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The age of the patients at diagnosis (age at diagnosis) is a self-contained element

of danger for the prognosis of patients with papillary thyroid carcinoma (PTC),

which has been well recognized and continuously adopted by the international

cancer staging system. However, few studies have investigated its intrinsic

mechanisms. In this study, we aim to comprehensively reveal the age-related

pathogenesis of PTC and identify potential prognostic biomarkers.Wedivided the

samples into two groups, young and elderly, to filter differentially expressed

genes in The Cancer Genome Atlas (TCGA), with an age of 55 years serving as a

cutoff. Moreover, we combined univariate, LASSO, and multivariate Cox

regression analyses to construct age-related signatures for predicting

progression-free survival. Additionally, functional enrichment analysis, immune

infiltration analysis, differential expression analysis, clinicopathological correlation

analysis, and drug sensitivity analysis were performed in different risk subgroups

and expression subgroups. We screened 88 upregulated genes and

58 downregulated genes. Both the LASSO regression model that is validated

in TCGA and the model of six age-related prognostic genes (IGF2BP1, GPRC6A,

IL37, CRCT1, SEMG1, and PSG7) can be used to evaluate the progression-free

survival of PTCpatients. TheGO, KEGG, andGSEAanalyses revealed that each key

gene was closely associated with PTC development. Furthermore, CD8+ T cells

decreased significantly, while regulatory T cells increased dramatically in the

high-risk and PSG7 high expression groups. PSG7was remarkably correlatedwith

clinicopathological parameters (pathologic stage, T stage, and N stage) of PTC

patients, and PSG7 expression was elevated in tumor samples from both TCGA

and the Gene Expression Omnibus and was strongly associated with progressive

stage and poor prognosis. Our results provide an innovative understanding of the

age-related molecular mechanisms of PTC development. PSG7 was identified to

exert a critical role in PTC progression and may serve as a promising strategy for

predicting the prognosis of PTC.
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1 Introduction

Over the last 30 years, the prevalence of thyroid carcinomas

has been increasing rapidly by 6.2% each year, which is partly

attributed to over-screening, and ranks fifth among all female

malignancies and first for women under 25 years of age (Cramer

et al., 2010; Bao et al., 2021). Papillary thyroid carcinoma (PTC)

is the most frequent histopathological subtype, representing

nearly 90% of all thyroid carcinomas, and its incidence has

been increasing, while the incidence of other forms has

remained unchanged (Miranda-Filho et al., 2021; Rossi et al.,

2021). Patients with PTC who undergo a series of formal

personalized therapies, including surgery, iodine-131

treatment, and suppression treatment with exogenous

hormones have an excellent prognosis with a five-year

disease-specific survival rate > 98% (Schmidbauer et al., 2017;

Wang and Sosa, 2018). However, when the age at diagnosis

exceeds a certain threshold, the overall prognosis worsens

because of the increased cause-specific mortality in patients

with PTC (Londero et al., 2015), and the mechanisms

underlying this phenomenon remain elusive. To uncover this

mechanism further, the abundant microarray and sequencing

data available in public databases combined with advanced

computational and bioinformatics approaches indicate a novel

direction for our study; to improve the clinical outcomes of this

subset of patients, targeted therapy and immunotherapy should

become an attractive alternative therapeutic intervention in

refractory PTC (Al-Jundi et al., 2020; Sun et al., 2021). Thus,

a deeper exploration of the underlying mechanisms and

therapeutic targets for PTC is of fundamental importance to

facilitate individualized therapeutic approaches.

Recently, proto-oncogene B-Raf (BRAF), rat sarcoma (RAS),

and telomerase reverse transcriptase (TERT) promoter

mutations have been shown to strongly precede the

development of PTC (Tanaka et al., 2019; Al-Salam et al.,

2020; Traversi et al., 2021). Additionally, rearrangements,

including rearranged during transfection (RET) and

neurotrophic tyrosine kinase receptor type 1 (NTRK1), can

accelerate the progression of the malignancy by activating

mitogen-activated protein kinase signaling (Pekova et al.,

2020; Salvatore et al., 2021). Moreover, non-coding RNA

regions can also be implicated in the tumorigenesis of PTC in

various forms, including microRNAs, lncRNAs, and circRNA

(Gou et al., 2018; Al-Abdallah et al., 2020; Wu et al., 2020). Most

intriguingly, the risk of PTC in carriers of the rs944289 single

nucleotide polymorphism (SNP) was increased per year of age

(Kula et al., 2017); there were significantly more TERTmutations

in PTC patients ≥ 55-years-old (Park et al., 2021), which

portended a poor prognosis likely by promoting

immortalization and genomic instability in two phases (Chiba

et al., 2017). Although numerous studies have been conducted,

the detailed mechanisms underlying PTC carcinogenesis remain

elusive.

Although the personalized strategy of diagnosis and

treatment based on specific biomarkers can facilitate the

evaluation of risk stratification, guide therapy, and evaluate

prognosis, its practicality is insubstantial, owing to a skewed

cost–benefit analysis and current limitations for clinical

application (Subbiah et al., 2018; Norris et al., 2020). Thus, we

appear to benefit the most from the combination of microscopic

biomarkers and macroscopic clinical information by elucidating

the associated mechanisms between them. Surprisingly,

according to the major constituents of tumor depth (T),

locoregional lymphatic node status (N), and distant metastasis

(M), the American Joint Committee on Cancer (AJCC) thyroid

cancer staging system has played the most significant role

worldwide in providing prognostic information and evaluating

the prognosis of thyroid cancer. It is widely acknowledged that

age at diagnosis is a self-contained element of danger for the

outcome of PTC patients (Kim et al., 2017; Kauffmann et al.,

2018). The cutoff value of age at diagnosis increased from 45 to

55 years, which is one of the most prominent features of the

AJCC 8th staging system for judging the prognosis of individuals

with differentiated thyroid carcinoma, allowing surgeons to

better stratify patients to avoid radical surgical procedures and

postoperative treatments (Amin et al., 2017; Thewjitcharoen

et al., 2021). Furthermore, one study combined clinical data

with genetic data (differential gene expression, copy number

variation, classical pathway alteration, and somatic mutation)

and discovered that this current version for thyroid cancer can

predict the recurrence rate and survival more accurately

compared with the previous version (Kim et al., 2018).

However, the investigators did not further establish an age-

related model for validation and performed a more in-depth

molecular mechanistic study. In addition, without considering

specific molecular markers, age at diagnosis alone cannot be an

ideal guideline for survival prognosis judgment, precise risk

stratification, or scientific guidance for treatment decision-

making. Therefore, a novel strategy to determine the precise

mechanism of PTC progression with age will provide remarkable

benefits for individualized cancer care.

In the present study, we aim to elucidate the underlying

mechanisms by which an increase in age can affect the prognosis

of patients with PTC, identify the specific prognosis biomarkers

for PTC, and analyze the relationship between the expression

levels of the key genes and drug sensitivity by bioinformatics

analyses. PTC datasets from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases will be used for

differential expression analysis, model construction, enrichment

analysis, survival analysis, clinicopathological correlation

analysis, immune infiltration analysis, and drug sensitivity

analysis. Among the meaningful results, one of the most

prominent findings was that PSG7 was first identified as the

most promising age-related prognostic biomarker, from which

we gained valuable insight into prognostic evaluation and

therapeutic guidance for individuals with PTC.
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2 Materials and methods

2.1 Data acquisition and preprocessing

We obtained thyroid carcinoma datasets [The Cancer

Genome Atlas Thyroid Cancer (TCGA-THCA; n =

553 cases)] from the TCGA database using the TCGAbiolinks

R package (Colaprico et al., 2016). A total of 545 samples from

patients with PTC and healthy individuals were included in the

analysis after removing eight cases of non-PTC. The matched

clinical information of the THCA-TCGA dataset, including

patient sex, survival status, follow-up time, pathological stage,

and other details, was obtained after converting the selected data

types of counts and FPKM to TPM.

We also obtained thyroid cancer datasets from the GEO

database using the GEOquery package (Davis andMeltzer, 2007).

The GSE29265 dataset, which was from the species Homo

sapiens and based on the GPL570 platform, consisted of

20 samples with PTC, nine samples with undifferentiated

thyroid carcinoma, and 20 healthy samples. Using the R

package limma (Ritchie et al., 2015) to standardize the data of

the two groups, 20 PTC samples and 20 healthy samples were

enrolled in this study (Supplementary Table S1).

2.2 Identification of differentially
expressed genes

Growing lines of studies and the latest American Joint

Committee on Cancer staging system for differentiated

thyroid carcinoma have indicated that the cut-off value of age

at diagnosis used for staging increasing from 45 to 55 can allow

low-risk patients to avoid aggressive surgical resections and

postoperative therapies, improve disease management

strategies, and reduce psychosocial and financial burdens

(Mazurat et al., 2013; Amin et al., 2017; Pontius et al., 2017;

Kim et al., 2018; Shteinshnaider et al., 2018; Thewjitcharoen et al.,

2021). That is, when the age at diagnosis exceeds 55, the overall

prognosis worsens because of the increased cause-specific

mortality in patients with PTC, and the mechanisms

underlying this phenomenon remain elusive. In order to seek

the age-related genes and explore the underlying molecular

mechanisms, we separated the PTC samples from the TCGA

database into a young group (n = 344) and an elderly group (n =

145), with the age of 55 years serving as a cutoff. We then

analyzed the differentially expressed genes (DEGs) using the

DESeq2 R package (Love et al., 2014), with a significance

threshold set at an adjusted p value < 0.05. Genes with

Log2FC value ≥ 1 were considered to be upregulated and

genes with Log2FC value ≤ 1 were downregulated in the

disease group, which were designated as age-related genes.

Subsequently, risk scores were calculated for all samples

using a multivariate Cox regression model for further analysis.

Immediately thereafter, they were split into low- and high-risk

groups using the median value of the risk scores. Similarly, we

performed DEGs analysis using the DESeq2 R package (Love

et al., 2014), with a significance threshold set at an adjusted p

value < 0.05. Genes with Log2FC value ≥ 1 were deemed to be

upregulated and genes with Log2FC value ≤ 1 were deemed to be

downregulated in the disease group, which was designated as an

age-related gene.

2.3 Construction of protein-protein
interaction networks

The STRING database (Szklarczyk et al., 2017) is adept in

searching for interactions between the known and predicted

proteins, which includes 2031 species, information on

9.6 million proteins, and 13.8 million protein interactions.

Specifically, as an extremely helpful database, it is enriched in

data containing the experimental outcomes, information

obtained by text mining of PubMed abstracts, integrated data

from other databases and predictive bioinformatics data. In our

study, it was utilized for constructing the protein–protein

interaction (PPI) network of DEGs between the young and

elderly groups with a confidence score (0.400); the PPI data

was then exported, and visualized using Cytoscape.

2.4 Age-related cox regression model
construction

Currently, the least absolute shrinkage and selection operator

(LASSO) regression is the most employed machine-learning

algorithm for the establishment of a diagnostic model. A

regularization method was used to solve overfitting during

curve fitting to enhance the accuracy of the model. To

enhance the accuracy of the model, we employed the glmnet

R package (Simon et al., 2011) to establish a model based on age-

associated genes (family = “binomial”).

Patients with PTC in the TCGA database were separated into

a training set of 244 cases and a validation set of 244 cases at a 1:

1 ratio. To assess the predictive power of gene expression on

progression-free survival (PFS), we conducted univariate Cox

regression, LASSO Cox regression, and multivariate Cox

regression analyses to further screen for prognosis-associated

genes, through which a prognostic model was established based

on TCGA datasets. First, we used univariable Cox proportional

regression to test the associations between the expression of each

differential gene and PFS, and only retained the genes with a p

value ≤ 0.05. We then removed multicollinearity using the

LASSO algorithm and determined meaningful variables in the

univariate Cox regression analysis. Moreover, to obtain more

accurate self-contained predictors for outcomes, we used

multivariate Cox regression analysis along with stepwise
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regression for the final selection. Eventually, the formula for

calculating risk scores was established by considering the

expression of optimized genes and correlation-estimated Cox

regression coefficients. Risk score = (expression gene1 × coeff

gene1) + (expression gene2 × coeff gene2) + . . . (expression

gene × coeff gene). The samples were separated into high- and

low-risk groups based on their risk scores. We also analyzed the

PFS of the validation set using the Kaplan–Meier method and

log-rank test. A time-dependent receiver operating characteristic

(ROC) curve was employed to assess the predictive capacities,

followed by the calculation of the area under the curve (AUC) to

analyze the accuracy of the prediction model.

2.5 Functional enrichment analysis

Gene ontology (GO) analysis, a popular and valuable

approach for wide-ranging functional enrichment research,

comprises cellular components (CCs), molecular functions

(MFs), and biological processes (BPs). Kyoto Encyclopedia of

Genes and Genomes (KEGG) is a comprehensive database for

analyzing the relationships between genomes, diseases, biological

pathways, drugs, and chemical substances. In this study, we used

the R package clusterProfiler (Yu et al., 2012) to conduct GO and

KEGG analyses of DEGs.

Moreover, gene set enrichment analysis (GSEA)

(Subramanian et al., 2005) was used to investigate the

differential biological processes according to the TCGA-

PTC dataset gene expression profile data from the high-

and low-risk groups. GSEA is an extensively used

bioinformatics analysis tool for detecting discrepancies in

statistical significance and concordance between two

biological states and is also widely utilized for estimating

alterations of the path and biological process activity in

expression profile samples. We downloaded gene sets from

the Molecular Signatures Database (MSigDB) (Liberzon et al.,

FIGURE 1
Technology roadmap.
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2015) c2.cp.v7.2. symbols.gmt for GSEA analysis. p value <
0.05 was considered statistically significant.

2.6 Survival analysis and clinical
correlations analysis

Based on the multivariate analysis results, we integrated

multiple predictors and assigned them in a certain proportion,

and then graphically visualized the predictive inter-

relationships among all the variables on disease outcome.

Based on the risk score, sex, and pathologic stage, we

implemented multivariate Cox regression to predict the

incidence of PTC progression, constructed a nomogram,

and further evaluated the model’s predictive capacity.

Subsequently, to study the association between gene

expression and PFS, PTC patients were categorized into

high- and low-expression groups based on the median

expression values for each gene, followed by Kaplan-Meier

survival analysis and log-rank tests. Furthermore, we

examined the expression levels of key genes in patients

with PTC at different pathological stages to further identify

their associations (Supplementary Table S2).

2.7 Correlation analysis of immune
infiltration

We retrieved immune-related gene sets (Supplementary

Material S1) from the ImmPort Database (https://www.

immport.org) and used the “GSVA” package (Hänzelmann

et al., 2013) to apply a single-sample GSEA (ssGSEA) analysis.

Next, we estimated the scores of the 16 immunology-associated

gene sets and compared their differences between the high- and

low-risk groups and among the key genes.

CIBERSORT (Newman et al., 2015) is a bioinformatics

method used to deconvolve the transcriptome expression

matrix according to the guidelines for linear support

vector regression and estimation of the composition and

abundance of immune cells within a mixed cell population.

Ultimately, we obtained the immune cell infiltration matrix

by uploading the TPM-normalized gene expression matrix to

CIBERSORT, combining the gene signature matrix (LM22),

and filtering the output to include only significant samples

with a p value < 0.05. Later, bar graphs were constructed in R

utilizing the “ggplot2” package to exhibit the distribution of

various kinds of infiltrating immune cells in each sample and

the expression of different immune cells in the two

differential risk groups.

2.8 Drug sensitivity analysis

The mRNA expression profiles of NCI-60 cell lines and drug

activity data were obtained from CellMiner (http://discover.nci.nih.

gov/cellminer). CellMiner is an online tool for researchers to take

advantage of transcript and drug response data in NCI-60 cell line

sets, which contain abundant resources for genomes and

pharmacology, and was edited by the U.S. National Cancer

Institute. Specifically, it was enriched in the transcriptomic

expression levels of 22,379 genes, 360 microRNAs, and drug

responses of 20,503 compounds. We calculated the associations

between the expression levels of key genes and drug sensitivity using

Pearson correlation analysis. Differences were considered

statistically significant at p < 0.05.

2.9 Statistical analyses

All statistical analyses were performed using R software

(https://www.r-project.org/, version 4.0.2). For continuous

variables, the Mann-Whitney U test (Wilcoxon rank-sum

test) was applied for comparisons between two groups, and

the Kruskal–Wallis test was applied for comparisons of more

than two groups. We constructed ROC curves and calculated

the AUC for an improved assessment of the model using the

pROC package in R (Sing et al., 2005). Each p-value was two-

sided, and the significance level was set at p < 0.05.

3 Results

3.1 Technology roadmap

The Technology roadmap of this study is shown in Figure 1.

3.2 Identification of the age-associated
genes in papillary thyroid carcinoma

To analyze the impact of gene expression values in PTC

tissues relative to healthy tissues, we identified 146 DEGs

(88 upregulated and 58 downregulated genes) in the elderly

group relative to the younger group using the

DESeq2 package for differential expression analysis. The heat

map was plotted using the top 25 genes with the smallest and the

largest log2FC values in Figure 2A, and the differential gene

expression is shown in a volcano plot in Figure 2B. The STRING

database was used to draw a PPI network graph for

146 differentially expressed age-related genes (Figure 2C).
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3.3 Age-related cox regression model
construction

First, we assigned 488 patients with PTC fromTCGA to 244 cases

in the training set and 244 cases in the validation set. Next, we

obtained a total of 17 variables by performing a univariate Cox

regression analysis to examine the relationship between the variables

and PFS in the training set. Then, we performed LASSO regression

analysis (Figures 3A,B) according to the nine genes obtained by

univariate Cox regression, further removed variables with higher

multicollinearity, and identified nine key genes associated with PFS

(FCRLB, TERT, IGF2BP1, PLPPR5, GPRC6A, IL37, CRCT1,

SEMG1, and PSG7). Finally, we obtained six independent factors

associated with PFS (IGF2BP1, GPRC6A, IL37, CRCT1, SEMG1, and

PSG7) according to the multivariate regression analysis of the nine

genes and further validated them using the validation set. The risk

scores of patients with PTC were calculated using the following

formula: Risk score = IGF2BP1 * 1.34 + GPRC6A * 3.13 + IL37 *

0.343 + CRCT1 * 0.932 + SEMG1 * 0.785 + PSG7 * 10.086. We

separately conducted ROC curve analysis of the risk score to predict

PFS in the training and validation sets, with the results including an

AUCof 0.7374,0.6205 and p value for survival curves of 0.0328,0.0184,

respectively (Figures 3C–F). Collectively, the LASSO regressionmodel

based on the six key genes performed excellently in evaluating the PFS

of patients with PTC, and the forest plot intuitively illustrated the

associations between the six key genes and hazard ratios (Figure 3G).

3.4 Functional enrichment analysis

We calculated the risk scores for all patients with PTC

from TCGA based on the coefficients obtained from the

FIGURE 2
Age-related genes in papillary thyroid carcinoma (PTC). (A) In the heatmap, the ordinate is the number of differentially expressed genes (DEGs),
and the abscissa shows the ID of the patients; red indicates high expression and blue indicates low expression; the pink bar represents tumor sample,
whereas the blue bar represents healthy tissue. (B) The abscissa is log2 (FC value) and the ordinate is–log10 (Adjusted p value). The red node indicates
upregulated DEGs, the blue node indicates downregulated DEGs, and the gray node indicates non-DEG. (C) The red dot represents highly
expressed genes in the elderly group, while the blue dot represents highly expressed genes in the young group, and the size of the dot represents the
absolute value of log2FC in the protein-protein interaction graph.
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multivariate Cox regression analysis. As hypothesized, they

were categorized into high- and low-risk groups based on the

median risk score. To characterize DEGs, we analyzed three

kinds of GO functional annotations, including BP, MF, and

CC categories, followed by the related KEGG pathway

(Supplementary Tables S3–S5). For BPs, DEGs were mostly

concentrated in the extracellular matrix organization,

extracellular structure organization, external encapsulating

structure organization, and granulocyte migration.

Regarding molecular function, DEGs were primarily

localized to receptor-ligand activity, signaling receptor

activator activity, cytokine activity, and extracellular matrix

structural constituents. As for CCs, DEGs clustered in the

collagen trimer, collagen-containing extracellular matrix,

endoplasmic reticulum lumen, and fibrillar collagen trimer.

KEGG enrichment analysis indicated that these DEGs were

FIGURE 3
The LASSO regressionmodel. (A), (B) The LASSO-Cox regressionmodel construction based upon the differential expressions of age-associated
genes. (C), (D) ROC curves for predicting survival according to the risk scores in the training and validation cohorts, respectively. (E), (F) Survival
curves of the high- and low-risk groups in the training and validation cohorts, respectively. (G) Multivariate Cox regression analysis forest map.
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centralized in cytokine-cytokine receptor interaction, viral

protein interaction with cytokine and cytokine receptor, the

interleukin 17 (IL-17) signaling pathway, and the Wingless

and Int-1 (WNT) signaling pathway (Figures 4A–D).

Meanwhile, we displayed the cytokine-cytokine receptor

interaction pathway and WNT signaling pathway as

representatives of the remarkably enriched pathways

(Figures 4E,F, Supplementary Table S6).

3.5 Gene set enrichment analysis

For the in-depth identification of the biological pathways

associated with PFS, we used GSEA to analyze the differences

between the high- and low-risk groups. Biological functions, such

as the focal adhesion-PI3K-AKT-mTOR signaling pathway

(Figure 5A), extracellular matrix organization (Figure 5B), and

tyrosine metabolism (Figure 5C), were remarkably enriched in

FIGURE 4
GO and KEGG pathway enrichment analysis. (A) Bubble diagram of GO enrichment analysis for biological processes. (B) Bubble diagram of GO
enrichment analysis for molecular functions. (C) Bubble diagram of GO enrichment analysis for cellular components. In all the graphs above, the
ordinate represents the number of genes, and the abscissa represents the GO term. The node size indicates the number of enriched genes whereas
node color denotes the Padj value. (D) Five clusters were observed in the clustering dendrogram of the KEGG pathway enrichment analysis. The
node size indicates the number of genes and node color indicates the p value. The ordinate indicates the KEGG term. (E), (F) Cytokine-cytokine
receptor interaction signaling pathway map and WNT-signaling pathway map.
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the low-risk group, while other biological functions, such as DNA

mismatch repair (Figure 5D), CTLA4 inhibitory signaling

(Figure 5E), primary immunodeficiency (Figure 5F), DNA

replication (Figure 5G), allograft rejection (Figure 5H), and

the G2 pathway (Figure 5I), were strikingly concentrated in

the high-risk group (Supplementary Material S2).

3.6 Correlation analysis of immune
infiltration

First, the CIBERSORT algorithm was used to calculate the

degree of immune cell infiltration for PTC patients. Next, we

demonstrated the distribution of immune cell infiltration in

every patient (Figure 6B) and the correlation among different

immune cells (Figure 6A). We further displayed differential

immune cell infiltration between the high- and low-risk

groups in box plots. Accordingly, we concluded that nine

of the 21 types of immune cells had a significant relationship

with differential immune cell infiltration, and CD8+ T cells

decreased significantly, while regulatory T cells (Tregs) were

significantly elevated in the high-risk group (Figure 6C),

suggesting that age-related key genes could be significantly

associated with these immune cells. In addition, 14 immune-

associated gene sets showed remarkable discrepancies

(Figure 6D).

FIGURE 5
Gene set enrichment analysis. (A–C) Biological functions, such as the focal adhesion-PI3K-AKT-mTOR signaling pathway, extracellular matrix
organization, and tyrosine metabolism, were markedly concentrated in the low-risk group. (D–I) Other biological functions, such as DNAmismatch
repair, CTLA4 inhibitory signaling, primary immunodeficiency, DNA replication, allograft rejection, and the G2 pathway, weremarkedly concentrated
in the high-risk group.
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3.7 Prognosticmodel of age-related genes

According to the risk score, T staging, M staging, and

sex, we constructed a model to predict PFS in patients with

PTC, plotted a nomogram (Figure 7A), and estimated the

model. In addition, we constructed calibration plots to

predict the one-, three-, and five-year PFS (Figures

7 B–D), suggesting that this model was capable of

accurately predicting PFS in PTC patients to some extent,

with better predictive competence for tumor progression at

three years.

3.8 Expression differences of age-related
genes in the cancer genome atlas

Of the six genes (IGF2BP1, GPRC6A, IL37, CRCT1, SEMG1,

and PSG7) for which we analyzed the differential expression

FIGURE 6
Correlation analysis of immune infiltration. (A) In the heatmap for correlation among immune cells, red indicates positive correlation whereas
blue indicates negative correlation. (B) In the graph for the distribution of immune cell infiltration of patients, the abscissa represents different
samples from TCGA and the ordinate represents the proportion of immune cells. (C) The box plot indicates the difference in the infiltration
abundance of immune cells between the two risk groups; the horizontal axis represents the immune cells whereas the vertical axis represents
the infiltration abundance of different immune cells; red indicates the high-risk group while blue indicates the low-risk group. (D) In the box plot of
the differences in the scores of immune gene sets between the two risk groups, the horizontal axis shows the different immune-related gene sets
whereas the vertical axis indicates the ssGSEA score, and red indicates the high-risk group while blue indicates the low-risk group.
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between tumor tissues and healthy tissues in TCGA (Figure 8),

four genes (CRCT1, PSG7, IL37, and IGF2BP1) showed notable

differences (Figures 8A,C–E).

3.9 Drug sensitivity analysis

The CellMiner database was used to investigate the

relationship between the expression levels of four genes

(CRCT1, PSG7, IL37, and IGF2BP1) and drug sensitivity.

Immediately after, we identified the 16 drugs with the lowest

p value in the correlation analysis (Figure 9). With respect to

the associations of drug sensitivity with the four age-related

prognostic genes, PSG7 had a positive correlation with

lenvatinib, as well as Lificiguat, but a negative correlation

with docetaxel, tamoxifen, tanespimycin, belinostat,

vinorelbine, and ixabepilone. There was a positive

association between IGF2BP1 and cladribine and

bosutinib, but a negative association between

IGF2BP1 and bortezomib. IL-37 exhibited a positive

relationship with perifosine and cabozantinib, but a

negative relationship with vandetanib. CRCT1 was

positively correlated with oxaliplatin but negatively

correlated with (+)-JQ1.

3.10 Correlation analysis and validation
between gene expression and
clinicopathologic characteristics

Using the data of PTC patients in the TCGA database, we

evaluated the associations of the key genes and four clinical

features (pathological stage, T stage, N stage, and M stage)

(Figures 10A–H). PSG7 was remarkably correlated with

clinicopathological parameters (pathological stage, T stage,

and N stage), and high PSG7 expression was associated with

the progression of the clinical stage (Figures 10A–C).

CRCT1 expression was significantly related to the pathological

stage and N stage of patients (Figures 10D,E). IL37 expression

was strongly correlated with pathological stage, T stage, and N

stage, implying that its high expression was closely correlated

with a higher clinical stage (Figures 10F–H).

According to the median expression of CRCT1, PSG7, IL37,

and IGF2BP1, we dichotomized the samples into high- and low-

FIGURE 7
The predictivemodel. (A)Nomogram constructed based on risk score, T stage, M stage, and gender of the PTC patients. (B–D)Calibration plots
of the nomogram for predicting the one-, three- and five-year survival, respectively.
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expression groups using the TCGA dataset. We further carried

out Kaplan–Meier analysis and log-rank tests to evaluate the

association between gene expression and PFS in PTC patients

(Figures 11A–D). Overall, patients with a high expression of key

genes had a shorter PFS. We representatively showed that

PSG7 and IL37 were statistically significant in the different

groups (p = 0.0087 and p = 0.0285, respectively). Meanwhile,

we compared the gene expression of CRCT1, PSG7, IL37, and

IGF2BP1 between the PTC and healthy groups from GEO data

(Figures 11E–H) and found that PSG7 was statistically significant

in the two groups at p = 0.002.

3.11 Correlation analysis between the key
genes and immune infiltration

To further investigate the relationship between the

PSG7 expression level and tumorous immunity, we initially

separated the PTC samples into high- and low-expression groups

using the median value of PSG7 expression. Subsequently, we

displayed the differentially infiltrated immune cells between the

two different expression groups in box plots. Interestingly, we

discovered that eight of the 21 types of immune cells were

related to the differentially infiltrated immune cells, and CD8+

T cells decreased significantly, while Tregs increased significantly

in the high-expression group (Figure 12A), suggesting that

PSG7 may exert a nontrivial effect on PTC deterioration.

Additionally, 13 gene sets were remarkably different from the

immune-related gene sets (Figure 12B).

4 Discussion

Despite a generally favorable prognosis, emerging evidence

suggests that prognosis worsen with increasing age in patients

with PTC (Gosain et al., 2018; Ito et al., 2019b), and the

underlying mechanism remains unclear. The cut-off value of age

at diagnosis used for staging increased from 45 to 55 in the latest

AJCC 8th staging system for differentiated thyroid carcinoma,

which can allow low-risk patients to avoid aggressive surgical

resections and postoperative therapies, improve disease

management strategies, and reduce psychosocial and financial

burdens (Pontius et al., 2017; Shteinshnaider et al., 2018).

However, age at diagnosis alone does not appear to be an ideal

guideline for survival prognosis judgment, precise risk stratification,

and scientific therapy guidance, without considering specific

molecular markers (Verburg et al., 2018). Hence, a novel strategy

to explore the exact molecular mechanism of PTC progression with

FIGURE 8
The box plot of differential gene expression in TCGA. Box plots for differential expressions of key genes, including IGF2BP1, GPRC6A, IL37,
CRCT1, SEMG1, and PSG7, between the PTC group and healthy group in the TCGA database. The blue represents normal samples from healthy
people and red represents tumor samples from patients with PTC. P value <0.05 was considered statistically significant (Figures 8A–F).
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age will provide appreciable benefits for individualized treatment.

Through bioinformatics analysis, we concluded that some

meaningful biomarkers, altered pathways, and reshaped tumor

immune microenvironments are involved in PTC progression.

We demonstrated for the first time that PSG7 may be

inextricably linked with tumorigenesis and may be a promising

predictor for prognosis estimation in PTC.

First, we screened 88 upregulated and 58 downregulated

DEGs from the young and elderly groups of PTC samples

from TCGA with a cutoff age of 55 years, which is consistent

with the latest AJCC 8th staging system for thyroid carcinoma

(Perrier et al., 2018). We obtained six independent prognostic

predictors (IGF2BP1, GPRC6A, IL-37, CRCT1, SEMG1, and

PSG7) associated with PFS in PTC patients, based on which

GO, KEGG, GSEA, immune infiltration, and age-related

prognostic model analyses revealed that each key gene was

intimately linked to PTC development. Interestingly, PSG7,

CRCT1, and IL-37 were statistically significant in the clinical

correlation analysis. Furthermore, only samples in the

PSG7 high-expression group and IL-37 high-expression group

had statistically shorter PFS in the survival analysis, and

PSG7 was statistically significant in the differential expression

analysis between PTC and healthy groups in the GEO database.

In addition, the reshaped tumor immune microenvironment

FIGURE 9
Drug sensitivity analysis of key genes (CRCT1, PSG7, IL37, and IGF2BP1) using the CellMiner database.
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participated in PTC development in the PSG7 high-expression

group. Taken together, PSG7may have important implications in

the pathogenesis of PTC and may serve as the most promising

age-related prognostic marker for PTC in our study.

Pregnancy-specific glycoprotein (PSG) genes belong to the

carcinoembryonic antigen (CEA) gene family of the

immunoglobulin gene superfamily. It is known that there are

at least ten members (PSG1–PSG9, PSG11) encoding intimately

FIGURE 10
The correlation analysis of clinicopathological factors. (A–C) PSG7 expression values had a strong correlation with pathological stage, T stage,
and N stage for PTC patients. (D–E)CRCT1 expression levels showed a remarkable association with pathological stage and N stage for PTC patients.
(F–H) IL-37 expression values had a significant relationship with pathological stage, T stage, and N stage for PTC patients.

FIGURE 11
Survival analysis for key genes in TCGA and expression comparisons for key genes using the DEO database. (A–D) The Kaplan–Meier analyses of
progression-free survival between the high- and low-expression groups for the key genes (CRCT1, PSG7, IL-37, and IGF2BP1). (E–H) The expression
values of the key genes (CRCT1, PSG7, IL-37, and IGF2BP1) in the PTC and healthy group in the GEO database.
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associated secreted glycoproteins in humans, which have the

highest contents of all proteins secreted by the fetal trophoblast to

maintain a viable pregnancy (Moore and Dveksler, 2014;

Zimmermann and Kammerer, 2021). Based on sequence

homology, the CEA gene family can be separated into two

subgroups: PSG and CEA (Streydio et al., 1988). CEA has

been extensively studied and used as a cancer marker (Hester

et al., 2021; Moretto et al., 2021; Taheri et al., 2022), whereas PSG,

especially PSG7, has been relatively poorly studied in the field of

oncology, (Su et al., 2020). Unlike other PSGs, PSG7 is

characterized by an unblocked N-terminus, which may

indicate special biological functions worthy of further research

(Khan and Hammarström, 1990). As the most promising key

gene in our study, PSG7 had a positive association with drug

susceptibility to lenvatinib and lificiguat, which is highly

consistent with the actual clinical situation. Lenvatinib, a US

Food and Drug Administration approved oral drug, is widely

used to treat adult well-differentiated thyroid cancer. In addition

to its definite efficacy in treating adult patients with drug

resistance, recurrence, metastasis, and rare pathological

subtype (Tori and Shimo, 2018; Ito et al., 2019a; Takinami

and Yokota, 2020), lenvatinib shows potential for application

in the treatment of children with PTC who are intractable or not

tolerant to conventional therapy (Mahajan et al., 2018).

Furthermore, it brings new hope to patients with advanced

unresectable PTC, for whom this novel option may increase

the opportunity for surgical resection (Iwasaki et al., 2020). In

addition, lificiguat is the first generation of soluble guanylyl

cyclase stimulators, which is currently under investigation in

the field of cardiovascular diseases and beyond (Sandner et al.,

2021). In short, drug sensitivity analysis of key genes will bring

substantial benefits to individualizing therapeutic

recommendations for specific patients with PTC.

As mentioned earlier, PSG7 is the only key gene highly

expressed in both PTC tumor tissues from TCGA and GEO

compared with healthy tissues. More intriguingly, PSG7 had

dramatically close correlations with pathological stage, T stage,

and N stage for PTC patients, and high expression of

PSG7 consistently suggested a worse prognosis. The maternal

serum concentration of PSG gradually increases as pregnancy

progresses under normal circumstances (Lin et al., 1976), and the

relationship between PSG and tumorigenesis has attracted the

FIGURE 12
Correlation analysis of immune infiltration. (A) The box plot depicted the abundance differences in immune cell infiltration between high- and
low-expression PSG7 groups. Horizontal axes represent immune cells and vertical axes represent the infiltration abundance of different immune
cells. (B) Box plot of the different scores of immune gene sets between high- and low-expression PSG7 groups. The horizontal axis indicates different
immune-related gene sets, and the vertical axis indicates ssGSEA scores. In both figures, red denotes the high-expression group and blue
denotes the low-expression group.
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attention of researchers in recent years. As the fifth member of

the PSG family detected in the fetal liver (Khan and

Hammarström, 1990), PSG7 was expected to interact with the

prognostic lncRNAs (CTD-2218G20.2) in gastric cancer, but the

actual mechanism remains elusive (Su et al., 2020). Although less

research has been done on PSG7 thus far, several significant

advances have been made regarding the other members of its

family. Among all the PSGs, higher expression of PSG9 was

confirmed to have significantly stronger associations with poor

clinical and pathological features, as well as worse survival

prognoses in several tumors. In hepatocellular carcinoma, two

studies consistently demonstrated that significantly increased

PSG9 protein in the plasma exerted an important regulatory

impact on tumor proliferation and progression and served as a

self-contained biomarker for predicting prognosis (Rong et al.,

2017; Rong et al., 2019). Similarly, the elevated expression of

PSG9 in plasma specimens and tumorous tissue was strongly

associated with poor clinical and prognostic parameters, such as

metastatic lymph node tissues, distant metastasis, and shorter

DFS in breast cancer patients (Liu et al., 2020). In addition, the

mRNA level of PSG9 significantly increased with an increase in

the transcription factor AP-2α (TFAP2A) in lung

adenocarcinoma, which predicts poorer OS and PFS, probably

because of the promotion of tumor metastasis (Xiong et al.,

2021). In cervical cancer, PSG1 was detected in 90% of

precancerous lesions and all cancerous serum specimens,

whereas it was undetectable in healthy women, which may

provide clues for its carcinogenesis, immunological memory,

and immunotolerance (Rodríguez-Esquivel et al., 2020). In

addition, PSG2 and PSG5 levels were elevated to different

degrees in cervical cancer specimens in comparison to

identical healthy tissues, the promoter regions of which were

bound by Krüppel-like factors to regulate cellular proliferation

and differentiation (Marrero-Rodríguez et al., 2018). For

stomach adenocarcinoma, PSG6 is one of the seven

prognostic genes associated with increased mortality, either

individually or in combination (Wang et al., 2020). Owing to

its genomic and functional complexity, the study of aberrant

expression of PSG contributing to cancer is weak, particularly in

PTC, and the functions of PSG7 have never been studied so far,

but future studies using more rigorous designs and well-validated

reagents may generate convincing data (Moore et al., 2022).

For cancer patients, immunotherapy has been considered an

important and promising treatment, apart from surgery,

chemotherapy, and radiotherapy, which has led to

revolutionary changes in oncological treatment modalities (Li

et al., 2021; Liu et al., 2022). However, the immunosuppressive

tumor microenvironment (TME) is still a bottleneck that

hampers immunotherapeutic efficacy (Lequeux et al., 2021).

The TME is composed of distinct cell types, including

immune cells, endothelial cells, mesenchymal stem cells, and

fibroblasts. The reciprocal communication between infiltrating

immune cells and tumor stem cells within the TME can facilitate

tumor immune escape, recurrence and metastasis (Bayik and

Lathia, 2021). With regards to immune cells in PTC,

accumulating studies have revealed that Tregs, dendritic cells,

and mast cells act as tumorigenesis facilitators, whereas CD8+

T cells and natural killer cells act as tumor suppressors within the

TME (Galdiero et al., 2016; Varricchi et al., 2019; Ferrari et al.,

2020). As PTC progresses, the abundance and proportion of

cancer-facilitating immune cells, such as Tregs, neutrophils, and

dendritic cells increased significantly, while those of antitumor

immune cells, such as CD8+ T cells and natural killer cells

relatively decreased (Xie et al., 2020). In our study, nine of the

21 types of immune cells had a noticeable relationship with

differential immune cell infiltration, and CD8+T cells decreased

significantly, while Tregs increased significantly in the high-risk

group. More intriguingly, eight of the 21 types of immune cells

demonstrated statistically significant differences in immune cell

infiltration and CD8+ T cells levels decreased remarkably while

the level of Tregs increased remarkably in PSG7 high-expression

group. In addition, immune-related gene sets showed significant

changes in both groups. Accordingly, it is reasonable to infer that

PSG7 may play a pivotal role in PTC progression by altering the

tumor immune microenvironment with increasing age. Indeed,

numerous studies have confirmed that PSGs may participate in

the adjustment of the innate immune system and immune

tolerance during pregnancy (Snyder et al., 2001; Rayev et al.,

2017; Zimmermann and Kammerer, 2021). In the future,

elucidating the complex mechanism of how immune cells and

tumor cells interact will offer a unique perspective for more

precise and personalized immunotherapy (Kubli et al., 2021).

Our study has a few limitations. First, although we included

as many samples with complete clinical information as possible

for strict validation and standardized the downloaded data to

improve comparability, we must never lose sight of the fact that

sampling bias arising from tumor heterogeneity and multi-

platform integration may only be reduced to a certain extent

but not eliminated. Second, it may be interesting to examine the

basic expression of these screened DEGs and hub genes in the

development of PTC with western blot, quantitative real-time

PCR, immunohistochemistry, immunofluorescence assays and

so on. Although emerging evidence suggests a series of DEGs in

PTC, such as CRCT1, IL37, and IGF2BP1, there are still no

reliable candidates for therapeutic targets of PTC. It is necessary

to identify more DEGs and to explore whether possible targeted

genes affect the initiation and progression of PTC. Application of

the molecular experiments, the identification of biomarkers in

PTC may be feasible. Third, to clarify the functions of DEGs and

hub genes in PTC, a clean loss-of -function and gain-on-function

study with tissue-type specificity and cell-type specificity remain

warranted. Signaling pathways are more diverse in PTC than

originally thought, such as the interleukin 17 (IL-17) signaling

pathway, the cytokine-cytokine receptor interaction pathway and

WNT signaling pathway. Although several pathways have been

identified, a series of molecular experiments may be useful to
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prove more detailed and strong proofs for the possible phenotype

and pathway regulation of these screened genes underlying PTC.

Finally, despite the fact that microarray-based bioinformatic

analysis is a powerful tool in efficient understanding of

molecular mechanisms and for identifying potential

biomarkers underlying PTC, further experimental validations

of PSG7 are needed at molecular, cellular, and organismal levels.

Altogether, the results of the combined bioinformatics

analyses of PTC datasets from TCGA and GEO revealed

that 146 DEGs, meaningful prognostic markers, altered key

pathways, and reshaped tumor immune microenvironments

were involved in PTC. Our findings suggest that PSG7 may be

a promising age-related prognostic marker in PTC for the first

time. Second, we explored the mechanism of PTC

deterioration with increasing age using bioinformatics

approaches, which resolved the long-standing enigma

behind this phenomenon, although we know that age at

diagnosis is a self-contained element of danger for PTC

prognosis. Therefore, our findings provide valuable insights

into the potential clinical efficacy of prognostic estimation and

therapeutic guidance for the personalized management of

PTC. This study opens a new door to understanding the

underlying mechanism by which the prognosis of patients

with PTC declines with age.
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