algorithms Zhao et al., (2018). Cui

et al. analyzed the main methods used to represent protein

sequence data, theoretically reviewed the architecture of

different embedding models, and investigated the development

of these sequence-embedding approaches Cui et al., (2021).

Braberg et al. analyzed the emergence of large-scale genetic

datasets and deep learning approaches which modeled protein

structures and associated interactions (deep mutational

scanning, genome-scale genetic or chemical-genetic interaction

mapping, and coevolution) and discussed structural data

integration from different sources Braberg et al., (2022).

4.3.2 Cancer (2019–2021)
Originally used for image processing and pattern recognition

methods, deep learning models are now used to detect genetic

alterations in cancer and determine cancer patient prognoses.

The framework by Mallik et al. integrated linear regression,

differential expression, and deep learning and facilitated the

robust interpretation of DNA methylation signatures and gene

expression data for cervical cancer Mallik et al., (2020). Poirion

et al., using multi-omics data, established a deep learning

ensemble network that predicted patient survival subtypes

Poirion et al., (2021). In order to predict survival outcomes in

cancer patients, Huang et al. broadly analyzed The Cancer

Genome Atlas cancers using several deep learning–based

models Huang et al., (2020). Tran et al. reviewed emerging

deep learning approaches and how they were applied to

precision oncology. The authors not only exemplified how

deep learning was used for cancer diagnostics, prognostics,

and treatment management strategies, but they also reviewed
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the current limitations and challenges of deep learning in this

area Vaernet, (1972).

4.3.3 Mutation (2017–2021)
With considerable high-throughput technology

advancements, somatic mutations in their millions have been

reported, but critically, the identification of specific driver genes

expressing oncogenic mutations is highly challenging and

complex. In their study, Luo et al. used “deep drive” to

predict driver genes by combining similarity networks with

features that characterize the functional impact of mutations.

They use AUC scores to evaluate predictive efficiency.

DeepDriver achieved AUC scores of 0.984 and 0.976 on

breast cancer and colorectal cancer, respectively, which were

better than those of the competing algorithms. Luo et al., (2019)

Sahraeian et al. inaugurated a deep convolutional neural

network–based somatic mutation detection strategy using

high-confidence somatic mutations in a cancer cell line. The

authors generated comprehensive models using multiple datasets

and highly robust and significantly superior methods when

compared with traditional detection strategies Sahraeian et al.,

(2022).

4.3.4 Prediction (2016–2021)
Ding YL provided a comprehensive review of ML-based

approaches for predicting disease–biomolecule associations

with multi-view data sources. They discussed feature

representation methods and provided some perspectives for

further improving biomolecule-disease prediction methods

(Ding et al., 2021). Groschel MI presented a translational

genomics platform for tuberculosis application to predict

antibiotic resistance from next-generation sequence data. After

benchmarking, it can rapidly and accurately predict resistance to

anti-tuberculosis drugs Gröschel et al., (2021). Majumdar A et al.

developed a novelty ensemble support vector regression to

predict each drug response value for a single patient based on

cell-line gene expression data. This can be used to develop a

robust drug response prediction system for cancer patients using

cancer cell lines guidance and multi-omics data (Majumdar et al.,

2021).

5 Limitations

Our study still has some limitations to be addressed. First, we

choose the SCIE database as the collection, while a few studies not

included in the core collection were missed. Second, this study

includes two types of publication (article and review), and the

uneven quality of the collected publications may reduce the

credibility of the mapping analysis. However, the visualized

analysis based on bibliometric analysis undoubtedly lays a

foundation for readers to quickly understand the research

subjects, hotspots, and development trends in an unfamiliar

research field.

6 Conclusions

Using bibliometrics, we systematically, comprehensively,

and objectively investigated the literature related to deep

learning applications in genetics research. Importantly, we

identified research bases, current hotspots, and future trends

in this area. The knowledge bases were “deep learning,” logic

regression,” “variant prioritization,” “random forests,”

“scRNA-seq,” “genomic regulation,” and “recombination”.

We also provided hotspot and frontier guidance for

researchers wishing to conduct advanced genetics research

in the future. We identified research frontiers and emerging

trends topics that incorporated prediction, sequence,

mutation, and cancer. Finally, some studies selected for this

research were not comprehensive and may have generated

publication bias, thereby potentially affecting the study

outcomes of this bibliometric review.
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