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Background: Colorectal cancer is the fourth most deadly cancer worldwide.

Although current treatment regimens have prolonged the survival of patients,

the prognosis is still unsatisfactory. Inflammation and lncRNAs are closely

related to tumor occurrence and development in CRC. Therefore, it is

necessary to establish a new prognostic signature based on inflammation-

related lncRNAs to improve the prognosis of patients with CRC.

Methods: LASSO-penalized Cox analysis was performed to construct a

prognostic signature. Kaplan-Meier curves were used for survival analysis

and ROC curves were used to measure the performance of the signature.

Functional enrichment analysis was conducted to reveal the biological

significance of the signature. The R package “maftool” and

GISTIC2.0 algorithm were performed for analysis and visualization of

genomic variations. The R package “pRRophetic”, CMap analysis and submap

analysis were performed to predict response to chemotherapy and

immunotherapy.

Results: An effective and independent prognostic signature, IRLncSig, was

constructed based on sixteen inflammation-related lncRNAs. The IRLncSig

was proved to be an independent prognostic indicator in CRC and was

superior to clinical variables and the other four published signatures. The

nomograms were constructed based on inflammation-related lncRNAs and

detected by calibration curves. All samples were classified into two groups

according to the median value, and we found frequent mutations of the

TP53 gene in the high-risk group. We also found some significantly

amplificated regions in the high-risk group, 8q24.3, 20q12, 8q22.3, and

20q13.2, which may regulate the inflammatory activity of cancer cells in

CRC. Finally, we identified chemotherapeutic agents for high-risk patients

and found that these patients were more likely to respond to

immunotherapy, especially anti-CTLA4 therapy.

Conclusion: In short, we constructed a new signature based on sixteen

inflammation-related lncRNAs to improve the outcomes of patients in CRC.
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Our findings have proved that the IRLncSig can be used as an effective and

independent marker for predicting the survival of patients with CRC.
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Introduction

Colorectal cancer (CRC) is the fourth deadliest cancer

worldwide, its incidence is closely related to lifestyle, heredity

and environmental factors, and the incidence and death rate in

women is approximately 25% lower than those in men (Dekker

et al., 2019). CRC accounts for approximately 10% of cancer-

related deaths every year (Bray et al., 2018). And it is prone to

metastasis and invasion, especially in advanced patients (Li et al.,

2020). CRC can be divided into rectal adenocarcinoma and colon

adenocarcinoma based on anatomic location (Zuo et al., 2019).

The treatment of colon cancer and rectal cancer is mainly

surgical resection, and rectal surgery is more difficult than

colon surgery. For advanced patients with CRC, oxaliplatin in

combination with fluorouracil is the standard treatment (Xie

et al., 2020). Although the current treatment strategies have

prolonged the overall survival of patients, the 5-years survival

rate of patients remains low, at just over 50% (Frampton and

Houlston, 2016).

Long noncoding RNAs (lncRNAs) are involved in a great

diversity of biological processes, and various mechanisms of

lncRNA transcriptional regulation of gene expression have

been demonstrated (Navarro et al., 2006; Rinn et al., 2007;

Gupta et al., 2010). Increasing evidence suggests that the

abnormal expression of lncRNAs is closely related to tumor

progression. For example, MIR17HG, SNHG14 and VIM-AS1

can promote the tumorigenesis and metastasis of tumor cells in

CRC (Rezanejad et al., 2018; Xu et al., 2019a; Wu et al., 2019).

Furthermore, inflammation is a marker of cancer and can be

caused by diverse factors, including infection, environmental, cell

senescence and obesity (Terzi et al., 2010). Inflammation is

double-sided in cancer: on the one hand, cytotoxic T

lymphocytes, which can target specific cancer cells, and

regulatory T cells, which can inhibit nonspecific inflammation,

may contribute to the antitumor response (Long et al., 2017). On

the other hand, inflammatory cells and the chemokines and

cytokines they produce can affect the biological processes of cells

in the tumor microenvironment, thus promoting tumorigenesis,

development, malignant transformation, invasion and metastasis

of tumors (Balkwill and Mantovani, 2001; Werb and Coussens,

2006; Grivennikov et al., 2010; Greten and Grivennikov, 2019).

Sustained use of low-dose anti-inflammatory drugs can slow the

tumor progression in the long term, which also illustrates the

tumor-promoting role of inflammation in CRC (Friis et al.,

2015). In addition, lncRNAs are closely related to

immunity and inflammation and can regulate inflammation

and immune-related signaling pathways through a variety of

mechanisms (Xu et al., 2019b).

Here, we constructed a new prognostic signature, IRLncSig

and demonstrated its stability and reliability in validation

cohorts. Functional enrichment analysis, somatic mutation

and copy number alterations analysis were performed to

reveal the biological significance of the IRLncSig. Then, we

identified potential therapeutic agents for high-risk patients

and found that high-risk group may respond to

immunotherapy, especially anti-CTLA4 therapy. Overall, the

IRLncSig was a robust and independent marker for predicting

the outcomes of patients, which provides a new basis for

improving outcomes in CRC.

Materials and methods

Study cohorts and data preprocessing

The data used in this study mainly include three publicly

available datasets, TCGA-COADREAD (including TCGA-

COAD and TCGA-READ) for training and testing,

GSE38832, GSE39582 and GSE72970 for validation. For the

TCGA-COADREAD cohort, the expression profiles and

clinical information, including age, sex, pathological stage,

status, and overall survival (OS), were downloaded from

TCGA (https://portal.gdc.cancer.gov/) using the R package

“TCGAbiolinks”, and the expression value was converted into

TPM values with log2 (TPM+1) for subsequent analysis. Samples

lacking clinical information were excluded. In addition, the

cohort was divided into the training set and testing set at a

ratio of 7:3 using the R package “caret”. For the GSE39582,

GSE38832 and GSE72970 cohorts, the expression profiles and

clinical information were downloaded from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Similarly, samples lacking

clinical information were removed. Detailed sample information

of these datasets is summarized (Table 1).

Construction and validation of the
IRLncSig

Genes associated with inflammation were downloaded from

the gene database in NCBI (www.ncbi.nlm.nih.gov/gene) (Brown

et al., 2015; Choe et al., 2021). First, we conducted Pearson

correlation analysis to identify lncRNAs associated with
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inflammation (Pearson correlation coefficient: r > 0.3).

Subsequently, univariate Cox regression analysis was

performed to screen out lncRNAs with prognostic values (p <
0.01). To minimize the risk of overfitting, we used a multivariate

Cox regression model with the least absolute shrinkage and

selection operator (LASSO) with tenfold cross-validation to

tune the optimal value of penalty parameter ? using the R

package “glmnet”. Finally, a new signature, IRLncSig, was

constructed based on sixteen inflammation-related lncRNAs.

The IRLncSig was defined as follows:

IRLncSig � ∑
n

i�1
Coefi × Expri

whereCoefi is the coefficient of the lncRNA that was determined

by the multivariate regression model, Expri is the expression

value of this lncRNA, and the IRLncSig is the computed risk

score for each sample. We classified all samples into two groups

according to the median value and we used the Kaplan-Meier

method for survival analysis and the Log-rank test to detect

differences using the R package “survival” (Hazra and Gogtay,

2016a). In addition, the receiver operating characteristic (ROC)

curves of the IRLncSig for 1-year, 3-years and 5-years survival

were plotted using the R package “survivalROC”.

Construction and evaluation of
nomograms and calibration curves

A nomogram model was constructed according to

16 inflammation-related lncRNAs to predict 1-,3-, and 5-years

OS using the R package “rms”. Then, we use the calibration

curves of 1-,3-, and 5-years to verify the performance of

nomogram models by bootstrap method with 1,000 resamples.

Independence of prognostic effect of the
IRLncSig

To evaluate the independence of the IRLncSig, we conducted

multivariate regression analysis on age, sex, pathologic stage and

the IRLncSig. We also performed stratification analysis by

pathologic stage and age respectively. For the pathological

stage, we divided samples into two groups, “stage I/II” and

“stage III/IV” after removing samples with missing values. For

age, we classified samples into two groups based on the median

value. Kaplan–Meier curves and Log-rank test were used for

evaluating the differences in OS using the R package “survival”.

Biological function and pathway analysis

To further understand the biological significance of the

IRLncSig, we performed gene set enrichment analysis (GSEA)

through the R package “clusterProfiler” (Yu et al., 2012). The

functional annotation gene set (msigdb.v7.2. symbols.gmt) was

downloaded from the MSigDB database (http://www.gsea-

msigdb.org/gsea/msigdb). First, we obtained differentially

expressed genes using the R package “limma” and sorted these

genes by log2FoldChange (Ritchie et al., 2015). Then, we

conducted GSEA based on the pre-ranked gene list

(Subramanian et al., 2005). In addition, ten oncogenic

pathways and their gene signatures were obtained from

TABLE 1 Summarized clinical characteristics of samples in this study.

TCGA training TCGA testing GSE39582 GSE38832

N 414 177 572 122

Age

>68 202 (48.8%) 75 (42.4%) 284 (49.7%) -

≤68 212 (51.2%) 102 (57.6%) 288 (50.3%) -

Gender

Female 191 (46.1%) 81 (45.8%) 256 (44.8%) -

Male 223 (53.9%) 96 (54.2%) 316 (55.2%) -

Stage

I 69 (16.7%) 32 (18.1%) 36 (6.3%) 18 (14.75)%

II 162 (39.1%) 53 (29.9%) 265 (46.3%) 35 (28.69%)

III 118 (28.5%) 54 (30.5%) 208 (36.4%) 39 (31.97%)

IV 51 (12.3%) 32 (18.1%) 59 (10.3%) 30 (24.59%)

unknown 14 (3.4%) 6 (3.4%) 4 (0.7%) 0 (0.00%)

Survival

Dead 87 (21.0%) 35 (19.8%) 190 (33.2%) 28 (22.95%)

Alive 327 (79.0%) 142 (80.2%) 382 (66.8%) 94 (77.05%)
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published literature (Sanchez-Vega et al., 2018). Gene set

variation analysis (GSVA) was used to calculate the

enrichment score of carcinogenic pathways.

Somatic mutation and copy number
variation analysis

Somatic mutation data were obtained from cBioPortal

(https://www.cbioportal.org/) and the R package “maftools”

was used to analyze and visualize (Mayakonda et al., 2018).

And the MutSigCV method was performed to identify driver

genes in CRC (Lawrence et al., 2013).

Copy number variation data were obtained from Fire

Browse (http://firebrowse.org/) and the Genomic

Identification of Significant Targets in Cancer (GISTIC2.0,

GenePattern) algorithm was performed to analyze and

compare genomic alterations between two risk groups,

including gains and losses (Mermel et al., 2011). The

confidence level was set to 0.95 (Yang et al., 2020a; Luo

et al., 2020).

Drug sensitivity analysis

We predicted the sensitivity of each patient to

chemotherapeutic agents by the R package “pRRophetic”

(Paul et al., 2014). All 138 chemotherapy drugs were included

in this package. The estimated IC50 value for each patient treated

with a specific chemotherapy drug was obtained through the

function “pRRopheticPredict”. Then, we screened out drugs with

higher sensitivity for high-risk group patients. In addition, we

used CMap analysis (https://clue.io) to determine agents, with

which gene expression value increased in high-risk patients but

decreased by treatment (scores <0) (Chen et al., 2020). Finally, we
set the intersection of agents obtained in the two steps to

determine the final potential treatment agents for patients

with high risk.

Characterization of immune
microenvironment and prediction of
immunotherapy response

To further reveal the differences in immune

microenvironment between the two groups, we first estimated

the abundance of 22 immune cells and 2 stromal cells using single

sample gene set enrichment analysis (ssGSEA). We also obtained

10 immune checkpoints from published literature and compared

the difference in expression between the two groups (Yang et al.,

2020b). In addition, the submap algorithm was used to evaluate

the response of patients to immunotherapy based on the dataset

of 47 patients with cutaneous melanoma (Hoshida et al., 2007).

The method was performed by the Submap module in

GenePattern.

Performance comparison of the IRLncSig
with other clinical variables and existing
prognostic signatures

ROC curves were used to estimate the 1-year, 3-years and 5-

years survival. The clinical variables age and pathological stage

were considered. In detail, the IRLncSig and age were treated as

continuous variables, while the pathologic stage was coded as

binary, “Stage I/II” and “Stage III/IV”. We also compared the

IRLncSig with four published prognostic signatures in CRC: a 15-

gene signature derived from Yang’s study (Yang et al., 2021), a 6-

lncRNA signature derived from Li’s study (Li et al., 2020), a 6-

gene signature derived from Dai’s study (Dai et al., 2020), and a

7-gene signature derived from Lu’s study (Lu et al., 2021).

Statistical analysis

All statistical analyses were conducted by R version 4.0.2.

Statistical test methods used in this study mainly include the

Wilcoxon test for two groups, the Kruskal-Wallis test for more

than two groups, and the Chi-Square test or Fisher’s exact test for

contingency table variables (Hazra and Gogtay, 2016b). All

statistical tests were two-sided, and it was considered

statistically significant with p < 0.05.

Results

Construction and validation of the
IRLncSig based on inflammation-related
lncRNAs

A detailed workflow for prognostic signature construction

and analysis was developed (Supplementary Figure S1). We

downloaded 2,826 inflammation-related genes from NCBI and

finally obtained 2,380 inflammation-related genes after the

intersection with expression profile data. We screened out

934 lncRNAs strongly correlated with inflammatory genes

(Pearson correlation coefficient: r > 0.3) and 34 lncRNAs with

prognostic values (p < 0.01; Supplementary Figure S2). Next,

sixteen lncRNAs with prognostic values were identified by

univariate and LASSO-penalized regression analysis (Table 2;

Figures 1A,B). The sixteen inflammation-related lncRNAs,

which were independently correlated with survival, were

preserved as prognostic factors. Of them, thirteen lncRNAs

were related to worse prognosis and presented as “risk”

factors, while the remaining three lncRNAs were related to

better prognosis and presented as “protective” factors
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(Figure 1C).Figures 1D,E show the expression levels of the

sixteen lncRNAs in the TCGA and GSE39582 datasets,

respectively.

In each cohort, we calculated the risk score according to

the coefficients and expression values of the sixteen lncRNAs

and divided samples into high-risk and low-risk groups based

on the median value. Survival analysis indicated that high-risk

group had a worse prognosis in the TCGA training cohort

(Figure 2A). We found similar results in TCGA testing, TCGA

entire, GSE38832, GSE39582 and GSE72970 datasets (Figures

2B–F). The AUC value was 0.79 in the first year and 0.78 both

in the third and fifth year in the TCGA training dataset

(Figure 2G), and the AUC values in other validation

datasets are shown in Figures 2H–L. In addition, we found

that the mortality was elevated with the increase of the risk

score (Supplementary Figure S3). The “risk” lncRNAs were

highly expressed in high-risk group and the protective

lncRNAs were highly expressed in the low-risk group

(Supplementary Figure S3). These results indicated that

the IRLncSig could act as an effective prognostic marker

in CRC.

Construction and evaluation of
nomograms and calibration curves

The nomogram comprising the sixteen lncRNAs was

fabricated to estimate the 1-year, 3-years and 5-years OS in

the TCGA dataset (Figure 3A). The calibration curve for the

observed versus predicted probability of the 1-year, 3-years

and 5-years OS revealed consistency (Figure 3D). Similar

results could be observed in GSE39582 and

GSE38832 validation cohorts Figures 3B,C; Figures 3E,F).

These results suggested that the nomogram model based on

the sixteen lncRNAs could help predict the prognosis of

patients in CRC.

Independence of prognostic effects of the
IRLncSig

To evaluate the independence of the IRLncSig, we conducted

multivariate regression analysis on age, sex, pathologic stage and

the IRLncSig. The results showed that the IRLncSig could act as

an independent prognostic signature in all cohorts (Figure 4A).

In addition to the IRLncSig, the pathologic stage and age were

observed to be highly significant (Figure 4A). Therefore, we

performed stratification analysis by pathologic stage and age

respectively. For the pathological stage, the results indicated that

there were significant differences in OS between two groups

“stage I/II” and “stage III/IV” in all datasets Figures 4B–E).

Similar results were found in the stratification analysis of age

(Supplementary Figure S4). These results all indicated that the

IRLncSig could act as an independent and effective marker

in CRC.

Biological function and pathway analysis

To further understand the biological significance of the

IRLncSig, differential expression analysis was first performed.

Next, GSEA was performed based on Gene Ontology (GO),

TABLE 2 Sixteen inflammation-related lncRNAs with prognostic value.

Ensemble id Gene name Coefficient HR p.value

ENSG00000235079 ZRANB2-AS1 −0.18 0.84 (0.74–0.95) 0.006

ENSG00000259974 LINC00261 −0.17 0.78 (0.69–0.88) <0.001
ENSG00000231177 LINC00852 −0.16 0.79 (0.71–0.89) <0.001
ENSG00000225535 LINC01393 0.01 1.15 (1.05–1.27) 0.003

ENSG00000272620 AFAP1-AS1 0.03 1.15 (1.05–1.27) 0.004

ENSG00000261742 LINC00922 0.04 1.21 (1.09–1.35) <0.001
ENSG00000260941 LINC00622 0.06 1.17 (1.05–1.30) 0.003

ENSG00000237036 ZEB1-AS1 0.07 1.39 (1.25–1.54) <0.001
ENSG00000235314 LINC00957 0.07 1.22 (1.09–1.36) <0.001
ENSG00000171889 MIR31HG 0.09 1.28 (1.17–1.41) <0.001
ENSG00000228288 PCAT6 0.10 1.18 (1.05–1.31) 0.004

ENSG00000236384 LINC00479 0.10 1.17 (1.06–1.29) 0.001

ENSG00000230002 ALMS1-IT1 0.13 1.19 (1.07–1.31) <0.001
ENSG00000237975 FLG-AS1 0.18 1.17 (1.07–1.30) 0.001

ENSG00000247095 MIR210HG 0.20 1.16 (1.04–1.29) 0.010

ENSG00000258701 LINC00638 0.23 1.25 (1.12–1.39) <0.001
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Kyoto Encyclopedia of Genes and Genomes (KEGG),

Hallmark and Reactome gene sets. The results revealed that

epithelial-mesenchymal transition (EMT), angiogenesis,

inflammatory response, hypoxia, WNT and KRAS signaling

pathways were enriched in the high-risk group (Figure 5A).

Oxidative phosphorylation, MYC signaling, cell cycle, fatty

acid metabolism, drug metabolism and TCA cycle were

enriched in the low-risk group (Figure 5B). Next, GSVA

was used to estimate the abundance of up-regulated, down-

regulated, and carcinogenic pathways. We found that the up-

regulated pathways exhibited a higher GSVA score in the high-

risk group, while the down-regulated pathways exhibited the

opposite (Figures 5C,D). In addition, HIPPO, NOTCH, RTK/

RAS and WNT carcinogenic pathways had higher GSVA score

in the high-risk group, while cell cycle and TP53 signaling had

higher GSVA score in the low-risk group (Figures 5C,D). The

results were similar in the GSE39582 validation set

(Supplementary Figure S5).

FIGURE 1
Construction of the prognostic signature, IRLncSig (A) Feature selection using the LASSO-penalized regression by 10-fold cross-validation with
minimum criteria. (B) LASSO coefficient profiles of the 34 inflammation-related lncRNAs with nonzero coefficients (C) Forest plot for identified
sixteen lncRNAs. (D,E) Boxviolin plot for the expression level of the sixteen lncRNAs.
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FIGURE 2
Validation of the performance of the IRLncSig for prognostic prediction (A–F) Survival analysis for two groups. The p values were calculated by
the Log-rank test. (G–L) ROC curves for predicting 1-, 3- and 5-years OS.
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Characterization of somatic mutation and
copy number variations

We first identified driver genes in CRC by MutSigCV (q <
0.05; Supplementary Figure S6A). Then, we found that the

mutation rate of gene TP53 was significantly higher in the

high-risk group (Supplementary Figure S6B). To further verify

the prognostic independence of the IRLncSig, we divided samples

into four subgroups based on TP53 mutation status and risk

group: Mutated in HRisk, Mutated in LRisk, Wild in HRisk and

Wild in LRisk. Survival analysis showed that the OS of both

mutated-type and wild-type in the high-risk group was

significantly lower (Supplementary Figure S6C). These results

again demonstrated the independence of the IRLncSig in

predicting outcomes of patients in CRC.

GISTIC2.0 was used to analyze the copy number variation

(Mermel et al., 2011). First, we compared genome alterations

between two groups, including the fraction of genome altered

(FGA), the fraction of genome lost (FGL) and the fraction of

genome gained (FGG). Results showed that high-risk group

exhibited more genome alterations, including FGA, FGL, and

FGG (Figure 6A). We also found seven significantly amplificated

regions (8q22.3, 8q24.3, 12p13.32, 17q11.1, 17q24.2, 20q12,

20q13.2) and five significantly deleted regions (4q31.3, 5q21.3,

8p21.3, 8p23.1, 15q12) in the high-risk group (Figure 5B). We

further analyzed the correlation between the copy number of

these amplified genes and their expression values and identified

eleven inflammatory genes in the regions 8q24.3, 20q12,

8q22.3 and 20q13.2 with a strongly positive correlation

(Table 3; Supplementary Figure S6D). These genes were

highly expressed in the high-risk group except for the genes

PLCG1, NFATC2, TOP1 and CYP24A1 (Supplementary Figure

S6E). These results suggested that the four regions may regulate

the inflammatory activity of cancer cells, further clarifying that

alterations in specific chromosomal regions may influence the

heterogeneity of CRC.

Identification of potential therapeutic
agents for patients in CRC

We first identified five drugs with higher sensitivity for high-

risk group patients from 138 chemotherapy drugs Figures 7A,B).

Then, the correlation of IC50 values and target expression level

with the IRLncSig for five drugs was analyzed (Supplementary

Figure S7). We further tested the efficacy of these drugs by CMap

FIGURE 3
Construction and evaluation of prognostic nomograms and calibration curves (A–C) The nomogram predicts the probability of 1-, 3-, and 5-
years OS. (D–F) The calibration plot of the nomogram predicts the probability of 1-, 3-, and 5-years OS.
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FIGURE 4
Independence of prognostic effect of the IRLncSig (A) Forest plot for the IRLncSig and other clinical factors by multivariate regression analysis.
(B–E) Stratification analysis by pathological stage. The p values were calculated by the Log-rank test.
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FIGURE 5
Function enrichment analysis in the TCGA cohort (A,B) Gene set enrichment analysis based on GO, KEGG, Hallmark and Reactome. (C)
Heatmap for the GSVA score of upregulated, downregulated and oncogenic pathways (D) Boxplot for the GSVA score of upregulated,
downregulated and oncogenic pathways between two subgroups. The p values were calculated byWilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0,001).
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analysis based on differentially expressed genes. The results

showed that PD.173,074 (CMap score = −91.88) and

Docetaxel (CMap score = −91.55) might be potential

therapeutic drugs for patients with high risk (Figure 7C). PD-

173074 is a fibroblast growth factor receptor (FGFR) inhibitor.

FGFR1 is overexpressed and is considered a therapeutic target in

CRC (Jang, 2005; Göke et al., 2013). Studies have also shown that

its overexpression is associated with liver metastasis of CRC

(Kwak et al., 2015). Docetaxel is a tubulin polymerization

inhibitor, and its target is BCL-2, which is an oncogene and

can inhibit apoptosis.

Characterization of immune
microenvironment between two risk
groups

We first characterized the cellular interactions in the immune

microenvironment, including 22 immune cells and 2 stromal

cells, and the results showed that there was a strong positive

correlation between these cells (Supplementary Figure S8A).

CD8 T cells (HR: 0.84, 95% CI: 0.72–0.99, p = 0.038) and

activated memory CD4 T cells (HR: 0.80, 95% CI: 0.67–0.95,

FIGURE 6
Characterization of copy number variation in the entire TCGA cohort (A) The difference in genomic alterations between the two groups. The p
values were calculated by Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0,001) (B) GISTIC cytoband of copy number alteration for all
samples. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0,001).

TABLE 3 Eleven inflammatory genes with strong correlation.

GenesSymbol Spearman’r p.value Cytoband

HSF1 0.695 4.85E-85 8q24.3

SHARPIN 0.661 2.23E-74 8q24.3

PLCG1 0.653 6.62E-72 20q12

PTK2 0.638 8.56E-68 8q24.3

ZNF7 0.632 4.98E-66 8q24.3

YWHAZ 0.526 1.06E-42 8q22.3

SCRIB 0.522 6.42E-42 8q24.3

NFATC2 0.486 1.07E-35 20q13.2

TOP1 0.412 2.86E-25 20q12

GSDMD 0.401 7.54E-24 8q24.3

CYP24A1 0.304 6.92E-14 20q13.2
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p = 0.013) exhibited prognostic value in CRC (Supplementary

Figure S8B). For activated memory CD4 T cells, the group with

higher immune infiltration had a better prognosis (p = 0.004;

Supplementary Figure S8C). However, there was no significant

difference for CD8 T cells (p = 0.125; Supplementary Figure

S8D). We also analyzed the correlation between immune cell

infiltration and inflammation-related lncRNAs (Supplementary

Figure S8E).

To further explore the response to immunotherapy of

patients, we analyzed the infiltration levels of immune cells

and stromal cells in the immune microenvironment. We

found that the abundance of naive B cells, activated dendritic

cells, macrophages M0, macrophages M2, monocytes, naive

CD4 T cells, regulatory T cells and gamma delta T cells were

higher in the high-risk group, while the abundance of

memory B cells, eosinophils, NK cells, activated memory

CD4 T cells and resting memory CD4 T cells were higher in

the low-risk group (Figure 8A). We also found that high-risk

group exhibited higher expression values of immune

checkpoints, including CCL2, CD276, CD4, CXCR4,

IL1A, and TGFB1 (Figure 8B). In addition, the submap

analysis showed that high-risk group was more likely to

respond to anti-CTLA-4 immunotherapy (nominal p = 0.02;

Figure 8C). However, no difference was found in anti-

PD1 immunotherapy, which may need further study. These

results were verified in the GSE39582 cohort (Supplementary

Figure S9). Collectively, high-risk group exhibited higher

immune cell infiltration and expression of immune

checkpoints, suggesting that patients in the high-risk group

may be responsive to immunotherapy, especially anti-CTLA4

therapy.

Performance comparison of the IRLncSig
with other clinical variables and existing
prognostic signatures

We compared the IRLncSig with four recently published

prognostic signatures in CRC: a 15-gene signature derived from

Yang’s study (Yang et al., 2021), a 6-lncRNA signature derived

from Li’s study (Li et al., 2020), a 6-gene signature derived from

Dai’s study (Dai et al., 2020), and a 7-gene signature derived from

Lu’s study (Lu et al., 2021). The results showed that the AUC

values at 1-year, 3-years and 5-years were 0.78, 0.78 and 0.79,

respectively, which were all higher than those of the other four

signatures (Figure 9). The results proved that the IRLncSig had

better predictive performance than the other four published

signatures in CRC. In addition, the performance of the

signature was better than that of the clinical variables, age and

pathologic stage (Supplementary Figure S10).

Finally, we associated the IRLncSig with the CMS subtypes

established by previous studies (Guinney et al., 2015). The

CMS4 subtypes had the worst prognosis and the highest risk

score (Supplementary Figures S11A,B), and high-risk group

exhibited a higher proportion of CMS4 subtype (p < 0.001;

Supplementary Figure S11C). We also applied the signature to

pan-cancer and found that it showed prognostic value in liver

hepatocellular carcinoma (LIHC; HR: 1.47, 95% CI: 1.22–1.76,

p < 0.001), uterine corpus endometrial carcinoma (UCEC; HR:

1.38, 95% CI: 1.14–1.67, p < 0.001), kidney renal clear cell

carcinoma (KIRC; HR: 1.25, 95% CI: 1.11–1.41, p < 0.001),

head and neck squamous cell carcinoma (HNSC; HR: 1.20,

95% CI: 1.05–1.36, p = 0.006), brain lower grade glioma

(LGG; HR: 0.81, 95% CI: 0.68–0.97, p = 0.020), uveal

FIGURE 7
Identification of potential therapeutic agents for high-risk patients (A,B) Five agents with higher drug sensitivity in the high-risk group. The p
values were calculated by the Wilcoxon test. (C) CMap analysis of five drugs with potential therapeutic agents for high risk patients.
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melanoma (UVM; HR: 0.59, 95% CI: 0.40–0.89, p = 0.012)

(Supplementary Figure S12).

Discussion

CRC is a common cancer of the digestive tract, with

morbidity and mortality among the top five in the world

(Kuipers et al., 2015; Qaderi et al., 2020). More than

1.4 million people have been diagnosed as CRC, and more

than 0.5 million people have died of this tumor in a year

(Jeffery et al., 2007; Siegel et al., 2020). Approximately 30% of

patients have tumor recurrence within 3 years after surgery and

adjuvant chemotherapy (Sargent et al., 2009). Many studies have

shown that the construction of prognostic signatures could

accelerate the prognostic assessment of patients in CRC

(Huang et al., 2020). In this study, we constructed a robust

prognostic signature, IRLncSig, based on sixteen inflammation-

related lncRNAs to improve the prognosis of patients with CRC.

The predictive performance of the IRLncSig was verified on

TCGA, GSE38832, GSE39582, and GSE72970 cohorts. Then,

samples were divided into two risk groups based on the median

value in each dataset and Kaplan–Meier curves exhibited that

patients in the low-risk group had a better prognosis. The

performance of the IRLncSig was also proved to outperform

traditional clinical predictors and four published signatures in

FIGURE 8
Immune infiltration and the response to immunotherapy in TCGA cohort (A) Boxplot for the abundance of 22 immune cells and 2 stromal cells
estimated by ssGSEA. The p values were calculated by Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0,001) (B) Boxplot for the
expression level of 10 immune checkpoints. The p values were calculated by Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0,001). (C)
Submap analysis for predicting the response to immunotherapy.
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CRC. Subgroup analyses showed that the signature could predict

outcomes in different subgroups of patients. These results

indicated that the IRLncSig was an independent and effective

marker in predicting the prognosis of patients with CRC.

To better understand the biological significance of the

IRLncSig, we conducted enrichment analysis and found that

high-risk group mainly enriched in EMT, angiogenesis,

inflammatory response, hypoxia, WNT signaling and KRAS

signaling pathways. EMT can promote tumor progression,

including CRC, especially when it involves invasion and

metastasis (Arias, 2001; Bates and Mercurio, 2005).

Angiogenesis is a hallmark of cancer and it is associated with

tumor progression and metastasis in some cancers, such as CRC,

skin melanoma, breast cancer, prostate cancer and lung cancer

(Yuji et al., 1996). Moreover, carcinogenic pathways, including

HIPPO, NOTCH and RTK/RAS were enriched in the high-risk

group. Low-risk group enriched mainly in oxidative

phosphorylation, MYC signaling, cell cycle, fatty acid

metabolism, drug metabolism and TCA cycle. Restoration of

oxidative phosphorylation levels is one of the characteristics of

tumor development and progression (Maiuri and Kroemer,

2015). The tricarboxylic acid cycle, also known as the citric

acid cycle, is a common metabolic pathway in the human

body. It is the hub of the metabolic links between the three

nutrients, including carbohydrates, lipids and amino acids. The

dysfunction of TCA is one of the causes of human disease

and tumor formation (Brière et al., 2007). Several studies

have shown that inflammation has been implicated in EMT

(Suarez-Carmona et al., 2017), angiogenesis (Ping, 2012;

Aguilar-Cazares et al., 2019), hypoxia (Mamlouk and

Wielockx, 2013), WNT signaling (Yang et al., 2008), KRAS

signaling (Kitajima et al., 2016), MYC signaling (Sipos et al.,

2016) and lipid metabolism (Zuo et al., 2020). Therefore, it is

speculated that the IRLncSig constructed based on

inflammation-related lncRNAs may impact the activity of

these pathways through inflammatory responses.

Gene mutations are implicated in cancer. Among them,

TP53 is an important tumor suppressor gene and the wild-

type causes apoptosis of cancer cells preventing

carcinogenesis, and TP53 mutation will increase the

probability of carcinogenesis (Guimaraes and Hainaut, 2002).

Pan-cancer studies have shown that TP53 mutations have been

found in a variety of malignancies and the mutation rate is 43.2%

in CRC (Olivier et al., 2010). A large number of studies have

shown that TP53 mutation is related to poor survival in CRC

(Iacopetta, 2003). Here, we found that the TP53 gene was

frequently mutated in the high-risk group. We also found that

the prognostic effect of the IRLncSig was independent of

TP53 mutation status, which again demonstrated the

independence of the IRLncSig in predicting outcomes of

patients in CRC.

Copy number variation is an important component of

genome alterations, which affects gene expression and the

activity of signaling pathways. Here, we found that high-risk

group had more genome alterations. We also found seven

significantly amplificated regions in the high-risk group,

8q22.3, 8q24.3, 12p13.32, 17q11.1, 17q24.2, 20q12, and

20q13.2. The expression of gene SCRIB in region 8q24.3 was

FIGURE 9
Comparison of IRLinSig with other existing prognostic signatures.

Frontiers in Genetics frontiersin.org14

Huang et al. 10.3389/fgene.2022.955240

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.955240


positively correlated with its copy number (Spearman’s r =

0.522). SCRIB gene is closely related to tumors and is

considered to be a key factor of tumor development and

metastasis (Zen et al., 2009; Royer and Lu, 2011). It is

associated with proliferation, apoptosis, EMT and poor

prognosis in CRC (Shen et al., 2021). SCRIB also interacts

with the HIPPO signaling pathway in CRC (Enomoto and

Igaki, 2011). These results clarified that alterations in specific

chromosomal regions may affect the expression of genes, and

further influence a series of signaling pathways and biological

processes in CRC.

Next, we identified five agents, PD.173,074, Pazopanib,

Docetaxel, KU-55933 and Embelin, which may have potential

efficacy for high-risk patients in CRC. Of the five agents,

PD.173,074 (CMap score = −91.88) and Docetaxel (CMap

score = −91.55) were probably the most promising agents.

PD-173074 is a fibroblast growth factor receptor (FGFR)

inhibitor. The FGFR inhibitors have shown significant

antitumor activity against multiple tumor cell lines, including

stomach, lung, bladder, endometrium and breast (Rusnati MP

and Presta, 2007). Many FGFR inhibitors have been developed to

treat various cancers; for example, brivanib (Ayers et al., 2007),

AZD4547 (Gavine et al., 2012), E-3810 (Bello et al., 2011), NP603

(Kammasud et al., 2007), etc. Docetaxel is a tubulin

polymerization inhibitor. Tubulin polymerization inhibitors

inhibit spindle formation by inducing depolymerization

of microtubules, block cells in phase M, and eventually

induce cell apoptosis (Morris and Fornier, 2008).

Therefore, the two drugs are considered to have the most

promising therapeutic potential for patients with high risk

in CRC.

In addition to the tumorigenic effect, inflammation can also

affect the immune system, thereby enhancing the response to

chemotherapy (Apetoh et al., 2008). However, inflammation can

blunt the beneficial effects of chemotherapy in some cases

(Ammirante et al., 2010). Therefore, we explored the

relationship between the IRLncSig and immunotherapy. We

found high-risk group exhibited higher immune cell

infiltration and expression value of immune checkpoints,

suggesting that high-risk patients may be more likely to

respond to immunotherapy. The submap analysis further

confirmed this conclusion, which may provide some help for

the development of clinical treatment strategies for patients

with CRC.

There are some limitations in this study. Firstly, less clinical

information was considered in this study considering the

availability of data. It needs to verify the independence of the

IRLncSig in a larger cohort containing more clinical information.

Secondly, this study conducted a series of bioinformatics analyses

based on public databases and may need further biological

experimental verification. Finally, this study is a prospective

study, and prospective studies may be needed to further

examine the prognostic performance of the IRLncSig.

Conclusion

Collectively, we established a new signature, IRLncSig,

based on sixteen inflammation-related lncRNAs. Our analysis

suggested that the IRLncSig is an independent and effective

prognostic marker and superior to the other four existing

prognostic signatures in CRC. Functional enrichment

analysis, somatic mutation and copy number alterations

were conducted to reveal the biological significance of the

IRLncSig. We performed drug sensitivity predictions and

identified chemotherapeutic agents that might be effective

for high-risk group patients. We also found that high-risk

patients were more likely to respond to immunotherapy,

especially anti-CTLA4 therapy. These findings could

provide some help for the development of clinical

treatment strategies in CRC.
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