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Regulation of flowering is a crucial event in the evolutionary history of

angiosperms. The production of flowers is regulated through the integration

of different environmental and endogenous stimuli, many of which involve the

activation of different genes in a hierarchical and complex signaling network.

The FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1) gene family is

known to regulate important aspects of flowering in plants. To better

understand the pivotal events that changed FT and TFL1 functions during

the evolution of angiosperms, we reconstructed the ancestral sequences of

FT/TFL1-like genes and predicted protein structures through in silico modeling

to identify determinant sites that evolved in both proteins and allowed the

adaptative diversification in the flowering phenology and developmental

processes. In addition, we demonstrate that the occurrence of destabilizing

mutations in residues located at the phosphatidylcholine binding sites of FT

structure are under positive selection, and some residues of 4th exon are under

negative selection, which is compensated by the occurrence of stabilizing

mutations in key regions and the P-loop to maintain the overall protein

stability. Our results shed light on the evolutionary history of key genes

involved in the diversification of angiosperms.
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Article highlights

• FT and TFL1 have mostly been evolving under purifying

selection as evidenced by substitutions in the third position

of the codons that encode key residues involved with FT/

TFL1 function do not alter the encoded amino acids.

• Residues from the P-loop domain of the analyzed FT

structures show predominantly high destabilizing

mutations which is consistent with constant selective

pressure found for this region.

• Protein conformation more than sequence appears to be

under strong selective pressure in that amino acid

substitutions that would have resulted in structural

changes in over evolutionary time show matching and

stabilizing mutations.

• The appearance of destabilizing mutations in residues of

phosphatidylcholine binding sites are under negative

selection, while some residues of the 4th exon are under

positive selection, these structural changes are

compensated by the occurrence of stabilizing mutations

in key regions to maintain the overall stability of the

protein.

• The presence of destabilizing mutations and negative

selective pressures in residues located at the

phosphatidylcholine binding site involved with H-bond

formation indicate their structural role in maintaining the

overall stability of FT structure.

Introduction

Flowering is a major event in the angiosperms life cycle

because it allows sexual reproduction (Jin et al., 2020). The

production of reproductive meristems and flower organs is

regulated through the integration of environmental and

endogenous stimulus (Ahn et al., 2006a; Pin and Nilsson,

2012) involving the activation of different genes and a

complex and hierarchical signaling network. The

FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1

(TFL1) gene family are known to regulate important aspects

of growth and flowering in plants (Pin and Nilsson, 2012; Jin

et al., 2020). FT proteins are key regulators activated by the

transcription factor CONSTANS (CO) and are involved with the

control of multiple flowering pathways in angiosperms

(Kobayashi et al., 1999; Kim et al., 2008; Ogiso-Tanaka et al.,

2013; Fan et al., 2020). When activated, the FT interacts with the

FD, a basic leucine zipper domain transcription factor (bZIP),

and induces the expression of APETALA1 (AP1) and

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

(SOC1) genes, leading to flower development (Wigge, 2005;

Collani et al., 2019; Zhu et al., 2020). Contrasting FT activity,

TFL1 proteins are known to repress flowering by inhibiting the

expression of key flowering pathway genes (Kardailsky et al.,

1999; Lifschitz et al., 2006). Besides flowering regulation, FT/

TFL1-like proteins have also been identified as regulatory factors

in a wide range of developmental processes in plants that

includes seed germination (Xi et al., 2010), stomatal opening

(Kinoshita et al., 2011), response to extended cold winter

temperatures (Pin et al., 2010), control of the lateral shoot

development (Hiraoka et al., 2013), and formation of storage

organs (Navarro et al., 2011).

FT and TFL1 proteins are homologs to

phosphatidylethanolamine-binding proteins (PEBPs) which

are all involved in the signaling pathways that control

differentiation of stem apical meristem (Bernier and Périlleux,

2005a; Liu et al., 2016). Genes reported belonging to PEBPs

superfamily include CENTRORADIALIS (CEN) (Banfield and

Brady, 2000), TWIN SISTER OF FT (TSF) (Yamaguchi et al.,

2005a), BROTHER OF FT AND TFL1 (BFT) (Yoo et al., 2010),

and MOTHER OF FT AND TFL1 (MFT) (Yu et al., 2019), and

others (Bernier and Périlleux, 2005b). Regarding the evolution of

these genetic regulators, phylogenetic analyses revealed that these

PEBPs-like genes are grouped in three main clades: FT-like,

TFL1-like, and MFT-like genes (Chardon and Damerval, 2005;

Carmona et al., 2007; Zheng et al., 2016). Similarly,

gymnosperms possess two groups: MFT-like and a group that

occupies an intermediate position between the FT- and TFL1-like

(FT/TFL1-like) genes (Karlgren et al., 2011a). Recently studies

have demonstrated that FT/TFL1-like sequences were present in

gymnosperms lineages in duplicates, which could have occurred

even prior to the emergence of seed plants (Liu et al., 2016).

Genomic analyses revealed that gene duplications played an

important role in the diversification of gene function in

angiosperms, which were essential for adaptative evolution

(Soltis et al., 2015). Different studies have reported that MFT

genes are ancestral to FT and TFL1, and the origin of these

orthologue genes is related to the occurrence of duplication

events in the evolutionary history of angiosperms (Hedman

et al., 2009; Karlgren et al., 2011a;Wickland and Hanzawa, 2015).

The FT and TFL1 of Arabidopsis thaliana exhibit conserved

structures (Ahn et al., 2006a; Pin and Nilsson, 2012) with small

tractable changes differentiating them. Studies have

demonstrated that mutations in four key residues, Glu109,

Trp138, Gln140, and Asn152 could transform the activator

function of FT into the suppressor activity of TFL1 (Hanzawa

et al., 2005; Ho and Weigel, 2014). In addition, an external loop

region of 14 residues in FT named the P-loop (A. thaliana

position 139–152), confers an antagonistic activity to the floral

regulators (Ahn et al., 2006a; Pin and Nilsson, 2012). To better

understand the pivotal events that changed FT and

TFL1 functions during the evolution of flowering plants and

the structural role of residue sites in both proteins throughout the

diversification of angiosperms, we reconstructed ancestral

sequences of the FT/TFL1 genes, predicted the corresponding

protein structures and performed structural mutational analyzes

utilizing the genetic model of A. thaliana. Our results shed light
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on the role of natural selection in the adaptive evolution of

flowering proteins in angiosperms and can help in the

improvement of crops with economic interest and for the

flower and fruit industries.

Materials and methods

Phylogenetic analysis and ancestral
sequence inference

First, we performed a sequence alignment search to find FT/

TFL1-like homologs (Supplementary Information S1) using as a

start point the coding DNA sequences (CDSs) of FT and TFL1

from Arabidopsis thaliana (GeneBank accession codes: FT:

NM_105222.3; TFL1: NM_120465.3). The similarity sequence

search was performed through the BLASTn tool using the

GenBank database (Benson et al., 2017). Sequences with the

highest identities, percent similar identities above 82%, were

included in further analysis. In addition, sequences from

different species were included in our analysis based on

previous findings (Ahn et al., 2006b; Ho and Weigel, 2014).

To infer gene phylogenetic trees, we used a total of

103 coding sequences of FT (100 sequences from

angiosperms, belonging to monocots, eudicots, asterids, and

brassicales groups; and 3 sequences from gymnosperms); and

82 sequences of TFL1 (78 sequences from angiosperms belonging

to monocots and eudicots; and 4 sequences from gymnosperms).

In both phylogenetic inferences, gymnosperm sequences of FT

and TFL1 were used as outgroups (Supplementary Information

S1). Multiple sequence alignments were performed in MUSCLE

(Edgar, 2004) as implemented in MEGA 7 (Kumar et al., 2016).

These alignments were further manually checked and edited,

mainly to maintain reading frames. The jModel Test 2 program

was used to select the nucleotide model with the best Bayesian

information criterion (BIC) score (Darriba et al., 2012). We used

MEGA7 (Kumar et al., 2016) for ancestral sequence

reconstruction (ASR) using the Maximum Likelihood method

to estimate the ancestral state of each node in a phylogeny where

the state is chosen to be the one that maximizes the probability of

the sequence data based on the selected evolutionary model of

nucleotide or amino acid substitutions. Bayesian phylogenetic

inference was executed in BEAST version 1.8.4 (Drummond

et al., 2012). A relaxed clock with an uncorrelated lognormal

model of rate variation was used and the Yule speciation process

for branching rates was selected. Seventeen fossil-based times to

the most recent common ancestor (mrca) calibrations were used

based on published data. Calibration dates and associated

citations can be found in Supplementary Information S2. A

CTMC rate prior was selected and no monophyletic prior

assignment was made. Markov chain Monte Carlo simulations

were run for 5 × 107 generations and sampled every 1 × 103. These

analyses were performed in CIPRES Science Gateway server v3.3

(Miller et al., 2010). To analyze the continuous parameter values

sampled from the Bayesian chains, we assessed the convergence

of the models across independent runs by analyzing plots of the

marginal later distributions in Tracer (version 1.7.1) (Rambaut

et al., 2018). To ensure high effective sample size (ESS) values, we

considered a value above or equal to 200 (ESS ≥200). Tracer was
also used to assess burn-in levels and a maximum clade-

credibility tree was obtained from the later sample of trees

using TreeAnnotator v. 1.7.1 (Drummond et al., 2012).

In silico prediction of FT and
TFL1 structures

Putative structures of FT/TFL1 proteins were generated

through comparative modeling in Modeller program version

9.19 (Fiser and Šali, 2003), which uses the satisfaction of the

spatial restraints method. The crystallographic structures of FT

(PDB code: 1WKP, chain A; resolution: 2.6Å) and TFL1 (PDB

code: 1WKO, chain A; resolution: 2.6Å) from A. thaliana were

used as templates. To predict structures, we performed a pairwise

sequence alignment using the BLOSUM62 (20 × 20) matrix. The

models of both proteins were optimized at the atomic level using the

random parameter in the range [0.400] and resistance [0,20] e in the

ModRefiner program (Xu and Zhang, 2011) and then, minimized by

1,000 cycles of conjugated gradient and 1,000 cycles of steepest-descent

algorithms in the Amber16 package (Salomon-Ferrer et al., 2013). The

modeled protein structures were validated by the stereochemical quality

using the Ramachandran plot obtained in Procheck program version

3.5.4 (Laskowski et al., 1993) and the energetic profile obtained by the

Qmean plot (Benkert et al., 2009), both using default parameters.

Moreover, structural alignment and RMSD-Cα values were used to

evaluate the conservation of the modeled FT and TFL1 structures with

the selected templates. Finally, to analyze the surface potentials of the FT

and TFL1 regions involved in their molecular activity, we obtained the

Poisson-Boltzmann electrostatic potential map using the PDB2PQR

server (Dolinsky et al., 2004) using the parameters of the Amber

forcefield.

Molecular dynamics simulation

To analyze structural changes in FT and TFL1, molecular

dynamics (MD) simulations were performed in the

Amber16 package (Case et al., 2005). The all-atom

forcefield Amberff14SB was used to parameterize the

protein structures. The proteins were solvated in a

truncated octahedral water-box with the explicit solvation

model TIP3P (Jorgensen et al., 1996). We used a distance

of 10 Å between the cell wall and the solvated atoms of the

system, and a distance of 0.8 Å between water molecules and

the solute. Counter-ions Cl− were also added to neutralize the

analyzed systems. Initially, all hydrogen atoms of the system
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were minimized for 3,000 cycles of the steepest

-descent (Wiberg, 1965) and 3,000 cycles of the conjugate

gradient algorithm (Hestenes and Stiefel, 1952). Water and

ions were minimized for 2,000 cycles of the steepest-descent

and 3,000 cycles of the conjugate gradient. Then, the whole system

was minimized using 2,000 cycles of the steepest descent and

3,000 cycles of the conjugate gradient; and we performed seven

repetitions, with progressive relaxing of restraints. After completion

of minimization, the system was gradually heated to increase the

temperature to 300 K during 4.25 ns of equilibration. Then, the MD

was performed with the isobaric-isothermal ensemble with a total

time of 20 ns. The temperature was maintained using the Langevin

thermostat and the SHAKE algorithm was applied to all hydrogens

of the system, which allowed us to use integration cycles of 2.0 fs and

the constant isotropic pressure was maintained at 1 bar by using the

Berendsen barostat. A cutoff of 10 Å was used for the minimum

image convention. The values of the RMSD and RMSF, based on the

heavy atoms of the protein backbone were used to determine the

conformational changes over the MD simulations.

Mutational analysis of protein structures

To analyze the effects of mutations in the coding sequences

on the structural analysis of the proteins, alanine scanning was

performed using the FoldX program (Guerois et al., 2002). FoldX

uses a linear combination of different empirical terms to calculate

free energy (ΔG). Empirical terms include Coulomb terms for

electrostatic interactions, van der Waals terms, hydrophobic and

solvation forces, hydrogen bonds, and so on. The results of

mutational analyses (ΔΔGfold) are expressed by the difference

between the free energy of the wild-type (ΔGwt) and the mutant

(ΔGmut) structures (kcal.mol−1) according to Eq. 1:

ΔΔGfold � ΔGfold,wt − ΔGfold,mut (1)

Where ΔGfold,wt is the free energy variation of wild-type structure

and ΔGfold,mut is the variation of the mutant structure. If ΔΔG <
0, the mutation was considered stabilizing, and if ΔΔG>0, the
mutation was considered structurally destabilizing (Morrison &

Weiss, 2001). The mutations were classified in five different

categories, depending on the implications to the stability of

protein structure: highly stabilizing (ΔΔG < −1.84 kcal mol−1);

slightly stabilizing (−1.84 kcal mol−1 ≤ ΔΔG < −0.46 kcal mol−1);

neutral (−0.46 kcal mol−1 < ΔΔG ≤ +0.46 kcal mol−1); slightly

destabilizing (+0.46 kcal mol−1 < ΔΔG ≤ +1.84 kcal mol−1);

highly destabilizing (ΔΔG > +1.84 kcal mol−1).

Calculations of dN/dS rates

To identify residues under natural selection, i.e., neutral,

positive, or negative selections, we calculated the non-

synonymous mutation (dN) and the synonymous mutation

(dS) rates using the clade and codon models available in the

EasyCodeML program (Gao et al., 2019), which implements the

clade and codon-based models of CodeML. The clade model was

based in the model C (CmC) to estimate a separate ω ratio for each

clade, and it was compared against a null model 2a_rel (M2a_rel),

in which ω is fixed among the analyzed clades (Anisimova and

Kosiol, 2007; Weadick and Chang, 2012). FT’s ω values were

obtained for the most recent common ancestor of five major

clades: angiosperms, monocots, eudicots, asterids, and

brassicales TFL1’s ω values were obtained for angiosperms,

monocots, eudicots, brassicales, and non-brassicales. The ω
values were validated by likelihood scores.

Results and discussion

Our results shed a light on the evolutionary history and

structural importance of FT/TFL1-like genes. Using fossil

records, we calibrated our phylogenetic trees, providing more

accurate indications of the divergence of both genes during the

evolution of angiosperms. We inferred the ancestral sequences

and predicted ancestral structures of FT and TFL1 for the major

clades of flowering plants. Our results allow us to identify the

structural changes of proteins crucial to the flowering process

throughout the evolutionary history of angiosperms, such as the

electrostatic potential map of the phosphatidylcholine site, as

well as, the structural implications of mutations at key residues

involved with the molecular function of both FT and

TFL1 proteins.

Reconstruction of evolutionary history of
FT and TFL1 in angiosperms

In the present study, when species presented two or more

copies for the same gene (interspecies paralogs) within the FT

group or in TFL1, we used both copies in our analyses as previous

studies highlighted the impact of ignoring paralogs in generating

bias in the prediction of protein function (Stamboulian et al.,

2020). TIM2ef + I + G was selected as the most appropriate

evolutionary model for the FT and TFL1 sequences. Using a

Bayesian relaxed-clock approach, we estimated the phylogeny

and the divergence time for FT and TFL1 genes. Our

phylogenetic analyses revealed that natural selection acted

differently for both genes, thus they did not show the same

evolutionary divergence found in angiosperms (Flagel and

Wendel, 2009). These results corroborate previous

phylogenetic trees obtained for both genes (Wang et al., 2017).

Our phylogenetic hypothesis for gene evolution

demonstrates that FT-like genes diverged ca. 181 million years

ago and TFL1-like genes ca. 163 million years ago. Within the

angiosperm clade, the FT-like genes diversified approximately

134 million years ago (Figure 1) and the TFL1-like genes around
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131 million years ago (Figure 2). (Klintenäs et al., 2012a)

suggested that FT is found exclusively in flowering plants.

Here, we used the FT and TFL1 genes from gymnosperms

solely to root the phylogenetic tree. The choice of different

species was due to the absence of sequences of both genes

from the same species available in public databases. However,

it has been evidenced in previous studies that gymnosperms carry

one or two copies of the FT/TFL1 genes, that represent a clade

that is sibling or ancestor of the FT/TFL1 genes found in

angiosperms (Karlgren et al., 2011a; Klintenäs et al., 2012a).

FIGURE 1
Bayesian phylogeny of angiosperm FT sequences. The major branches are indicated by posterior probability. Molecular dating and the dN/dS
ratios represented by the ω value are observed in the major clades. Colors indicate the clades, red = brassicales, purple = asterids, green = eudicots,
blue = monocots, orange = Magnoliidae, brown = external group. The brassicales, asterids, and eudicots clades (red, purple, and green) form the
ancestor of eudicots.
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In the angiosperm clade, we recovered four monophyletic

groups of FT-like sequences: monocots (posterior probability =

0.93), eudicots (0.90), asterids (0.66), and brassicales (1.0).

Regarding the TFL1 sequences, we also recovered distinct

clades for the monocots (1.0), eudicots (0.95), brassicales

(1.0), and an unresolved group which we named non-

brassicales (0.97) (Figure 1). The estimated time of

evolutionary divergence of FT-like sequences is approximately

105 million years ago for monocots, 128 for eudicots, 109 for

asterids, and 86 for brassicales. Divergence time for TFL1

sequences was relatively similar, if not slightly earlier.

Monocot TFL1 diverged approximately 107, eudicots 106,

brassicales 80, and the non-brassicales group 77 million years

ago (Figure 2). It is important to note that a previous study used

genetic distances to analyze the divergences of both genes and the

authors reported the presence of FT-like genes in gymnosperms

(Liu et al., 2016). In contrast, our study used fossil records to

estimate the divergences between the main groups of FT and

TFL1 genes, which may contribute to more accurate findings

regarding the divergence of these genes in plant evolution.

FIGURE 2
Bayesian phylogeny of angiosperm TFL1 sequences. Themajor branches are indicated by posterior probability. Molecular dating and the dN/dS
ratios represented by the ω value are observed in the major clades. Colors indicate the clades, red = brassicales, green = non-brassicales, blue =
monocots, brown = outgroup. The brassicales and non-brassicales clades (red and green) form the ancestor of eudicots.
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Herein, we showed that both FT and TFL1 genes had similar

divergence times.

We conjecture that differences between the phylogenetic

trees of FT/TFL1-like genes and the well-known angiosperm

phylogeny could be caused by divergent evolution related to the

pleiotropic effects exercised by the FT/TFL1-like genes in

angiosperms, which influence a wide range of developmental

stages of plants, such as flowering, seed storage, and stomatal

opening (Yamaguchi et al., 2005b; Lifschitz et al., 2006; Xi et al.,

2010; Pin and Nilsson, 2012). Pleiotropy has a functional

diversity regulating different phenotypic characteristics, thus

influencing the natural selection pressures leading to the

appearance or elimination of new characteristics (Auge et al.,

2019).

We also noted that the sequence ofAquilegia sp. Remained in

the Asterids clade and this result could be related due to the

coalescence evolution of this gene in relation to the taxonomic

group (Gatesy et al., 2019). Furthermore, it is important to

highlight that the phylogenetic relationships of the FT and

TFL1 genes from angiosperms and the basal group of

angiosperms have been well reported in previous studies

(Karlgren et al., 2011b; Klintenäs et al., 2012a). These studies

have demonstrated that the FT and TFL1 genes from these

groups do not imply the formation of independent clades

which is similar to our reported phylogenetic results. In

addition, our phylogenetic analysis shows the formation of

well-supported clades for the main monophyletic groups of

angiosperms, thus indicating that the natural selection acts to

preserve the FT/TFL1 functions in each clade during the

evolutionary divergence of these genes. Indeed, a prior study

of dN/dS rates in duplicated FT/TFL1-like genes showed that

they suffer negative pressures (Mackenzie et al., 2019a).

Inference of the Ancestral Sequences of
FT and TFL1

Based on the phylogenetic trees, we selected five ancestral FT-

and TFL1-like sequences, which are representative of five clades

with satisfactory posterior support: monocots, eudicots, asterids

(FT), brassicales, and non-brassicales (TFL1). The ancestral

sequence reconstruction used here, refers to the reconstruction

of the ancestral state of each node in a phylogenetic tree. The state

is chosen to maximize the probability of the sequence data given

under the nucleotide evolution likelihood probability model. The

result obtained is a consensus nucleotide sequence used as input

for molecular modeling and in the natural selection analysis

software. Moreover, we analyzed the current representatives of

protein structures (FT and TFL1) in A. thaliana (reference

structure).

Structurally, FT shows seven β-strands and four α-helices,
except the ancestral structure of the asterids clade that exhibits

three α-helices and six β-strands, FT structure from ancestral

angiosperms shows four α-helices and nine β-strands (Figure 3,
panel A and C). In contrast, the TFL1 structures contain

predominantly three α-helices and seven β-strands
(Figures 3B–F).

Studies have demonstrated that a short loop segment located

between the residues 128 to 145 (P-loop domain) is well

conserved across plant families and is the major determinant

of FT activity (Pin et al., 2010; Pin and Nilsson, 2012). Our

reconstruction of ancestral angiosperm FT found both the highly

conserved P-loop domain (ancestral sequences: Leu127 to

Asn142; A. thaliana: Leu131 to Asn146) as well as the key

residues Tyr85 and Gln140 (Figure 4, panel A). In contrast,

the homolog region of P-loop from TFL1 ancestral sequences is

less conserved showing more substitutions through the

evolutionary history of angiosperms, which suggests the non-

functionality of these regions in flowering repression (Figure 4B).

However, the key-residue His88 was found to be conserved in all

analyzed ancestral sequences of angiosperms.

A previous study demonstrated that the flowering time in

sugar beet (Beta vulgaris ssp. Vulgaris; Eudicots clade) is

controlled by the combined activity of two paralogs, which

have an antagonistic function: BvFT1 and BvFT2 (Pin et al.,

2010). The P-loop domain of BvFT1 and BvFT2 show

substitutions in the residues Tyr134Asn and Trp138Gln (B.

vulgaris spp. Vulgaris numbering), which are involved in

flowering repression (Pin and Nilsson, 2012). In the present

study, we noted a new residue position for the analyzed ancestral

sequences of the P-loop domain when compared with the A.

thaliana sequence. Within TFL1, the residues Pro134 and

Arg138 found in A. thaliana remained conserved in the

analyzed ancestral sequences and a substitution in the

homolog region of the P-loop domain was found at

Pro134Asn in the ancestral sequence of monocots. A possible

explanation for this change occurring only in monocots is based

on the findings by (Ospina-Zapata et al., 2020) in which

monocots show greater recruitment of homologous copies of

FT that play a role in repressing flowering, as it is attributed to

TFL1. In contrast, the TFL1-like sequences are kept in a few

copies, and in some species, they can be lost or maintained with

neutral mutations (see section mutational analysis) to allow

mutations like the ones presented here. Analysis of the

transcriptome of different species of monocots combined with

mutagenesis approaches may provide better evidence.

Ho and Weigel (2014) identified that the position of the

residue 134 and 138 in the FT structure of A. thaliana are located

at the external P-loop domain and easily accessible to the surface

of the phosphatidylcholine (PC) binding site, thus indicating

interaction with other molecules (Ho and Weigel, 2014). It is

therefore expected that purifying selection acts to conserve this

structure over evolutionary time. Analyzing the nucleotide

frequency that encodes the key residues for FT/TLF1 function,

as well as the C-terminal region of both proteins, we observed

that substitution in the third position of codons that encode key
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residues of FT (Tyr85 and Gln140) and TFL1 (His88 and

Asp144) involved with molecular function does not alter the

encoded amino acids (Supplementary Information S3). This is in

accordance with the dN/dS rates found for this region and

indicates the existence of purifying selection on these codon

sites for both genes. We observed negative selection for the

homologous P-loop region of the TFL1 domain, even though

variations in the frequency of some codons were observed

(Figure 4B).

Modeled structures of ancestral FT and
TFL1 and A. thaliana

The modeled structures of the FT/TFL1 proteins

exhibited >90% of residues in favorable regions of

Ramachandran plot (sum of residues in most favorable and

permitted regions, Supplementary Information S4, S5), and a

satisfactory energetic profile as exhibited by the local quality

estimation of Qmean (Supplementary Information S6, S7), which

indicate reliable structures. We performed a short MD

simulation to reach the final conformation of the modeled

proteins structures. This computational procedure was

necessary to correct some stereochemical inconsistences

obtained from the comparative modeling of the FT and

TFL1 structures. In addition, the RMSD plots obtained over

the MD simulation showed that modeled structures reached a

stable conformation after 18ns (Supplementary Information S8).

Previous studies have demonstrated that the segment C

located at the C-terminal region of FT/TFL1 structures is

crucial for the molecular function of both proteins (Ahn et al.,

2006a; Hedman et al., 2009). Based on this assumption, we

performed a comparison using the structural alignment of the

C-terminal region of the ancestors of FT and TFL1 following the

divergence time of the phylogenies (Figures 1, 2). We observed

that the ancestral protein of FT in eudicots, which was the first

ancestral state to diverge from the main groups of flowering

plants, showed high conservation regarding the segment C when

compared with its ancestor in angiosperms (Table 1). The

ancestor of monocots showed a slightly more divergent

RMSD-Cα value between the analyzed FT structures. The FT

protein of asterids is an ancestor that evolved within the lineage

FIGURE 3
Protein secondary and tertiary structures of FT and TFL1 (A) Secondary structures of inferred ancestral and A. thaliana FT. (B) Secondary
structures of ancestral and A. thaliana TFL1 (C) Tertiary structure of the inferred ancestral of angiosperm clade FT. (D) Tertiary structure of A. thaliana
FT (E) Tertiary structure of A. thaliana TFL1. (F) Tertiary structure of the inferred ancestral of angiosperm clade TFL1.
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of eudicots and it also showed high conservation for the same

segment. In contrast to eudicots ancestral structure, the

brassicales structure, showed a higher RMSDs-Cα value when

aligned a eudicots. Finally, the analysis of the FT structure of A.

thaliana, revealed that the segment C evolved experiencing few

mutations which could explain its conserved function over time.

FIGURE 4
The 4th exon that encodes the P-loop domain in FT structure is well-conserved over the evolutionary history of angiosperms. Schematic
overview of ancestral codon sequences of the 4th exon showing the conserved regions of FT (A) and TFL1 (B). The height of each nucleotide within
the pictogram indicates their relative frequency in the analyzed position. It is important to note that the numbering of the residues from the P-loop is
different in the angiosperm sequences, however, its position remains the same for all analyzed sequences.

TABLE 1 Structural comparison between segments C of modeled ancestral structures of FT and TFL1. RMSD-Cα values exhibited in angstroms.

FT-like structures TFL1-like structures

Taxonomic groups RMSD-Cα (Å) Taxonomic groups RMSD-Cα (Å)

Angiosperms with Eudicots 0.845 Angiosperms with Monocots 1.618

Angiosperms with Monocots 1.153 Angiosperms with Eudicots 1.927

Eudicots with Asterids 0.870 Eudicots with Brassicales 1.513

Eudicots with Brassicales 1.051 Eudicots with non-Brassicales 2.047

Brassicales with A. thaliana 0.869 Eudicots with A. thaliana 1.932
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The structural alignment of FT showed RMSDs-Cα values ≤
1,153 Å. In contrast, the TFL1 showed RMSDs-Cα values ≥
1,513 Å (Table 1). The segment C of the FT ancestral protein

of monocots, when compared to the structure of the ancestral

angiosperms, showed to be more conserved than its phylogenetic

most evolutionary related group, the eudicots. Comparing the

ancestors derived from the lineage of eudicots, brassicales had the

lowest RMSDs-Cα value and therefore, the most conserved

segment C among all the analyzed ancestors, while non-

brasicales showed the highest RMSDs-Cα value, and thus the

higher structural variation, followed by eudicots and A. thaliana

FT structures, respectively. We hypothesize that both proteins

evolved independently with natural selection maintaining the

most important regions, such as the segment C.We also observed

that the ancestral structures of FT proteins showed to be

conserved regarding its folding (Figure 5A), exhibiting an α-
helix, and a β-strand in segment C (Ahn et al., 2006a).

The sequence of segment C of FT from A. thaliana showed

mutations at three residue positions (Asp146Glu, Leu150IIeu,

and Phe162Tyr) when compared with the other analyzed

ancestral sequences (Figure 5C). Structural conservation was

also found in the C-terminal region of TFL1 which is

composed of an α-helix and a β-strand (Figure 5B). The

structural alignment of segment C showed slight variations in

the RMSD-Cα values between the ancestral states analyzed over

the evolutionary history of angiosperms, which demonstrated

that those structures have been conserved during evolution

(Table 1). However, it is interesting to note some mutations

in four residues in TFL1 sequences of A. thaliana at the positions

Asn150Lys, Ala153Val, Asn155Tyr, and Tyr165Phe when

compared with the ancestral sequences.

Comparing the modeled structures of the ancestral lineages

of angiosperms, monocots, eudicots, asterids, and brassicales

clades, we noted that these proteins remained well-conserved,

showing only one substitution at the residue Ser155 in the

ancestral monocot structure when compared with the other

ancestral sequences. In contrast, compared with A. thaliana,

this position contains a leucine substitution (Figure 5C).

Comparing the in silico modeled TFL1 ancestral structures, we

identified a mutation at the position Gln146Asn in the ancestral

sequence of monocots (Figure 5D), we further discuss possible

explanations of these changes below in the mutation analysis

FIGURE 5
The segment C of FT and TFL1 protein structures are conserved across extant and reconstructed ancestral sequences even with amino acid
substitutions. Structural alignment of the segments C from the ancestral FT (A) and TFL1 (B) sequences, which are coded by the fourth exon.
Sequence alignment of the FT (C) and TFL1 (D) ancestors. Asterisks indicate matches in the alignment sequences, and the blue arrows indicate the
residues substitutions.
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FIGURE 6
Electrostatic potential map (kBT/e) of phosphatidylcholine (PC) binding site ofmodeled ancestral FT structures. Some residues located at the PC
binding site, such as Pro8, Val11, Arg13, Asp17, Leu41, Pro77, Arg83, Ile117, and Arg119 exhibit a predominantly positive potential. Blue regions indicate
the positive potential, white indicates the neutral potential (no charge), and the red regions negative potential. Highlighted residues belong to the
binding pocket.
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section. The residues Tyr85 and Gln140 (A. thaliana numbering)

involved in the repression of FT activity and His88 and Asp144 (A.

thaliana numbering) involved in the activation of TFL1, remained

conserved in all inferred ancestral sequences of angiosperms, which

is consistent with the molecular function previously described for

these residues (Ahn et al., 2006a; Ho and Weigel, 2014).

Flowering time in angiosperms is regulated in part by

phosphatidylcholine (PC) interaction with FT protein

(Nakamura et al., 2014). Therefore, we analyzed the

distribution of electrostatic charges (in kBT/e) on the surface

of the PC binding site of FT to understand how this region

changes across the ancestral structures of the main clades of

angiosperms (Figure 6). We observed that the electrostatic

surface of the residues located at the PC binding site, such as

Pro8, Val11, Arg13, Asp17, Leu41, Pro77, Arg83, Ile117, and

Arg119 (A. thaliana numbering) exhibited a predominantly

positive potential in the ancestral sequences, which is in

accordance with previous findings for the FT structure of A.

thaliana (Nakamura et al., 2019). Some residues considered

important for P-loop domain function, such as Glu109 and

Gln140 maintained predominantly negative charges which

corroborate with the results reported by Ho and Weigel

(2014). However, in the present study, we performed a

complete analysis of the potential charge of the P-loop

domain and found that this domain shows a potential charge

conserved in the ancestral and current FT structures.

Two important structural features of the FT protein

regarding the regulation of flowering include the surface

-exposed loop region, named segment B (residues 128–141)

encoded by the fourth exon which is involved in PC binding,

FIGURE 7
Analysis of H-bond interactions in the ancestral FT and TFL1 structures from angiosperms through MD simulation (A) Detailed overview of FT
residues involved in H-bond interactions; (B) Interatomic H-bond distances verified over 20 ns of MD simulation of FT structure (C) Detailed
overview of TFL1 residues involved in H-bond interactions; (D) Interatomic H-bond distances verified over 20 ns of MD simulation of TFL1 structure.
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and Tyr85, a key functional residue that differentiates FT

activity from the floral repressor TFL1 (Lee et al., 2013;

Zhang et al., 2015). Structural analyses of the PC binding

site of the FT structure revealed that the residue

Tyr85 formed an H-bond with the oxygen of residues

Glu109 and Gln112, which confers stability to the PC

binding site. Similarly, residue Gln140, located in segment B

is also involved with the H-bond network, whereas His87 and

Arg139 stabilize the spatial coordination of Tyr85 by van der

Waals interaction (Nakamura et al., 2019). Moreover, studies

have also demonstrated the formation of H-bonds between the

residue His88 with Asp144 in the TFL1 structure of A. thaliana

(Ho and Weigel, 2014). Based on these assumptions, we

performed a structural analysis of H-bond interactions in the

adjacent residues to Tyr85 in FT and His88 in TFL1 structures

through the MD simulation in the ancestral sequence

representative to angiosperms clade of both proteins. Our

analyses demonstrate that these interactions maintain

stability over the MD simulation (Figures 7A–D), thus

indicating the conservation of these residue interactions over

evolutionary time.

Our structural analysis showed that the FT Tyr85 residue

(Tyr84 in the ancestral sequence from angiosperms) does not

form anH-bond, however, Glu109 (Glu108 in angiosperms) does

interact with Arg111 (Figure 7A). In the structure of TFL1,

Asp144 (Asp139 in the ancestral sequence of angiosperms)

FIGURE 8
Analysis of the selective pressures indicated by dN/dS rates of the codons for FT (A) and TFL1 genes (B).
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interacts with the residues Ser137 and His140. Differently, His88

(His84 in the ancestral sequence of angiosperms) does not

interact with the other adjacent residues (Figure 7C).

Analysis of mutations occuring during
F/TFL1 evolution and their effects on
protein structural stability

The number of mutations that confer advantageous changes

during the evolutionary process is limited due to the crossing of

an energetic barrier of the fitness landscape of protein structures

that could lead to alterations in their stability and function

(Tokuriki and Tawfik, 2009; Faber et al., 2019). Mutational

analysis has been widely applied to correlate the structure

with protein function (Brandt et al., 2014; da Costa et al.,

2017; Bhattacharya et al., 2018), organism phenotype (Neves

Cruz et al., 2019), and to analyze protein evolution from ancestral

sequences and adaptative evolutionary constraints in proteins

structures (Studer et al., 2014a; Sharir-Ivry and Xia, 2018). In the

present study, we performed a mutational analysis for FT and

TFL1 structures using alanine scanning to investigate the

influences of mutations in the structural stability in both

proteins and correlate these results with the selective pressures

indicated by dN/dS rates of the FT (Figure 8, panel A) and TFL1

(Figure 8B) codons.

Our results reveal that most alanine substitutions in FT

and TFL1 sequences are destabilizing, especially at residue

Tyr85 that plays an important role in FT activity, and at

residue His88 in TFL1 structure that is involved with the

flowering repression (Ahn et al., 2006a; Ho and Weigel, 2014).

The residues from the P-loop domain (Pin and Nilsson, 2012)

FIGURE 9
Most alanine substitutions in the FT structure are destabilizing, especially at the residue Tyr85. Alanine scanning plot of FT structures showing
the effect of mutations on protein stability (A) Inferred ancestral protein sequence of angiosperms. (B) Protein sequence of A. thaliana.
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of FT structure from A. thaliana showed predominantly high

destabilizing mutations (Figure 9), especially the residues

Phe128 (+4.86 kcal mol−1), Gln130 (+2.25 kcal mol−1),

Gly132 (+3.12 kcal mol−1), Gly140 (+2.12 kcal mol−1),

Arg142 (+2.24 kcal mol−1), and Phe145 (+3.89 kcal mol−1)

(Figure 9). Moreover, we found that the codons that

encode these residues are under constant selective pressure,

thus corroborating with previous findings for the FT gene

(Klintenäs et al., 2012b; Mackenzie et al., 2019b). In contrast,

TFL1 demonstrated a predominant neutral natural selection

(Figure 8).

Analyzing dN/dS rates of the residues involved with the

H-bond interactions in the FT structure present in A. thaliana

and ancestral sequence of the angiosperm clade, we observed

the presence of negative pressure (dN/dS<1), and the presence
of destabilizing mutations (ΔΔG>0), suggesting purifying

selection over evolutionary time. These findings also

corroborate the previous observation that the presence of

H-bond interactions in the PC binding site maintains its

structural stability (Nakamura et al., 2019). Similarly,

mutations in the residues that formed H-bond interactions

in the PC binding site were destabilizing for overall protein

structure and showed purifying selection in ancestral

angiosperm and A. thaliana TFL1.

We also performed analyses of the evolutionary rates of

the ancestral proteins of each clade based on the inferred

phylogenies (Figures 1, 2). Considering the FT sequences, we

observe that the angiosperm clade showed a low dN/dS rate

when compared with the other ancestral sequences (ωangio =

0.065). The class of substitution sites selected were the

following: neutral (ω = 1), sites under positive selection

(ω > 1), and sites under negative selection (ω < 1) (Nei

and Gojobori, 1986). The ancestral sequences of FT

probably evolved under negative selection with low rates or

absence of non-synonymous substitutions, which conserved

the protein structure during the evolutionary history that led

to the appearance of flowering plants. The ancestral sequences

of monocots exhibited a dN/dS rate ω = 0.081, which suggests

that the occurrence of synonymous mutations was influenced

by natural selection (negative pressure). There is evidence that

natural selection is purifying, which may explain little change

in ancestral sequences. Similar results were also found for

ancestral sequences of eudicots (ω = 0.087) and asterids (ω =

0.078). In contrast, the ancestral sequence of brassicales

exhibited a high dN/dS rate (ω = 0.147) when compared

with the other analyzed sequences which could indicate the

predominance of non-synonymous mutations at the residues

sites. The negative pressure of the FT gene (rates dS > dN)

could be related to its different molecular functions in the

flowering process (Pin and Nilsson, 2012). Analyzing the

evolutive trajectory of FT in the monocots, we noticed that

majority of the investigated species showed dN/dS rates

compatible with purifying selection, similarly when

compared with the ω value for the clade (ω = 0.081), thus

showing few residues under positive selection (Supplementary

Information S9).

Regarding the ancestral TFL1 sequences of the angiosperm’s

clade, we obtained a ω = 0.115, and for monocots ω = 0.186,

eudicots ω = 0.247, non-brassicales ω = 0.300 and brassicales ω =

0.236 (Figure 2). As previously discussed, the key residues

His88 and Asp144 involved with TFL1 function remained

under negative selection, however, we document regions of

exon 4 under positive selection (angiosperms with residues

Val109, Ser111, Lys154; monocots: Gly111, Gln138, Ala144,

Gln154; eudicots: Val109, Ser111, Arg116, Lis154; non-

brassicales: Val109, Arg116, Tre139, Lis154) (Supplementary

Information S10, S11). This is reflected in the increase in dN/

dS over time when compared to the values found for FT, which

may indicate an adaptive modification of TFL1 protein structure

(Benner et al., 2002), possibly due to its influences on different

phenotypic traces of the flowering plants (Rallapalli et al., 2014).

Additionally, TFL1 proteins probably evolved by a stability

regime with a balance between stabilizing and destabilizing

mutations that could lead to the divergence of large groups in

the angiosperms.

During the evolutionary process, new mutations can be

retained in the genomic pool by the relative strengths of

natural selection and genetic drift. Regarding the natural

selection forces, the rate of fixation of these mutations is

accelerated by positive selection, under which favorable

mutations to protein function or stability tend to be

retained and in contrast, it is decelerated by the negative

selection that tends to remove from the genomic pool

disadvantageous mutations (Wang et al., 2019). Moreover,

different studies (Sen et al., 2011; Studer et al., 2014b; Piot

et al., 2017) have demonstrated that the appearance of

destabilizing mutations in residues directly involved in the

active sites could be selected by positive selection, and that

such mutations may be functionally necessary as they may

contribute to increasing the conformational flexibility of some

regions and allowing adaptation under different conditions,

which may be the case of amino acid changes in the 4th exon

region of the TFL1 protein in A. thaliana. In addition, this

destabilization can be compensated for by the occurrence of

stabilizing mutations in other sites such as the formation of a

new H-bond between amino acids Asp139 and Ser137

(Figure 7B) that contributes to maintaining the overall

protein stability (Buller and Townsend, 2013; Studer et al.,

2014a; Sharir-Ivry and Xia, 2018). Indeed, our analysis of the

evolutionary rates for codons regions of the 2nd and 4th exons

of FT gene that encode the P-loop domain and PC binding site

found dN/dS < 1, and for TFL1 some codons that encode

residues from the 4th exon region found values equal to dN/

dS = 1 and dN/dS > 1.
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Conclusion

Here, we have reconstructed the evolutionary history of FT/

TFL1-like proteins in the main flowering plant groups and by

combining ancestral sequence inference with structural and

mutational analyses, we have identified the main residue sites

that evolved by evolutionary constraints, altered the protein

stability, and inverted their function from activation or

repression of flowering time. Our results show that the main

sites are conserved under negative selection, which includes the

P-loop domain and PC binding site of FT structures. The residue

Tyr85 located at the PC binding site of FT structure forms an

H-bond with the oxygen of the residues Glu109 and Gln112 and

confers stability to protein structure. Similarly, the residue

Gln140, located in segment B also forms H-bond interactions,

whereas His87 and Arg139 stabilize the spatial coordination of

Tyr85. The presence of destabilizing mutations and negative

selective pressures in residues located at the phosphatidylcholine

binding site involved with H-bond formation indicate their

structural role to maintain FT overall stability throughout

evolution. In addition, residues of the 4th exon are found to be

under positive selection and they may be involved in the

conformational alterations of proteins. However, the

formation of H-bonds that confer stability to the structure

may be indicative that structural changes are compensated by

the occurrence of stabilizing mutations to maintain the overall

stability of the protein. Finally, our study opens up new insights

to understand the roles of natural selection in the adaptative

evolution of flowering proteins in angiosperms and could further

help crop improvement with an economic interest in flower and

fruit industries.
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