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Background: Gastric cancer is a major global public health burden worldwide.

Although treatment strategies are continuously improving, the overall

prognosis remains poor. Necroptosis is a newly discovered form of cell

death associated with anti-tumor immunity.

Methods: Gastric cancer (GC) data from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) were downloaded. Bioinformatics analysis

was performed to construct a necroptosis-related risk model and to establish

cancer subtypes. Potential associations of the tumor immune

microenvironment and immunotherapy response with necroptosis-related

prognostic risk score (NRG risk score) were comprehensively explored.

16 GC and paired normal tissues were collected and RT-PCR was performed

to examine expression of NRG related genes.

Results:GC sampleswere stratified into three subtypes according to prognostic

necroptosis gene expression. A necroptosis risk model based on 12 genes

(NPC1L1, GAL, RNASE1, PCDH7, NOX4, GJA4, SLC39A4, BASP1, BLVRA, NCF1,

PNOC, and CCR5) was constructed and validated. The model was significantly

associated with the OS and PFS of GC patients and the tumor immune

microenvironment including immune cell infiltration, microsatellite instability

(MSI) status, tumor mutational burden (TMB) score, immune checkpoint, and

human leukocyte antigen (HLA) gene expression. A prognostic nomogram

based on the NRG_score was additionally constructed. A low NRG risk score

was correlated with high tumor immunogenicity and might benefit from

immunotherapy.

Conclusion: We have identified a useful prognostic model based on

necroptosis-related genes in GC and comprehensively the relationship

between necroptosis and tumor immunity. Predicting value to

immunotherapy response is promising, and further research to validate the

model in clinical practice is needed.
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Introduction

Gastric cancer (GC), including gastroesophageal junction

(GEJ) adenocarcinoma, is the fourth leading cause of cancer-

related mortality worldwide (Sung et al., 2021). Adenocarcinoma

of the stomach (STAD) is the most common pathological

subtype, accounting for up to 95%, and other pathological

types such as lymphoma and leiomyosarcoma are relatively

rare. The majority of GC patients present with distant

metastasis at first diagnosis. The treatment options for

advanced GC have undergone significant evolution over

recent years, developing from traditional chemotherapy to

targeted therapy and immunotherapy, resulting in the

progressive improvement of outcomes (Joshi and Badgwell,

2021). However, GC is a highly heterogeneous malignant

tumor, and in clinical practice, a large number of patients do

not benefit from targeted therapy or immunotherapy

(Seeneevassen et al., 2021). Selection of the patient

populations that potentially benefit from these treatments is

therefore critical for the optimization of survival outcomes.

Necroptosis, formerly considered an unregulated accidental

cell death process, is a caspase-independent form of cell death

involving receptor-interacting protein kinase 1 (RIP1), RIP3, and

mixed lineage kinase domain-like protein (MLKL) (Gong et al.,

2019; Khoury et al., 2020). This newly discovered pathway

regulates necrosis and is induced by death receptors,

interferon, Toll-like receptors, intracellular RNA and DNA

sensors, and other potential regulators (Pasparakis and

Vandenabeele, 2015). Recent studies have provided exciting

novel insights into the regulatory mechanisms of necrosis and

their associations and suggest that necrosis is critical in the

pathogenesis of multiple human diseases. Rather than the

formation of apoptotic bodies, which occurs during cellular

apoptosis, necroptosis is accompanied by rupture of the cell

membrane and release of tumor neoantigens, which can trigger

strong inflammatory and anti-tumor immune responses. This

pathway is involved in the development and progression of

various tumors and appears to serve as an effective biomarker of

survival outcome or therapeutic effect (Gong et al., 2019; Sprooten

et al., 2020; Tang et al., 2020). To date, limited studies have focused

on the potential involvement and underlying molecular

mechanisms and therapeutic response of the immunotherapy of

necroptosis in gastric cancer, and few necroptosis-related cancer

subtypes or prognostic models are currently available.

In this study, GC samples were collected from TCGA and

GEO databases for comprehensive analysis of necroptosis-related

gene (NRG) expression, mutation status, and copy number

variations. Based on NRG expression patterns, all samples were

classified into two necroptosis-associated subtypes. According to

differentially expressed gene (DEG) patterns between the two

groups, samples were classified into three different gene

subtypes. We successfully constructed a predictive model and

comprehensively evaluated the correlations between different risk

layers and the tumor immune microenvironment (TIME). Our

collective findings provide novel insights that could aid in the

evolution of strategies for accurate classification and effective

immunotherapy and innovative targeted therapy of gastric cancer.

Materials and methods

Data collection

The flow chart of the study is presented in Figure 1. RNA

sequencing data (fragments per kilobase million; FPKM) and

relevant clinical and follow-up information were obtained from

TCGA and GEO datasets (GSE84433). GEO database are

available in GPL6947 platform (Illumina HumanHT-12 V3.

0 expression beadchip). FPKM values of TCGA-stomach

adenocarcinoma (STAD) data were converted and normalized

to transcripts per kilobase million (TPM), which are more similar

to those resulting frommicroarrays andmore comparable between

samples. Intersection genes of TCGA and GEO databases were

selected out. The normal samples in TCGA database were

removed and log2 was performed for GEO database. The

“limma” R package was used for data normalization. The

“ComBat” algorithm of “sva” R package was used to correct the

batch effects due to the non-biological technical bias. Then, data

from the two cohorts were combined, with the exclusion of cases

with missing follow-up information or unknown survival status

(Song et al., 2021; Yang et al., 2022). Clinical data, such as TNM

stage, age, gender, follow-up time, and survival status, were

collected. A list of 67 necroptosis-related genes (NRG) were

selected for analysis (Supplementary Table S1) from the Gene

Set Enrichment Analysis (GSEA) database and previous

publications.

Somatic mutations and copy number
alterations of NRGs

Somatic mutation status (workflow type: VarScan2 Variant

Aggregation and Masking) and copy number variation (CNV)

data were downloaded from the TCGA database. Summary

analysis of somatic mutation frequency in the 12 necroptosis

genes was performed to select genes with high mutational

frequency. Additionally, somatic copy number alterations of

necroptosis genes were analyzed, along with correlations of
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CNV and mRNA expression and chromosomal location of

necroptosis genes.

Consensus clustering analysis of NRGs

The R package “ConsensusClusterPlus” was employed for

subsequent consensus unsupervised sample clustering analysis.

GC samples were classified into two different subtypes based on

necroptosis genes expression. To achieve the optimal subtyping

effect, cumulative distribution function (CDF) curves were

increased gradually and smoothly, and sample sizes were

relatively balanced among the different subgroups.

Correlation of necroptosis subtypes with
clinicopathological characteristics and
prognosis

We created a heatmap to evaluate the associations of the two

necroptosis subtypes with prognosis and clinicopathological

characteristics, including TNM stage, pathological grade, age,

and sex. Kaplan–Meier analysis was performed to compare

differential prognosis in overall survival (OS). Univariate Cox

regression was conducted for preliminary analysis of the

correlation between the expression of individual necroptosis

genes and the prognosis of GC patients.

DEG identification and functional analysis

Differentially expressed genes (DEG) were selected between

the different necroptosis subgroups using the R package “limma”

at a threshold p-value<0.05 and a fold change of 1.5. Subsequent

Gene set variation analysis (GSVA) was performed to identify the

functions and biological processes of the different subgroups. GSVA

was based on the hallmark gene set (c2.cp.kegg.v7.4.symbols.gmt)

downloaded from the MSigDB database. Additionally, functional

enrichment analysis was conducted based on DEGs using the R

packages “clusterProfiler” and “enrichplot.”

Necroptosis-related gene prognostic risk
score

Necroptosis-related prognostic risk score (NRG_score) was

created to quantify the necroptosis patterns of each GC sample.

DEGs associated with OS were selected according to univariate

FIGURE 1
Flowchart of the study.
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Cox regression. Next, all patients were divided into different

necroptosis gene clusters (A, B, C) following the unsupervised

clusteringmethod according to prognostic DEGs. All GC (n = 696)

cases fromTCGA andGEO cohorts were combined and randomly

divided into training (n = 348) and validation cohorts (n = 348) at

a 1:1 ratio. The training cohort was used for subsequent analysis to

construct the NRG_score. After univariate Cox regression analysis,

Lasso regression was performed using the R package “glmnet” and

multivariate Cox regression was eventually conducted to identify

candidate prognostic necroptosis genes. The NRG_score was

calculated using the formula: NRG_score = Σ (Exp * coefi).

Patients were further divided into high-risk and low-risk

groups based on the median NRG_score.

Correlation of prognostic NRG risk score
with clinical factors

Patients in the validation and all other cohorts were also

divided into high-risk and low-risk groups using the same

criteria. The distribution plot revealed a correlation between

overall survival status and NRG_score. Kaplan–Meier analysis

was performed to compare the prognosis of the different risk

groups in overall survival (OS) among the training, validation,

and all patient cohort. A heatmap was plotted to compare the

differential expression patterns of prognostic NRGs between the

two groups.

Immune landscape, microsatellite
instability status, cancer stem cell index,
tumor mutation burden score, and HLA
gene expression between high- and low-
risk groups

The CIBERSORT algorithm was applied to explore the

correlations of 22 infiltrating human immune cell types and

NRG_scores. The ESTIMATE algorithm was performed to assess

the immune and stromal scores between high-risk and low-risk

groups. Correlations of expression of 12 prognostic NRGs and

immune cells were additionally evaluated. We further examined

the associations of the NRG_score and immune checkpoint gene

expression, MSI status, CSC index, TMB score, and HLA gene

expression. A mutation annotation format (MAF) was

performed for comparison of GC patients in high-risk and

low-risk groups using the maftools R package.

Drug susceptibility analysis and
immunotherapy response prediction

To explore the application value of NRG_score in clinical

drug selection, “pRRophetic” R package analysis was

performed to assess drug susceptibility in the two risk

groups and the half-maximal inhibitory concentration

(IC50) values calculated for commonly used chemotherapy

or targeted therapeutic drugs. The Cancer Immunome Atlas

(https://tcia.at/) analyzed the immune landscapes and

antigenomes of 20 solid tumors that were quantified by

Immunophenoscore (IPS, a superior immune response

molecular marker). The IPS value, which ranged from 0 to

10, was positively correlated to tumor immunogenicity and

could predict the patients’ response to immune checkpoint

inhibitors therapy, including anti-PD-1/PD-L1 and anti-

CTLA-4 immunotherapy. Imvigor210 was a transcriptome

database including treatment response data of patients who

received anti-PD-L1 immunotherapy. It was extracted to

assess the predicting value of NRG risk score in

immunotherapy response. Another public cohort

GSE78220, was also used to assess the response and

survival outcomes for patients receiving immunotherapy

based on NRG risk score.

Construction and validation of an NRG-
related nomogram

A prognostic nomogram was constructed by integrating the

NRG risk level with common clinical variables. We additionally

generated calibration curves for 1-, 3-, and 5-year OS to compare

the model prediction values with actual outcomes. Decision

curve analysis (DCA) analysis was conducted to estimate the

predictive value of the nomogram in clinical decision-making

practice. A receiver operating characteristic (ROC) curve was

plotted to compare the prognostic power of the NRG_score risk

group alone with the nomogram model.

Human tissues and quantitative real time-
polymerase chain reaction

We obtained 16 cancer and their paired normal tissues from

gastric cancer patients who underwent stomach surgery in the

First Affiliated Hospital of Zhengzhou University. The study

protocol was approved by the First Affiliated Hospital of

Zhengzhou University Research Ethics Committee. Written

informed consent was provided by each patient. Total RNA

was extracted by Trizol reagent (Takara, Beijing, China)

according to the manufacturer’s protocol. The synthesis of

cDNAs corresponding to the mRNAs of interest depended on

PrimeScript RT reagent Kit with gDNA Eraser (Takara) and

SYBR Green Premix (Cowin Biosciences, Jiangsu province,

China) with specific PCR primers (Sangon Biotech Co., Ltd,

Shanghai, China). The data were normalized with GAPDH. The

primers used in PCR assays were listed in Supplementary

Table S15.
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FIGURE 2
Genetic and transcriptional analysis of NRGs in GC. (A) Mutation frequencies of 67 NRGs in GC patients from TCGA cohort. (B) Copy number
cariation of NRGs. (C) Locations of NRGs CNV on 23 chromosomes. (D) Expression differences of NRGs between normal and GC samples.
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Statistical analysis

Statistical analyses were performed using R software version

4.1.1 (2021-08-10). Data were considered statistically significant

at p-values<0.05. All R scripts have been added in the

Supplementary Material.

Results

Mutation landscape and copy number
alterations of NRGs in GC

A total of 67 necroptosis-related genes (NRG) were included

for analysis. Analysis of mutations revealed relatively high

mutational frequencies of NRGs in GC. Among the 465 GC

samples, 165 (38.11%) displayed NRG mutations (Figure 2A).

Overall, 56 (83.6%) genes showed different mutation frequencies

and types. The gene with the highest mutational frequency was

ATRX (5%), followed by BRAF, CDKN2A, PLK1, GATA3, EGFR,

and CASP8 (4%). No mutations were detected in 11 NRGs

(SIRT3, KLF9, ID1, CFLAR, DIABLO, IDH2, BCL2, PANX1,

TRIM11, TNF, and FADD). Assessment of copy number

variations (CNV) disclosed different CNV frequencies of all

NRGs. MYC, IDH2, TRAF2, TNFSF10, and FADD exhibited a

significant increase in CNV while CNV was decreased in

CDKN2A, BRAF, TLR3, FAS, and RIPK1 (Figure 2B). The

locations of 67 NRGs in the 23 chromosomes were further

investigated. Chromosome 2 was the most common location,

housing MYCN, ALK, HAT1, CFLAR, CASP8, and IDH1

(Figure 2C).

The mRNA levels were different between GC and normal

samples for the majority of NRGs (Figure 2D). Expression

patterns of mRNA were consistent with CNV results. For

instance, MYC, FADD, TERT, and TNFSF10 showed high

expression in GC samples with CNV gain status while TLR3,

KLF9, and BCL2 were expressed at low levels in GC samples with

CNV loss status. Some NRGs showed upregulated mRNA

expression with CNV loss, such as CDKN2A and RIPK1,

while the ID1 gene with CNV gain was downregulated. These

findings suggest transcriptional regulation by other potential

mechanisms in addition to CNV. The observed background of

NRG gene expression and mutation in addition to CNV and

chromosomal localization data in GC patients support an

important role of NRGs in the oncogenesis of gastric cancer.

Necroptosis cluster identification in GC

Detailed information on GC patients from the TCGA and

GSE84433 cohorts is presented in Supplementary Tables S2, S3.

According to expression patterns of the 67 NRGs, GC patients

were subdivided into different clusters using a consensus

clustering algorithm (Supplementary Figure S1). The data

indicate that k = 2 is an appropriate choice for the

classification of patients into A (n = 340) and B (n = 360)

subtypes (Figures 3A,B; Supplementary Table S4). At k = 2, the

cumulative distribution function curve (CDF) increased

gradually, and the sample size was relatively balanced between

the two subgroups. In principal component analysis (PCA),

subtypes A and B showed obvious differences in necroptosis

transcription profiles (Figure 3C). Univariate Cox regression

analysis was applied to determine the prognostic significance

of the 67 NRGs in GC (Supplementary Table S5). Based on

univariate Cox regression results, a necroptosis network was

generated showing the interrelationship between each

necroptosis gene and their predictive value in GC (Figure 3D).

The Kaplan–Meier curve showed a relatively longer OS in

subtype_A than subtype_B patients, but these differences were

not significant (p = 0.604, Figure 3E). Most of the necroptosis

genes were associated with the prognosis of gastric cancer

patients. Kaplan–Meier survival analysis revealed an

association of high expression of PADD, FASLG, MLKL,

RIPK3, and FAS with better outcomes while low expression of

KLF9 was correlated with longer OS in GC (Figure 3F). Heatmap

was performed to reveal relative differences in NRG expression

and clinical features between the two subgroups (Figure 3G).

Identification and functional analysis of
DEGs

To determine potential functional differences between the

two necroptosis subgroups, we performed GSVA analysis, which

showed significant enrichment of subtype_A in the steroid

biosynthesis pathway (Figure 4A, Supplementary Table S6)

and enrichment of subtype_B in essential immune-related

pathways, including JAK-STAT signaling, B cell receptor

signaling, T cell receptor signaling, natural killing cell-

mediated cytotoxicity, and leukocyte transendothelial migration.

We identified 1239 necroptosis-related DEGs between subtypes

A and B using the “limma” R package (Supplementary Table S7).

Functional GO analysis revealed that these DEGs were mainly

enriched in biological processes associated with tumor immunity,

such as T cell activation, lymphocyte differentiation, regulation of

T cell activation, and cell-cell adhesion, indicative of an important

role of necroptosis in the tumor microenvironment (Figures 4B,C;

Supplementary Table S8).

Necroptosis gene cluster based on
prognostic DEGs

Univariate Cox regression analysis was performed based on

1239 DEGs and among which 606 genes related to OS for GC

were selected (Supplementary Table S9). A new consensus
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FIGURE 3
Necroptosis subtypes in GC. (A,B) Consensus matrix heatmap identifying 2 clusters (k = 2). (C) PCA analysis showing an obvious difference in
necroptosis transcription profile. (D) Interactions among NRGs in GC. The line connecting the NRGs represents their interaction. Blue represents
negative and pink represents positive correlations, respectively. (E) Survival analysis of NRG cluster according to OS in GC. (F) Kaplan-Meier curve
showed that high expression of PADD, FASLG, MLKL, RIPK3 and FASwere associated with better outcomes, while low expression of KLF9 had a
longer OS in GC. (G) Differences of the clinicopathological factors and NRGs expression between two necroptosis clusters.
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clustering was conducted based on these prognostic NRGs and

GC patients were divided into three necroptosis gene subtypes

designated gene subtype_A, gene subtype_B, and gene

subtype_C (k = 3, Figures 5A,B; Supplementary Figure S2;

Supplemntary Table S10). PCA showed significant differences

in the necroptosis transcription profiles of subtypes A, B, and C

(Figure 5C). In Kaplan–Meier analysis, gene subtype_A had the

highest OS while the shortest outcome was determined for

subtype_C (p < 0.001, Figure 5D). The relative differences in

T, N classification, gender, age, and necroptosis clustering

between A, B, and C gene subtypes are presented in

Figure 5E. In addition, significant differences in NRG

expression among the three gene subtypes were observed

(Figure 5F).

FIGURE 4
Functional analysis of necroptosis subtypes in GC. (A) CSVA analysis of the biological pathways between necroptosis subtypes. (B,C) GO and
KEGG analysis of DEGs between two necroptosis subtypes.
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Prognostic NRG risk score

GC patients from TCGA and GEO cohorts were combined

and randomly divided into training and validation cohorts at a 1:

1 ratio. The training cohort was used for subsequent analyses.

LASSO analysis was performed for 606 prognostic DEGs and

25 genes selected for subsequent multivariate Cox regression

analysis (Figures 6A,B). Finally, 12 prognostic NRGs were

FIGURE 5
Gene clusters based on prognostic DEGs. (A,B) Consensus matrix heatmap identifying 3 clusters (k = 3). (C) PCA analysis showing an obvious
difference in necroptosis transcription profile. (D) Survival analysis showing gene clusters were associated with OS in GC patients. (E) Differences of
the clinicopathological factors and NRGs expression between three gene clusters. (F) Differences of NRGs expression between three gene clusters.
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FIGURE 6
Construction of the NRG risk score in GC patients. (A,B) The LASSO regression analysis and partial likelihood deviance on the prognostic genes.
(C,D)NRG risk score distribution in necroptosis and gene subtypes. (E)Correlation of necroptosis subtype, gene subtype, NRG risk score and survival
outcomes. (F) Ranked dot and scatter plot showing theNRG risk score and survival status in all GC patient cohort. (G) The 12 prognostic NRG genes in
the model between high and low-risk groups. (H) Survival analysis of the OS between the high and low-risk groups. (I) ROC analysis of the
predictive ability of 1,3,5 and 10-year OS according to NRG risk score. (J) Survival analysis of the PFS between the high and low-risk groups. (K)
Survival analysis according to the gene cluster and NRG risk level.
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identified (Supplementary Table S11), including 9 high-risk genes

(NPC1L1,GAL,RNASE1, PCDH7,NOX4,GJA4, SLC39A4, BASP1,

and BLVRA) and 3 low-risk genes (NCF1, PNOC, and CCR5).

Correlation of the 12model genes expression with OS in the whole

patients set was also presented in Supplementary Figure S3. Based

on the results of multivariate Cox regression analysis, the NRG risk

score was calculated as follows:

NRG risk score = (–0.43594* expression ofNFC1) + (–0.38714*

expression of PNOC) + (–0.27229* expression ofCCR5) + (0.46847*

expression of BLVRA) + (0.29272* expression of BASP1) +

(0.28869* expression of SLC39A4) + (0.28408* expression of

GJA4) + (0.24301* expression of NOX4) + (0.18931* expression

of PCDH7) + (0.18843* expression of RNASE1) + (0.09485*

expression of GAL) + (0.07200* expression of NPC1L1).

TABLE1 Patient Characteristics according to necroptosis risk score.

Characteristics High risk N = 353 Low risk N = 342 p-value*

Age,years 0.413

Median (IQR) 64.0 (54, 70) 63.5 (56, 70)

Range 30, 90 27, 90

Gender 0.811

Female 124 (35%) 117 (34%)

Male 229 (65%) 225 (66%)

Grade 0.981

G1 4 (1.1%) 4 (1.2%)

G2 61 (17%) 63 (18%)

G3 102 (29%) 97 (28%)

missing 186 (53%) 178 (52%)

Stage 0.186

Stage I 18 (5.1%) 28 (8.2%)

Stage II 54 (15%) 48 (14%)

Stage III 63 (18%) 71 (21%)

Stage IV 22 (6.2%) 12 (3.5%)

missing 196 (56%) 183 (54%)

T 0.006

T1 9 (2.5%) 19 (5.6%)

T2 51 (14%) 56 (16%)

T3 100 (28%) 123 (36%)

T4 187 (53%) 142 (42%)

missing 6 (1.7%) 2 (0.6%)

N 0.002

N0 65 (18%) 104 (30%)

N1 125 (35%) 119 (35%)

N2 100 (28%) 69 (20%)

N3 55 (16%) 42 (12%)

missing 8 (2.3%) 8 (2.3%)

M 0.159

M0 147 (42%) 154 (45%)

M1 16 (4.5%) 7 (2.0%)

missing 190 (54%) 181 (53%)

NECcluster 0.081

A 160 (45%) 178 (52%)

B 193 (55%) 164 (48%)

geneCluster <0.001
A 96 (27%) 181 (53%)

B 175 (50%) 133 (39%)

C 82 (23%) 28 (8.2%)

*Welch Two Sample t-test; Fisher’s exact test.
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Based on the median NRG risk score, all GC patients were

divided into high-risk and low-risk groups. The majority of

necroptosis-related genes were differentially expressed between

the two risk groups (Supplementary Figure S4). Correlations

between risk level with clinicopathological factors were presented

in Table1. It showed that high NRG risk score was positively

related with advanced T stage, N stage and gene cluster C

subtype. NRG risk score was significantly different among the

three gene clusters. The NRG score was highest in gene cluster_C

and lowest in gene cluster_A (Figure 6C) while no significant

differences were observed between necroptosis clusters A and B

(Figure 6D).

The Sankey plot allowed visualization of the interrelationships

among two necroptosis clusters, three gene clusters, risk_score,

and overall survival status (Figure 6E). The distribution plot

showed that OS of GC decreased with increased NRG risk

score (Figure 6F). For all patient cohorts, a heatmap was

generated to establish the relationships of the 12 prognostic

marker genes with NRG risk groups. BLVRA, SLC39A4, GJA4,

NOX4, PCDH7, and GAL were highly expressed in the high-risk

group whileNCF1, PNOC, and CCR5 were highly expressed in the

low-risk group (Figure 6G). The correlation results in the training

and validation sets are presented in Supplementary Figure S5.

Kaplan–Meier curve analysis showed significantly longer OS in the

low-risk relative to the high-risk group (p < 0.001, Figure 6H).

ROC curves indicated that NRG risk score had promissing value in

predicting OS of GC patients, with AUC at 1, 3, 5, and 10 years of

0.740, 0.762, 0.766, and 0.757, respectively (Figure 6I). Progression

free survival (PFS) was also higher in low-risk than high-risk group

GC patients (Figure 6J). We obtained similar results with the

whole patient and validation sets (Supplementary Figures S6, S7).

Risk group and gene cluster data were combined for the

subclassification of GC patients into six different subgroups.

The lowrisk_A group had better OS relative to the other

subgroups. Low-risk groups could be further divided into three

survival outcome groups while the high-risk group consistently

showed the poorest survival rates within our patient population

(Figure 6K).

Validation of the expression levels of the
12 NRGs in the prognostic model

The expression levels of 12 prognostic genes were measured

in 16 GC tissues and 16 paired adjacent normal tissues by RT-

qPCR. As shown in Supplementary Figure S8, all of the

12 NRGs were significantly differentially expressed between

cancer and normal tissues. The expression of PNOC and

RNASE1 were downregulated and other genes (BASP1,

BLVRA, CCR5, GAL, GJA4, NCF1, NOX4, NPC1L1, PCDH7,

and SLC39A4) were upregulated in GC tissues than

corresponding normal tissues. Results of RT-qPCR were

presented in Supplementary Table S16.

Tumor microenvironment in the high- and
low-risk groups

CIBERSORT algorithm results revealed positive associations

of the prognostic NRG risk score with resting CD4 memory cells,

resting mast cells, activated mast cells, and M2macrophages, and

negative correlations with CD8+T cells, follicular helper T cells,

activated memory CD4+T cells, plasma cells, and memory B cells

(Figure 7A, Supplementary Table S12). The ESTIMATE

algorithm was additionally performed to simulate TIME. The

results showed that high NRG risk score was associated with low

immune score and high stromal score in GC samples (Figure 7B,

Supplementary Table S13), suggesting that the high-risk group

has a relatively good immune microenvironment. The

relationship between 12 prognostic necroptosis genes and

22 human immune-related cells was further examined

(Figure 7C). The majority of immune cells were significantly

positively or negatively regulated with the 12 genes. The

relationship between NRG prognostic risk_score and immune

checkpoints was further assessed (Figure 8A). Analysis of

33 immune checkpoint genes led to the identification of

22 that were differentially expressed between the two risk groups.

Correlations of NRG risk score with MSI,
CSC index, HLA gene expression, and TMB
score

Experiments were performed to determine the relationship

of NRG risk score with immunotherapeutic biomarkers, such as

MSI, CSC index, HLA gene expression, and TMB score.

Notably, a low NRG risk score was significantly correlated

with MSI-H status. In the low-risk group, MSI-H status was

24%, which was higher than that in the high-risk group

(Figure 8C), and the median risk_score of MSI-H was

significantly lower than that of MSI-L/MSS groups

(Figure 8D). The NRG risk score showed a negative linear

correlation with the CSC index (R = –0.32, p < 0.001, Figure 8E),

indicating that GC cells with high NRG risk score have less

distinct stem cell properties and a higher level of cell

differentiation. We additionally performed a correlation

analysis between NRG risk score and HLA gene expression.

Our results showed lower expression of HLA-DRB5 in the high-

risk relative to the low-risk group (Figure 8B, Supplementary

Table S14). The TMB score was negatively associated with the

NRG gene cluster in this study (Supplementary Figure S9) and

significantly lower in the high-risk than the low-risk group

(Figure 8F). Next, we analyzed the distribution of somatic

mutations between the two necroptosis risk groups in the

TCGA GC cohort. Low-risk samples showed relatively higher

mutation frequency than the high-risk group (90.06% vs.

86.98%, Figures 7G,H). Multiple genes displayed mutations

in gastric cancer cells but the types and frequencies were
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distinct. For example, the frequency of TTN mutation was 47%

in the high-risk group and 36% in the low-risk group. The top

5 mutated genes in the high-risk group were TP53, TTN,

MUC16, SYNE1, and LRP1B, while TTN, TP53, MUC16,

ARID1A, and LRP1B were the top 5 genes showing

mutations in the low-risk group.

FIGURE 7
Association of TIME with risk_score. (A) Correlation of infiltrating immune cells with NRG risk score. (B) Correlation of NRG risk score with
immune/stromal scores. (C) Correlation of immune cells with 12 NRGs.
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Drug susceptibility analysis

We performed drug susceptibility analysis to select

promising chemotherapy or targeted drugs for high- and low-

risk groups of GC. Interestingly, patients in the high-risk group

had lower IC50 values for docetaxel, lapatinib, pazopanib,

dasatinib, and imatinib (Figures 9A–E) while those in the

low-risk group had significantly lower IC50 values for

gefitinib, metformin, bosutinib, lenalidomide, and salubrinal

(Figures 9F–I). These results support the utility of NRG risk

score in the prediction of drug sensitivity and selection of

potential beneficiaries of specific treatment drugs among GC

patients.

NRG risk score predicts response to
immunotherapy

As the important biomarker for immunotherapy, we firstly

performed K-M analysis based on TMB and MSI status in GC

FIGURE 8
Comprehensive analysis of NRG risk score in GC. (A) Correlation of NRG risk score and immune checkpoint gene expression. (B) Correlation of
NRG risk score and HLA gene expression. (C,D) Correlation of NRG risk score and MSI status. (E) Correlation of NRG risk score and CSC index. (F)
Correlation of NRG risk score and TMB. (G,H) Somatic mutation features in the high- and low-risk groups.

Frontiers in Genetics frontiersin.org14

Xin et al. 10.3389/fgene.2022.953997

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.953997


patients. It showed that High-TMB patients had a significantly

better OS than low-TMBGC patients (Figure 10A, p < 0.001) and

when combining with risk levels (Figure 10B). While, there was

no difference between MSI-H and MSI-L/MSS patients

(Figure 10C, p = 0.144), even combining with risk levels

(Figure 10D, p = 0.424).

According to results of TCIA database analysis, IPS scores

were download and correlation with NRG risk score was also

evaluated. IPS-PD-1/PD-L1/PD-L2_pos and IPS-CTLA-4_pos

was higher in low-risk group patients than in high-risk group

patients (Figures 10E,F), indicating that low-NRG_risk gastric

cancer patients might have higher tumor immunogenicity and

benefit from anti- PD-1/PD-L1/PD-L2 and anti- CTLA-4 blocker

immunotherapy. In Imvigor210 cohort, we also found that NRG

risk score was significantly correlated with patients’ objective

response of immunotherapy. Risk score in the response group

(CR/PR, complete response and partial response) group was

obviously lower than none-response group (SD/PD, stable

disease and progressive disease, p = 0.046, Figure 10G),

expecially between CR and PD groups patients

(Figure 10H, p = 0.023), indicating that NRG risk score

could act as a potentially promising therapeutic biomarker of

immunotherapy in gastric cancer.

Next, we evaluated the prognostic value of NRG risk score

in a melanoma treated by anti-PD-1 cohort (GSE78220).

Percentage of response to ICIs in the low-risk group was

FIGURE 9
Drug susceptibility analysis of chemotherapy and targeted therapy in high- and low-risk groups. (A) Docetaxel, (B) Dasatinib, (C) Lapatinib, (D)
Imatinib, (E) Pazopanib, (F) Gefitinib, (G) Bosutinib, (H) Lenalidomide, and (I) Metformin.
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higher than high-risk group (Figure 10I), and the median

NRG risk score in response group patients was significantly

lower than none-response group patients (p = 0.038,

Figure 10J). K-M analysis showed that patients with a

response to ICIs (CR and PR) had a better OS than none-

response (PD) group patients (Figures 10K,L, p < 0.001). At

last, we assess the NRG risk score in survival of ICIs treated

patients and the promising result showed that it was

significantly correlated with OS in this study (p = 0.042,

Figure 10M), indicating that NRG risk score might be a

useful biomarker for immunotherapy.

Construction and validation of nomogram
based on NRG risk score

We integrate NRG risk score and the common

clinicalpathological factors, including age, gender, T stage, N

FIGURE 10
Immunotherapy response based on necroptosis risk score. (A–D) K-M analysis based on TMB, MSI status, or their combination with NRG risk
score. (E,F) Predicting of response to anti-CTLA-4 and anti-PD-1/PD-L1 therapy (IPS score) in the low-risk score and high-risk score groups in
TCGA-GC patients in this study. (G,H) Correlation of immunotherapy response with NRG risk score according to IMvigor210 database. (I,J)
Correlation of NRG risk score with ICIs response. (K,L) Survival in CSE78220 cohort related to ICIs response. (M) Survival in CSE78220 cohort
related to NRG risk score.
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stage, M stage and pathological grade, and performed univariate

Cox regression analysis and subsequent multivariate Cox

regression analysis. It revealed that NRG risk score was an

independent prognostic factor for GC patients in this study

(p < 0.001, Figures 11A,B). Factors showed significance in the

multivariate analysis were incorporated into a nomogram. For

gender acts as an easy and common factor in clinical practice, we

also consider it in the model construction (Figure 11C). The

calibration curves of the nomogram indicated excellent

consistency with the standard curve between predicted and

actual 1-, 3-, and 5-year OS rates in GC patients

(Figure 11D). DCA was conducted to evaluate the predictive

value of the nomogram in clinical decision-making (Figure 11E).

Notably, the nomogram showed better reliability than the

common clinicopathological factors or NRG risk score alone.

The AUC value of the nomogram was 0.725, which was higher

than the NRG risk score (0.696, Figure 11F), indicating a better

predictive value than NRG risk score alone.

Discussion

Apoptosis is a common pathway of programmed cell death in

the body. Traditional chemotherapeutic drugs mainly exert their

effects by promoting apoptosis of tumor cells, with resistance to

apoptosis identified as the predominant mechanism underlying

tumor drug resistance (Mortezaee et al., 2019; Carneiro and El-

Deiry, 2020). A comprehensive investigation of the pathways of

tumor cell apoptosis has led to the gradual discovery of novel cells

death modes, such as pyroptosis, ferroptosis, cuproptosis, and

necroptosis. In contrast to apoptosis, necroptosis rarely presents

with cytoplasmic shrinkage, chromatin condensation, nuclear

FIGURE 11
Construction and validation of the nomogrambased onNRG risk score. (A,B) Forest plots of univariate andmultivariate Cox Regression analysis.
(C)Nomogram predicting 1-, 3-, and 5-year OS in GC patients. (D)Calibration curve for prediction of 1-,3- and 5-year OS. (E)Decision curve analyses
of the nomogram. (F) ROC curves for predicting OS in GC patients.
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fragmentation, cell membrane blebbing, or shedding of apoptotic

bodies (Pasparakis and Vandenabeele, 2015; Su et al., 2016).

Necroptosis is reported to play potential roles in several diseases

including inflammatory bowel disease, multiple dermatosis, acute

kidney injury, inflammatory response syndrome, and

atherosclerosis. Necroptosis is also implicated in cancer, with

reports of its involvement in oncogenesis, adaptive immunity,

cancer subtype, progression, andmetastasis. Evidence from several

studies supports the protective role of necroptosis against tumor

development (Seifert et al., 2016; Strilic et al., 2016).

Gastric cancer is a fatal disease with poor overall survival

statistics worldwide. Several factors (including low rates of early

diagnosis, high intratumor heterogeneity, and drug resistance)

contribute to the poor survival outcomes of GC patients

(Johnston and Beckman, 2019; Thrift and El-Serag, 2020). The

majority of patients present with distant metastasis at the time of

diagnosis and therefore undergo chemotherapy. However, due to

dose-limiting toxicity and limited responses, patients commonly

experience disease progression following chemotherapy. The

development of targeted therapy for advanced gastric cancer

focuses on two aspects: HER-2 and antiangiogenesis. Targeted

therapy forHER-2 as a first-line treatment is reported to improve

survival in GC patients with positive HER-2 expression (Sawaki

et al., 2012). Ramucirumab, an antagonist of vascular endothelial

growth factor receptor 2 (VEGFR2), has been shown to inhibit

ligand-induced VEGFR2 activation, thereby suppressing ligand-

induced proliferation and migration of human endothelial cells.

Ramucirumab has been approved as a second-line treatment for

gastric cancer and gastroesophageal junction carcinoma (Wilke

et al., 2014). Although several new drugs have been identified, the

availability of appropriate targeted therapy remains limited to a

small number of GC patients. The advent of immunotherapy offers

new options, and promising survival outcomes have been obtained

for some patients receiving immunotherapy combined with

chemotherapy according to PD-L1 expression or MSI status. In

clinical practice, the identification of patient subgroups that could

potentially benefit from immunotherapy is critical for improving

outcomes. The field of gastric cancer therapy thus faces great

opportunities and challenges (Zhao et al., 2019; Xie et al., 2021).

This study investigated the genetic features and transcriptional

alterations in necroptosis-related genes in GC. Previous studies

have indicated that cancer cells eradicate necroptosis by

downregulating NRGs to evade necroptosis-induced cell death

mainly involving RIP1, RIP3, and MLKL. In GC, the majority of

NRGs were expressed at higher levels in tumor than normal

samples. An earlier report demonstrated the downregulation of

MLKL, a key regulator of the necroptosis axis, in PDAC, which

was associated with lower OS (Colbert et al., 2013). Our

experiments showed higher expression of MLKL in GC than in

normal samples. Moreover, lower expression was associated with

better survival outcomes, suggesting that MLKL has a promising

prognostic ability. However, expression patterns of NRGs may

differ among tumor types. Based on NRG expression, GC samples

were divided into two cluster subtypes (A and B). While

differences in OS were not significant between the two groups,

we observed an extension of median survival time in group A.

Function of enrichment analysis revealed enrichment of several

immune activation-related signals in cluster B, including B cell

receptor signaling, T cell receptor signaling, NK cell-mediated

cytotoxicity, and JAK-STAT signaling, supporting potential

correlation of necroptosis-related cancer subtypes with the

tumor immune microenvironment. These findings provide

novel insights and directions for future research. We further

identified 1239 necroptosis-related DEGs between subtypes A

and B, among which 606 were proven to be associated with OS

in GC patients. According to the 606 prognostic DEGs, patients

were further divided into three necroptosis gene clusters (gene

subtype_A, gene subtype_B, and gene subtype_C). The gene

cluster system was highly associated with OS of GC patients

and most NRGs were differentially expressed among the three

gene clusters. The collective results support the potential of NRGs

as prognostic and immunotherapeutic biomarkers.

Next, we constructed and validated a useful prognostic model

based on NRG risk score. NRG risk scores between the two

cluster systems were additionally examined, revealing that

survival was not significantly different between clusters A and

B but differed among the three gene clusters. Based on NRG risk

score, patients were eventually classified into high- and low-risk

groups. Patients in the low-risk group had significantly better OS

than those in the high-risk group. We subsequently explored the

tumor immune microenvironment between the high- and low-

risk groups. Several human immune cells were correlated with NRG

risk score, including resting CD4 memory cells, resting mast cells,

activated mast cells, M2macrophages, CD8+T cells, follicular helper

T cells, and activated memory CD4+T cells, plasma cells, and

memory B cells. Marked differences in the immune score,

stromal score, MSI status, TMB score, CSC index, HLA gene

expression, and immune checkpoint expression levels were

recorded between high- and low-risk groups. Drug susceptibility

analysis may be used in clinical practice to select potentially effective

drugs for GC based on necroptosis gene expression. Here, the first

prognostic nomogram based on necroptosis in GC patients was

constructed and its predictive ability assessed.

Current treatments for gastric cancer include resection of the

tumor via gastroscopy or surgery, chemotherapy, targeted therapy,

and radiotherapy. Despite considerable progress in the

development of treatment strategies for gastric cancer,

therapeutic outcomes remain unsatisfactory. Immunotherapy

has been documented as an effective strategy for various tumor

types, including gastric cancer, due to its precise effects on the

tumor microenvironment and persistent response. While

immunotherapy offers new hope, many patients do not benefit

from this mode of treatment, mainly due to tumor heterogeneity

and complex tumor immune microenvironments, which should

be a focus of further research. The TIME is extremely complex and

includes surrounding blood vessels, immune cells, fibroblasts,
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bone marrow-derived inflammatory cells, various signaling

molecules, and an extracellular matrix (Pitt et al., 2016; Cassim

and Pouyssegur, 2019). The tumor microenvironment has been

shown to play an important role in malignant progression,

immune escape, and immunotherapy resistance by altering the

ratio of immunosuppressive and cytotoxic responses in the vicinity

of the tumor. Rather than forming apoptotic bodies during cell

apoptosis, necroptosis is accompanied by rupture of the cell

membrane and release of tumor neoantigens, which can trigger

strong inflammatory and anti-tumor immune responses (Gong

et al., 2019). Based on the necroptosis risk_score in this study, we

showed that TIME and the majority of key immune cells were

significantly different between high- and low-risk groups.

T cells, which are essential immune cells, play critical roles in

antigen recognition, presentation, and tumor cell killing in

gastric cancer (Thommen and Schumacher, 2018; Choi et al.,

2020). In our experiments, CD8+ and activated memory CD4+

T cells were negatively correlated with NRG risk score, indicating

a critical role of necroptosis in the anti-tumor immune response

of gastric cancer. Limited research to date has focused on the

anti-tumor role of B cells. Recent accumulating evidence suggests

that B cells may serve as an important prognostic factor. B cells

are active participants that fundamentally coordinate the

immune response and resistance to tumors under certain

conditions, mainly by generating tumor-specific antibodies.

However, specific B cell subsets and antibody specificity can

also inhibit anti-tumor immunity and promote tumor growth

(Sharonov et al., 2020). Infiltrating B lymphocytes are important

components of tertiary lymphoid structures (TLS) in tumor

tissues. TLSs are ectopic lymphoid organs formed in non-

lymphoid tissues during chronic inflammation and tumor

growth that is composed of T, B, follicular dendritic, DC-

LAMP+ dendritic, and other cells. In multiple tumor types,

B cell infiltration and TLS formation are positively correlated

with patient response to immunotherapy, highlighting the

critical role of B cells and TLSs in anti-tumor immunity and

providing a basis for new theories and strategies of tumor

immunotherapy (Sautès-Fridman et al., 2019; Helmink et al.,

2020). Interestingly, in the current study, the level of infiltrating

memory B cells was significantly negatively correlated with NRG

risk score, indicating that necroptosis also participates in B cell

anti-tumor processes. This result is consistent with our finding

that necroptosis is correlated with B cell receptor signaling. To

our knowledge, this is the first report to document the

involvement of necroptosis in B cell anti-tumor processes.

Tumor-associated macrophages (TAMs), the major

component of myeloid cells in tumors, constitute two major

phenotypes: M1 (inhibiting cancer progression) and M2

(promoting cancer progression) (Pan et al., 2020). TAMs exert

both pro-tumor and anti-tumor effects and may therefore serve as

attractive potential targets for tumor therapy. Zhao and co-

workers reported that TAMs isolated from gastric cancer

tissues predominantly display an M2 phenotype (Li et al., 2019)

and gastric cancer-derived mesenchymal stromal cells promote

metastasis and epithelial-mesenchymal transition (EMT) by

triggering M2 TAM polarization through the IL-6/IL-8-JAK2-

STAT3 signaling pathway.Moreover, blockage ofM2 TAMs could

reactivate CD8+ T cells against immunosuppressive tumors

(Viitala et al., 2019) and infiltrating levels of M2 TAMs in

gastric cancer were associated with the 5-year survival rate

(Junttila et al., 2020). Here, we observed increasing infiltration

of M2 TAMs in the high necroptosis risk_score group, suggesting

that necroptosis may participate in the antitumor immune

response via regulation of macrophages. However, further

research is warranted to establish precise molecular mechanisms.

Immunotherapy has become an indispensable element of

gastric cancer treatment. ICIs are an important aspect of

immunotherapy, including anti-PD1 and anti-CTLA4

antibodies, which have continuously improved the survival of

gastric cancer patients and progressed from back-line to front-line

status in clinical practice. Several researchers have focused on the

selection of effective immunotherapy biomarkers to date. MSI-H/

dMMR is generally recognized as a good predictive biomarker in

gastrointestinal tumors. In previous studies, MSI-H accounted for

19.09% of GC cases in a TCGA cohort and 5.75% cases in a

Chinese cohort, which were higher relative to the proportion of

MSI-H in other solid tumor types (Bonneville et al., 2017; Zang

et al., 2019). Previous KEYNOTE-061 and KEYNOTE-062 clinical

trials reported higher OS, progression-free survival (PFS), and

objective response rate (ORR) with anti-PD1 therapy than

chemotherapy for MSI-H gastric cancer patients (Shitara et al.,

2018; Shitara et al., 2020). In the present investigation, MSI-H

patients accounted for a higher percentage of the low-risk than

high-risk group and the median risk_score of MSI-H was

markedly lower than that of MSI-L/MSS groups. The majority

of immune checkpoint genes were differentially expressed between

the high- and low-risk necroptosis groups, including PD-1, PD-L1,

CTLA4, and LAG3, confirming the value of exploring necroptosis

in new immunotherapy approaches targeting other checkpoints.

The tumor cell-killing function of immune cells is known to

depend on efficient antigen presentation by human leukocyte

antigen (HLA) molecules. Accumulating evidence suggests that

HLA serves as a useful predictor of the efficacy of immunotherapy

and HLA typing before treatment is an informative step for

therapy (Chowell et al., 2018). In our experiments, HLA-DRB5

displayed distinct expression patterns among different necroptosis

risk groups, supporting its potential utility in predicting response

to ICB and designing neoantigen-based therapeutic vaccines in the

future. We conclude that high necroptosis risk_score is correlated

with low MSI-H percentage, low expression of immune

checkpoints, low TMB score, and effector immune cells in GC.

Precision therapy relies on accurate typing and a comprehensive

understanding of the underlying mechanisms. Given the finding

that necroptosis is a biological process with a relatively central role

in the development of gastric cancer as well as regulation of TIME,

exploration of the efficacy of targeted necroptosis therapy alone or
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in combination with immunotherapy should be a focus of future

studies.

Wang and Liu, (2021) have identified a prognostic signature

based on necroptosis hub genes in GC and uncovered a lncRNA-

miRNA regulatory axis related to necroptosis, but they did not

assess the TIME and immunotherapy response in GC patients. In

this study, we conducted a comprehensive investigation of the

immune microenvironment in GC for the first time. However,

our study had several limitations that should be taken into

consideration. Data was collected from public databases and

required verification in clinical samples. This was a retrospective

study design, which may have led to selection bias in variables

and samples, and patient sample volumes were limited.

Prognostic necroptosis genes combined with clinical validation

in the patients of GC prospective cohort is needed to prove its

efficacy. Finally, immunotherapy response was predicted according

to public database website and a urothelial carcinoma cohort

(Imvigor210) or melanoma cohort (GSE78220), and GC cohorts

treated by immunotherapy in future research is needed.

In conclusion, we have identified an efficacious prognostic

model based on necroptosis-related genes in GC and

comprehensively analyzed the relationship between necroptosis

and tumor immunity-associated factors. Our results provide a

promising way for exploring novel and innovative targeted and

immunotherapy approaches for GC patients. In the future, we aim

to examine the predictive value of necroptosis risk_score in

immunotherapy for gastric cancer in clinical practice and further

evaluate the molecular pathways by which necroptosis influences

the immune microenvironment.
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