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PANoptosis is a newly-discovered cell death pathway that involves crosstalk and

co-ordination between pyroptosis, apoptosis, and necroptosis processes.

However, the roles of PANoptosis-related genes (PRGs) in prognosis and

immune landscape of colon cancer remain widely unknown. Here, we

performed a bioinformatics analysis of expression data of nineteen PRGs

identified from previous studies and clinical data of colon cancer patients

obtained from TCGA and GEO databases. Colon cancer cases were divided

into two PRG clusters, and prognosis-related differentially expressed genes

(PRDEGs) were identified. The patient data were then separated into two

corresponding distinct gene clusters, and the relationship between the risk

score, patient prognosis, and immune landscape was analyzed. The identified

PRGs and gene clusters correlated with patient survival and immune system and

cancer-related biological processes and pathways. A prognosis signature based

on seven geneswas identified, and patients were divided into high-risk and low-

risk groups based on the calculated risk score. A nomogram model for

prediction of patient survival was also developed based on the risk score

and other clinical features. Accordingly, the high-risk group showed worse

prognosis, and the risk score was related to immune cell abundance, cancer

stem cell (CSC) index, checkpoint expression, and response to immunotherapy

and chemotherapeutic drugs. Results of quantitative real-time polymerase

chain reaction (qRT-PCR) showed that LGR5 and VSIG4 were differentially

expressed between normal and colon cancer samples. In conclusion, we

demonstrated the potential of PANoptosis-based molecular clustering and

prognostic signatures for prediction of patient survival and tumor

microenvironment (TME) in colon cancer. Our findings may improve our

understanding of the role of PANoptosis in colon cancer, and enable the

development of more effective treatment strategies.
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Introduction

It is estimated that there are more than 1.9 million new cases

of colorectal cancer (CRC). CRC also caused 935,000 deaths in

2020, accounting for approximately one-tenth of all cancer cases

and deaths. Among all types of cancer, CRC ranks third in

incidence rate but second inmortality (Sung et al., 2021). Patients

with early colon cancer can be surgically treated. However, most

patients with advanced colon cancer experience cancer

recurrence and metastasis, and their 5-years survival rates are

less than 10% (Bhandari et al., 2017; Doonan et al., 2017; Russo

et al., 2019). With the development of chemotherapy and

targeted drugs, the overall survival rate of patients with colon

cancer has been significantly higher than that in the past. In

recent years, progress in tumor immunotherapy and the

application of immune checkpoint inhibitors have led to

improvements in cancer treatment. Programmed cell death

protein 1 (PD-1), first discovered in 1992, is a 288 amino acid

protein expressed on the surface of T-cells and is involved in

apoptosis (Kouo et al., 2015). In 2014, the FDA approved small

cell blocking antibody (volumab) for the treatment of advanced

lung cancer; volumab was further approved for the treatment of

melanoma in 2015.

Cell death is a basic physiological process occurring in all

organisms. Its role spans from embryonic development, organ

maintenance, and aging, to coordinating immune responses and

autoimmunity (Bertheloot et al., 2021). Among the proposed

forms of programmed cell death (PCD), pyroptosis, apoptosis, and

necroptosis are the most clearly defined. These processes involve

complex molecular mechanisms responsible for the initiation,

transduction, and execution of cell death (Galluzzi et al., 2018;

Kesavardhana et al., 2020). Early studies on cell death have mainly

focused on the unique procedures and biochemical functions under

these separatemechanisms. However, recent studies have emphasized

on the redundancies and crosstalk among them. PANoptosis is a

newly discovered concept that highlights the crosstalk and

coordination between pyroptosis, apoptosis, and necroptosis

(Malireddi et al., 2019; Samir et al., 2020). Dysregulated cell death

and inflammatory responses are related to tumorigenesis. Hanahan

(2022) suggested that resistance to cell death is one of the basic

hallmarks of cancer. Caspase-8 (CASP8) is a molecular switch that

controls pyroptosis, apoptosis, and necroptosis (Fritsch et al., 2019).

Jiang et al. reported that CASP8 is a key protein in the crosstalk

signaling pathway of PANoptosis in cancer (Jiang et al., 2021). A

recent study (Karki et al., 2021a) showed that ZBP1 activates

PANoptosis through RIPK3 signaling, ADAR1 negatively regulates

ZBP1-mediated apoptosis, and blocking ADAR1 activity contributes

to apoptosis and inhibits tumorigenesis. Acquiring more knowledge

about the effects of PANoptosis on cancer is vital for developing new

strategies for cancer therapy.

Many studies have focused on constructing tumor classifications

and prognostic signatures based on gene and non-coding RNA

expression levels to predict the survival and immune landscape of

patients with cancer. In recent years, genes and non-coding RNA

related to various forms of cell death have been explored in many

studies, including autophagy-, ferroptosis-, pyroptosis-, necroptosis-

related genes and lncRNAs. Wang et al. (2021) identified six

autophagy-related genes and developed a prognostic signature

that can independently predict prognosis and reflect overall

immune response intensity in the colon cancer

microenvironment. Nie et al. (2021) constructed a novel

ferroptosis-related gene signature to predict the prognosis and

immune status of patients with colon cancer. Song et al. (2021)

used pyroptosis-related genes to identify molecular subtypes and

develop a prognostic model for characterizing tumor

microenvironment infiltration in colorectal cancer. A recent

study (Zhao et al., 2021) also used necroptosis-related lncRNAs

to predict prognosis and identify molecular classifications to

distinguish between cold and hot tumors in gastric cancer.

However, genes related to the crosstalk and coordination

between different types of cell death have not been well studied.

Our study demonstrated that PANoptosis-based molecular

clustering and prognostic signatures could predict prognosis and

the intratumoral immune landscape in patients with colon

cancer. First, 951 colon cancer patients were divided into two

discrete PRG clusters based on expression levels of PANoptosis-

related genes (PRGs). Patients were then classified into two

clusters based on differentially expressed genes (DEGs)

identified from the two PRG clusters. A risk score was further

calculated, and a prognostic signature was established to predict

overall survival (OS) and response to immunotherapy in colon

cancer patients.

Materials and methods

Data acquisition

Gene expression data (fragments per kilobase million,

FPKM) and relevant clinical information of colon cancer

patients were retrieved from the TCGA (https://portal.gdc.

cancer.gov) and GEO (https://www.ncbi.nlm.nih.gov/geo/, ID:

GSE39583) databases. Nineteen PANoptosis-related genes

(PRGs) were identified from prior studies (Malireddi et al.,

2019; Karki et al., 2020; Malireddi et al., 2020; Samir et al.,

2020; Briard et al., 2021; Jiang et al., 2021; Lee et al., 2021; Place

et al., 2021; Nguyen and Kanneganti, 2022), and the genes are

listed in Supplementary Table S1. The FPKM values of TCGA

colon adenocarcinoma (COAD) were transformed into

transcripts per kilobase million (TPM) using the R software
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(version 4.1.1). TCGA and GEO data were combined and batch

effects were eliminated using the Combat algorithm of the sva R

package. Patients with no follow-up data or incomplete clinical

information were excluded from the study. Finally, 951 patients

were included in the study. The clinical information of patients

with colon cancer is presented in Supplementary Table S2.

Consensus clustering analysis of
PANoptosis-related genes

A consensus clustering analysis based on PRGs expression was

performed to investigate the connections between PRGs and colon

cancer subtypes using the ConsensusClusterPlus R package. The

classification with the highest intragroup correlations and the lowest

intergroup correlations was identified. The prognosis of the two

clusters was compared using the Kaplan-Meier (KM) method and

log-rank test. Principal component analysis (PCA) was performed

using the stats R package. Differences in clinical features between

two clusters were analyzed using the Wilcoxon test, and DEGs

between two clusters were identified with the criteria of |log fold

change (FC)| >1 and p-value < 0.05, using limma package. To

explore the differences in biological processes between the two PRG

clusters, we performed gene set variation analysis (GSVA) using gsva

R package. Single-sample gene set enrichment analysis (ssGSEA)

was used to calculate the scores of infiltrating immune cells and

evaluate the activity of immune-related functions.

Gene oncology and kyoto encyclopedia of
genes and genomes analyses

To understand the biological functions and pathways related

to the DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses were performed using the

ggplot2, Bioconductor, and org. Hs.eg.db R packages. p-values and

q-values < 0.05 were considered statistically significant.

Construction of the PANoptosis-related
prognostic signature

Prognosis-related DEGs (PRDEGs) were selected using a

univariate Cox regression analysis. To identify additional

PANoptosis-related genes for signature construction. We

classified patients into two distinct clusters based on the

expression of PRDEGs. Survival time, clinical features, and

PRG expression were compared between the two gene

clusters, and DEGs between gene clusters A and B were

identified. Finally, seven genes were included to construct the

prognostic signature after least absolute shrinkage and selection

operator (LASSO) regression analysis and multivariate Cox

regression analysis using the survival, survminer, and glmnet R

packages. The risk score was calculated based on the expression

levels of the seven genes, and the patients were divided into high-

and low-risk groups using the median risk score. The KM

analysis was used to evaluate survival differences between

high-risk and low-risk groups, and the receiver operating

characteristic (ROC) and area under the curve (AUC) were

used to test the prediction efficiency of the risk score. A

nomogram model was developed based on risk scores and

clinical factors. Calibration graphs were constructed to show

the differences between the nomogram-predicted and actual

survival rates of colon cancer patients.

Evaluation of the tumor
microenvironment between the high- and
low-risk groups

To better understand the relationship between the risk score

and tumor microenvironment (TME), CIBERSORT was used to

quantify the abundance of infiltrating immune cells in

heterogeneous samples from the high- and low-risk groups.

The correlation between the abundance of immune cells and

the seven genes was analyzed. TME scores, including stromal,

immune, and ESTIMATE scores, of high- and low-risk groups

were also compared using the Wilcoxon signed-rank test.

Analyses of mutations, microsatellite
instability and cancer stem cell index
between high- and low-risk groups

To explore the gene mutations in colon cancer patients in

high- and low-risk groups, we generated the mutation annotation

format (MAF) using the maftools R package. The tumor

mutation burden (TMB) score of patients was calculated, and

the correlation between the risk score and TMB was analyzed

using the Spearman method. Furthermore, we analyzed the

association between risk groups and MSI and CSC index.

Response to immunotherapy and
chemotherapeutic drugs

The Cancer Immunome Atlas (TCIA, https://tcia.at/) is a

dataset containing TCGA data of 20 solid cancers and more than

8,000 tumor samples. It can be used to calculate the

immunophenotypic score (IPS) of tumor samples to predict

the response to cytotoxic T lymphocyte antigen-4 (CTLA-4)

and programmed cell death protein 1 (PD-1) blockers

(Charoentong et al., 2017). IC50 is half of the maximum

inhibitory concentration and represents the concentration of

the drug required for 50% inhibition of cancer cells. To

determine the relationship between the risk score and

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2022.955355

https://tcia.at/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.955355


response to immunotherapy and chemotherapeutic drugs,

checkpoint expression, immune subtypes, IPS of tumor

samples, and the IC50 of drugs in the two risk groups were

calculated and compared.

The verification of LGR5, VSIG4, GZMB,
and ITLN1 by quantitative real-time
polymerase chain reaction

Ten pairs of colon cancer and corresponding non-tumor

tissues were collected from colon cancer patients in The First

Affiliated Hospital of Anhui Medical University, the samples

were preserved at −80°C. The study was approved by the Ethics

Committee of The First Affiliated Hospital of Anhui Medical

University. All participants signed an informed consent form.

Total RNA was extracted using The HiPure Universal RNA Kit

(Shanghai, Magen). Extracted RNA was reverse transcribed into

cDNA using the RevertAid First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, United States). The concentration of

cDNAwas measured using TB Green Premix Ex Taq II (GenStar,

China) under the LightCycler480 System (Applied Biosystems,

Waltham,MA, United States). The relative expression levels were

computed using the 2−ΔΔCt method, normalizing with 36B4. The

primer sequences for PCR amplification are shown in

Supplementary Table S3. The differences of expression levels

between colon cancer tissues and adjacent non-cancer tissues

were compared using unpaired t-tests. The graphs were drawn

using GraphPad Prism software (version 9.0.0).

Results

Landscape of genetic variation of
PANoptosis-related genes in colon cancer

Expression data of 457 COAD patients were downloaded

from the TCGA database, and expression levels of PRGs were

FIGURE 1
Genetic and transcriptional alterations of 19 PRGs in colon cancer. (A) Mutation frequencies of 19 PRGs in colon cancer patients from TCGA
cohort; (B) Locations of CNV alterations in PRGs on 23 chromosomes; (C) Frequencies of CNV gain, loss, and non-CNV among PRGs; (D) Expression
levels of PRGs between normal and tumor samples. **p < 0.01; ***p < 0.001.
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compared between 41 normal and 473 tumor samples. Nineteen

PRGs from previous studies were included in this study. The

somatic mutation incidence in the 19 PRGs of colon cancer

patients is shown in Figure 1A; 81 (20.3%) of the 399 samples had

altered PRGs. Among the 19 PRGs, NLRP3 showed the highest

mutation frequency. Figure 1B shows the locations of the CNV

alterations in PRGs on their chromosomes. Twelve PRGs were

differentially expressed in colon cancer samples compared with

their expression in normal samples. Somatic copy number

alterations of the 19 PRGs were analyzed; ZBP1, GSDMD,

AIM2, and NLRP3 had the highest copy number variation

(CNV), whereas CASP7, CASP1, CASP6, and IRF3 showed

significant CNV decreases (Figure 1C). Among these

12 PRGs, seven genes were upregulated in tumor samples,

including CASP8, FADD, TAB3, PSTPIP2, PARP1, MLKL, and

TRADD, whereas the other five genes, including NLRP3, TAB2,

CASP7, RIPK1, and RIPK3, were downregulated in tumor

samples (p < 0.05) (Figure 1D).

Identification of PANoptosis-related gene
clusters in colon cancer

To explore the interactions between the 19 PRGs and their

prognostic significance, a network was constructed, as shown in

Figure 2A. Kaplan–Meier curves of the relationship between

PRGs expression and the prognosis of colon cancer patients were

shown in Supplementary Figure S1. Consensus clustering

analysis was performed to explore the relationship between

PRG expression and tumor classification (Supplementary

FIGURE 2
PRGclusters and clinical characteristics between colon cancer samples in two clusters. Relationship of tumor microenvironment in two
PRGclusters. (A) Interactions among PRGs in colon cancer. The lines among the PRGs represents their interactions. Blue and red represent negative
and positive correlations. (B) Two PRGclusters were defined using consensus clustering analyses. (C) KM curve indicated that PRGcluster a had
longer survival time than PRGcluster B (p = 0.048). (D) PCA showed good distiction between two PRGclusters. (E) Heatmaps showed the
relationship between PRGclusters and clinical features and PRGs expression in colon cancer patients. (F) GSVA showed the enriched pathways in
PRGclusters. (G) ssGSEA investigated the differences of immune cell infiltration between two clusters. *p < 0.05; **p < 0.01.
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FIGURE 3
Identification of geneclusters based onDEGs. (A–B)GOand KEGG analyses showed the relevant biological processes (BP), cellular components
(CC), molecular functions (MF) and pathways. (C)Heatmap showed the association between genecluster and clinical features. (D) KM curves showed
genecluster A had a more favorable prognosis. (E) Expression levels of PRGs in two geneclusters. *p < 0.05; **p < 0.01; and ***p < 0.001.
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Figure S2). Clusters with the highest intragroup correlations and

lowest intergroup correlations were identified. By increasing the

clustering variable (k), we found that when k = 2, classification

met the standard. Colon cancer patients were divided into two

PRG clusters (A and B) based on PRG expression levels

(Figure 2B). As shown in Figure 2C, patients in PRG cluster

A had a significantly longer survival time than those in cluster B

(p = 0.048). PCA showed a satisfactory separation between PRG

cluster A and B (Figure 2D). Figure 2E shows the association

between PRG clusters and clinical features and PRG expression

in colon cancer patients. Tumor infiltration and lymph node

metastasis correlated with PRG clusters (p < 0.05). GSVA showed

that PRG cluster A was significantly enriched in immune-related

pathways, including natural killer cell-mediated cytotoxicity,

antigen processing and presentation, primary

immunodeficiency, B cell, and T-cell receptor signaling

pathways (Figure 2F). To evaluate the differences in immune

cell infiltration between the two clusters, ssGSEA was performed,

and the results showed that PRG cluster A had higher immune

cell infiltration levels, including those of activated B cells,

activated CD4 + T-cells, activated CD8 + T-cells, activated

dendritic cells, macrophages, mast cells, and natural killer cells

(Figure 2G).

Identification of gene clusters based on
differentially expressed genes

DEGs were identified, and GO and KEGG analyses showed

the relevant biological processes (BP), cellular components (CC),

molecular functions (MF), and pathways (Figures 3A,B). These

DEGs were mainly related to the BP of T cell activation, leukocyte

cell-cell adhesion, and response to interferon-gamma, and were

correlated with the CC such as the external side of the plasma

membrane, major histocompatibility complex (MHC) class II

protein complex, and MHC protein complex. Furthermore, they

were involved in the MF of immune receptor activity, chemokine

activity, and antigen binding. According to KEGG analysis, these

DEGs participate in certain cancer-related pathways, including

the chemokine signaling pathway, NOD-like receptor signaling

pathway, and NF-κB signaling pathway. PRDEGs were identified

using univariate Cox regression analysis. Patients were then

divided into two clusters (gene cluster A and gene cluster B)

based on PRDEG expression (Supplementary Figure S3;

Figure 3C) shows that cluster A had higher survival rates than

cluster B (p = 0.002). In Figure 3D, the boxplot shows that FADD,

CASP6, CASP7, IRF1, AIM2, ZBP1, CASP1, RIPK1, RIPK3, and

TRADD were upregulated in cluster A, whereas TAB3 and

PARP1 were downregulated in cluster B (p < 0.05). The

heatmaps show the association between gene clusters and

clinical features and between PRDEGs expression and PRG

clusters. Furthermore, gene clusters were significantly related

to tumor infiltration and metastasis (p < 0.05) (Figure 3E).

Development abd validation of the
PANoptosis-related prognostic signature

LASSO and Cox regression analyses were performed to

screen for prognosis-related DEPRGs (Figures 4A,B). After

selection, seven genes were included in the calculation of the

risk score based on the following formula: Risk score =∑n
i�1βi*λi,

where n represents the number of genes included to construct the

signature, and βi and λi represent the regression coefficient and

gene expression value, respectively. Boxplots showed that PRG

cluster B and gene cluster B had higher risk scores than PRG

cluster A and gene cluster A (Figures 4C,D). A Sankey diagram

showed the associations among PRG cluster, gene cluster, risk

groups, and survival status (Figure 4E). Fifteen of the nineteen

PRGs were differentially expressed between the high- and low-

risk groups (Figure 4F). Seven genes were used to construct the

prognostic signature; Figure 5A shows the expression differences

of these seven genes between the two risk groups. Based on the

risk score, patients were divided into high- and low-risk groups,

and patients with higher risk scores had a higher risk of mortality

(Figure 5B). As shown in Figure 5C, the KM curve was plotted to

show the survival differences between the two groups. Patients in

the high-risk group had a significantly lower probability of

survival than those in the low-risk group (p < 0.001). ROC

curves were drawn to test the prediction efficiency of the risk

score, and the AUCs for one-, three-, and 5-years survival were

0.612, 0.650, and 0.676, respectively (Figure 5D). The results of

the risk score in TCGA (Supplementary Figure S4) and

GSE39582 (Supplementary Figure S5) cohorts were also

shown. The risk score and other clinical features were used to

construct a nomogram model (Figure 5E). Calibration plots

showing the differences between the nomogram-predicted and

actual survival probabilities of colon cancer patients showed that

the predicted survival probabilities were close to the actual

survival probabilities (Figure 5F), indicating that this

nomogram model accurately predicted the survival of colon

cancer patients. The results for three independent validation

cohorts, which were GSE17536 (Figure 5G, p = 0.041, 1-year

AUC = 0.598, 3-years AUC = 0.624, 5-years AUC = 0.589),

GSE17537 (Figure 5H, p = 0.048, 1-year AUC = 0.728, 3-years

AUC = 0.624, 5-years AUC = 0.542), and GSE29621 (Figure 5I,

p = 0.011, 1-year AUC = 0.763, 3-years AUC = 0.717, 5-years

AUC = 0.702), revealed that the risk score could efficiently

predict patient survival.

Comparative evaluation of the tumor
microenvironments of high- and low-risk
groups

Figure 6Ashows the correlation between the risk score and

immune cell abundance: M0 macrophages, M2 macrophages,

activated mast cells, and neutrophils were positively related to the
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risk score, while naive B cells, activated dendritic cells, resting

dendritic cells, M1 macrophages, resting mast cells, resting NK

cells, plasma cells, activated memory CD4 + T-cells, resting

memory CD4 + T-cells, CD8 + T-cells, and follicular helper

T-cells were negatively related to the risk score. The relationship

between the abundance of immune cells and seven genes in the

prognostic signature was also evaluated (Figure 6B). The TME

scores in the two risk groups were calculated, and the high-risk

group was found to have a higher stromal and lower immune

score (Figure 6C).

Comparative analysis of mutations,
microsatellite instability and cancer stem
cell index in high- and low-risk groups

Differences in somatic mutations between the two risk

groups of colon cancer patients were analyzed; the five most

mutated genes in the high- and low-risk groups were APC, TP53,

TTN, KRAS, and SYNE1 (Figures 7A,B). TMB (Figure 7C) and

MSI (Figure 7D) did not show a significant relationship with the

risk score, while CSC (Figure 7E) was negatively correlated with

the risk score (R = −0.15, p < 0.01).

Response to immunotherapy and
chemotherapeutic drugs

To analyze the ability of risk score to predict potential

checkpoint blockade therapy, boxplots were drawn to show

the differences in immune checkpoint gene expression

between the high- and low-risk groups (Figure 8A).

Checkpoint genes, including CTLA4, LAG3, ID O 2,

CD274, and PDCD1, had higher expression levels in low-

risk groups. In Figure 8B, cluster1 (C1), C2, C3, and

C4 represent wound healing, IFN-gamma dominant,

inflammatory, and lymphocyte depleted immune

subgroups, respectively (Thorsson et al., 2019). The results

showed that C3 samples were almost equally distributed

between the two groups, but there were more C1 and

C4 samples and fewer C2 samples in the high-risk

subgroup than in the low-risk subgroup. Violin plots

showed the relationship between IPSs and risk groups; a

higher IPS represented a better response to PD-1 and CTLA-4

blockers (Figure 8C). We also found that eight drugs had

lower IC50 values in the high-risk group, including

bexarotene, bicalutamide, dasatinib, doxetacel, elesclomol,

imatinib, midostaurin, and pazopanib (Figure 8D).

FIGURE 4
Identification of 7 genes for calculating the risk score and the relationship betweenmolecular classifications, PRG expression levels and the risk
score. (A–B) The LASSO regression analysis and partial likelihood deviance on the prognostic genes. (C–D) Association between risk score and
molecular classifications. (E) Sankey plot showed the correlation between molecular classifications, risk groups and survival status in colon cancer
patients. (F) Expression levels of PRGs in two risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001.
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FIGURE 5
Construction and validation of the prognostic signature. (A) Heatmap showed the expression of 7 genes in two risk groups. (B) Risk score and
survival outcome of each case. (C) KM curve showed that patients in high-risk group had a worse prognosis. (D) The AUC for 1-, 3- and 5-years
survival were 0.612, 0.650, and 0.676, respectively. (E)Nomogram using risk score and other clinical features were constructed for predicting survival
of colon cancer patients. (F)Calibration graphs investigated that the actual survival rates of colon cancer patients were close to the nomogram-
predicted survival rates. The KM and ROCmethodswere used to evaluate the efficiency of the risk score at predicting patient survival in GSE17536 (G),
GSE29621 (H), and GSE38832 (I) CRC datasets.
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Validating expression levels of LGR5,
VSIG4, GZMB, and ITLN1 via quantitative
real-time polymerase chain reaction

Among the seven genes in the prognostic signature, LGR5,

VSIG4, GZMB, and ITLN1 were significantly differentially

expressed in colon cancer samples from GEPIA database

(Supplementary Figure S6). Expression levels of LGR5, VSIG4,

GZMB, and ITLN1 were tested in colon cancer and adjacent

normal tissues via qRT-PCR method. Expression of LGR5 was

significantly higher in tumor tissues (Figure 9A) whileVSIG4 had

higher expression levels in normal tissues (p < 0.05) (Figure 9B).

FIGURE 6
Evaluation of tumor microenvironment in high- and low-risk groups. (A) Relationship between risk score and different immune cell types. (B)
Correlation between the abundance of immune cells and seven genes in the prognostic signature. (C) Correlation between risk score and immune-
related scores. *p < 0.05; **p < 0.01; and ***p < 0.001.
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There was no significant differences in the expression levels of

GZMB (Figure 9C) and ITLN1 (Figure 9D) between normal and

tumor samples.

Discussion

Cell death usually does not occur independently but in a

mixed form because cells can undergo extensive crosstalk

under pathological conditions (Zheng and Kanneganti,

2020; Karki et al., 2021b). Previous research (Karki et al.,

2021b) suggests that there exists a mixed form of cell death

involving pyroptosis, apoptosis, and necroptosis, called

PANoptosis. In recent years, many studies have

investigated the effects of different forms of cell death on

various human diseases, especially malignant tumors. Some

studies have revealed molecular classifications of tumors and

constructed prognostic models based on genes or non-coding

RNAs relevant to different forms of cell death. However, the

effects of PANoptosis in colon cancer have not been well

studied.

In this study, 19 PRGs were identified. In previous studies, most

of these 19 PRGs were found to be related to CRC. Yin et al. (2010)

suggested that overexpression of the exogenous FADD gene can

significantly improve the apoptosis-inducing effect of 5-fluorouracil

on colorectal adenocarcinoma cells. Shi et al. (2021) demonstrated

that lowNLPR3 expression is related to a better prognosis of CRC. Li

et al. (2020) showed that TAB3 was upregulated in CRC tissues and

promoted CRC cell growth. It was also found that AIM2 inhibits

CRC cell proliferation and migration (Xu et al., 2020). Colon cancer

cases from the TCGA and GEO databases were divided into two

distinct PRG clusters. PRG cluster A had a better prognosis than

PRG cluster B. Tumor infiltration and lymph node metastasis were

correlated with the PRG clusters. Results of GSVA and ssGSEA

showed that PRG cluster A was significantly enriched in immune-

related pathways and had higher immune cell infiltration levels.

Tumor-infiltrating immune cells can affect the response to anti-

checkpoint blockade. Furthermore, tumor-infiltrating CD4 + T-cells

can upregulate programmed cell death protein 1 (PD-1), T-cell

immunoglobulin and mucin domain-3 (TIM-3), cytotoxic T

lymphocyte-associated protein-4 (CTLA-4), and lymphocyte-

activation-gene-3 (LAG-3) (Toor et al., 2019). PRDEGs between

FIGURE 7
Comprehensive analyses of risk score in colon cancer. The somatic gene mutations in high-risk group (A) and low-risk group (B). TMB (C) and
MSI (D) did not show significant correlations with risk score while CSC (E) negatively correlated with risk score.
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two PRG clusters were also identified, and patients were classified

into two distinct clusters. GO andKEGGanalyses revealed that these

PRDEGs were associated with certain cancer-related biological

functions and pathways, indicating that these PRDEGs were

potentially associated with malignant tumors. Gene cluster A had

a longer survival time than gene cluster B, and the two clusters were

correlated with tumor infiltration and metastasis.

LASSO and multivariate Cox regression analyses were used to

screen genes to construct a prognostic signature. Finally, the risk

score was calculated based on the expression levels of CARD16,

LAP3, CCR7, VSIG4, LGR5, GZMB, and ITLN1. Some of these seven

genes have been found to be associated with various types of

malignant tumors. LAG3 can promote glioma progression by

regulating the proliferation, migration, and invasion of glioma

cells (He et al., 2015), and inhibition of LAG3 suppresses the

invasion of ovarian cancer (Wang et al., 2015). Bill et al. (2022)

suggested that CCR7 plays distinct roles in directing tumor cells to

the lymph nodes, skin, and central nervous system. Zhu et al. (2018)

demonstrated that downregulated VSIG4 expression was related to

poor prognosis in hepatocellular carcinoma patients with hepatitis B

infection. LGR5 has been identified as a strong cancer stem cell

biomarker in CRC (Kamakura et al., 2022). These results suggest

that these seven genes could serve as potential biomarkers for cancer

diagnosis and therapy. Patients were classified into high- and low-

risk groups based on the risk score, and the KM curve showed that

the prognosis of patients in the low-risk group wasmuch better than

FIGURE 8
Response to anti-tumor tharapy of colon cancer patients in two risk groups. (A) The differences of immune checkpoint gene expression in high-
risk and low-risk groups. (B)Heatmap and table showing the distribution of colon cancer immune subtypes between two risk groups. (C) Violin plots
showed the relationship between IPSs and risk groups. (D) Eight therapeutic drugs showed significant IC50 differences. *p < 0.05; **p < 0.01; and
***p < 0.001.
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that of patients in the high-risk group. ROC analyses were

performed to test the prediction efficiency of the risk score.

Nomograms are widely used as prediction tools in oncology,

particularly for survival prediction (Iasonos et al., 2008;

Balachandran et al., 2015). A nomogram model was established

according to the risk score and other clinical characteristics to

accurately predict the survival time of patients, and the

calibration plots showed that the actual survival rates were close

to the nomogram-predicted survival rates. This indicated that the

nomogram model had high accuracy in predicting patient survival.

The correlation between the risk score and immune cells was

also analyzed; four types of immune cells were positively related to

the risk score and the other 11 types of immune cells were negatively

correlated with the risk score. The seven genes also showed

significant associations with various types of immune cells. Dai

et al. (2020) reported that an immune score based on

immunogenomic analysis can indicate the efficacy of

immunotherapy and chemotherapy. The high-risk group had

higher stromal and lower immune scores, suggesting that the

low-risk group might have a better response to antitumor

therapy. CSCs are a subset of tumor cells associated with tumor

metastasis, recurrence, and drug resistance. Similar to normal stem

cells, CSCs exhibit self-renewal and differentiation abilities (Singh

and Chellappan, 2014). The risk score was also related to the CSC

index, indicating that the risk score may be related to colon cancer

progression. The differences in immune checkpoint gene expression

in the high-risk and low-risk groups were also analyzed, and the

expression levels of checkpoints, including CTLA4, LAG3, ID O 2,

CD274, and PDCD1, were found to be higher in the low-risk

group. The correlation between risk groups and previously

identified immune subtypes was analyzed; the results showed

that the inflammatory samples were almost equally distributed

between the two groups, but there was more wound healing and

lymphocyte depletion and fewer IFN-gamma-dominant samples in

the high-risk group than in the low-risk group. The IPSs of the two

risk groups suggested that the low-risk group had a better response

to PD-1 and CTLA-4 blockade therapy. IC50 values indicated that

the low-risk group was more sensitive to immunotherapeutic and

chemotherapeutic drugs, and the results confirmed our previous

conclusion based on TME-related analyses. The findings of our

study can be applied to guide clinical immunotherapy and

chemotherapy in patients with colon cancer and help us to

further understand the effects of PANoptosis on colon cancer.

The expression levels of LGR5, VSIG4, GZMB, and ITLN1 were

further validated using qRT-PCR method, the results showed that

LGR5was significantly upregulated in colon cancer whileVSIG4was

downregulated in colon cancer compared with normal tissues,

indicating that LGR5 and VSIG4 may be potential biomarkers for

diagnosis and therapy in colon cancer.

Nevertheless, our study has some limitations. Most analyses

were based on data from public datasets, and all samples were

obtained retrospectively, whichmay have caused an inherent case

selection bias. In addition, limitedmolecular biology experiments

were performed in the study, and further in vitro and in vivo

experiments are needed to validate our findings. Finally, some

valuable clinical features such as surgery, neoadjuvant

chemotherapy, and tumor markers were not considered in our

study. As such, clinical cases are needed to confirm our

conclusions.

In summary, we constructed a PANoptosis-based molecular

clustering and prognostic signature that plays a vital role in

predicting survival, TMB, and guiding clinical therapy. The

findings of this study may improve our understanding of

PANoptosis in colon cancer and help develop more effective

treatment strategies. However, this study has some limitations,

and additional experiments and clinical cases are needed to

validate our findings.
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FIGURE 9
Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of LGR5 (A), VSIG4 (B), GZMB (C) and ITLN1 (D) expression in 10 pairs of
colon cancer tissues and adjacent non-cancer tissues. *p < 0.05; ns p > 0.05.
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