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Breast cancer (BC) has the highest incidence rate of all cancers globally, with

high heterogeneity. Increasing evidence shows that lactate and long non-

coding RNA (lncRNA) play a critical role in tumor occurrence, maintenance,

therapeutic response, and immunemicroenvironment. We aimed to construct

a lactate-related lncRNAs prognostic signature (LRLPS) for BC patients to

predict prognosis, tumor microenvironment, and treatment responses. The

BC data download from the Cancer Genome Atlas (TCGA) database was the

entire cohort, and it was randomly assigned to the training and test cohorts at

a 1:1 ratio. Difference analysis and Pearson correlation analysis identified

196 differentially expressed lactate-related lncRNAs (LRLs). The univariate

Cox regression analysis, least absolute shrinkage and selection operator

(LASSO), and multivariate Cox regression analysis were used to construct

the LRLPS, which consisted of 7 LRLs. Patients could be assigned into high-risk

and low-risk groups based on the medium-risk sore in the training cohort.

Then, we performed the Kaplan–Meier survival analysis, time-dependent

receiver operating characteristic (ROC) curves, and univariate and

multivariate analyses. The results indicated that the prognosis prediction

ability of the LRLPS was excellent, robust, and independent. Furthermore, a

nomogram was constructed based on the LRLPS risk score and clinical factors

to predict the 3-, 5-, and 10-year survival probability. The GO/KEGG and GSEA

indicated that immune-related pathways differed between the two-risk

group. CIBERSORT, ESTIMATE, Tumor Immune Dysfunction and Exclusion

(TIDE), and Immunophenoscore (IPS) showed that low-risk patients had

higher levels of immune infiltration and better immunotherapeutic

response. The pRRophetic and CellMiner databases indicated that many

common chemotherapeutic drugs were more effective for low-risk

patients. In conclusion, we developed a novel LRLPS for BC that could

predict the prognosis, immune landscape, and treatment response.
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Introduction

Breast cancer (BC) is the most common tumor and ranks fifth in

cancer-related death globally (Harbeck and Gnant, 2017). Although

early detection, diagnosis, and treatment for BC havemade significant

progress, cancer recurrence, distantmetastasis, and drug resistance are

still prevalent in patients with BC (Jabbarzadeh kaboli et al., 2020).

Many stratification terms have been built for the precise treatment of

diseases, and polygenic makers may be more accurate than

conventional methods (Li et al., 2019). BC is most commonly

classified into five subtypes using PAM50, including luminal A,

luminal B, HER2-enriched, normal-like, and basal-like (Harbeck

et al., 2019). However, the considerably heterogeneous nature of

tumors limits the broad applicability of typing (Waks and Winer,

2019). It is essential to investigate new potential markers for

prognostic prediction and provide patients personalized treatments.

Lactate is the endpoint of anaerobic glycolysis and usually is

considered an endpoint or waste metabolite in cancer. Recent studies

indicate that lactate is an essential regulator of cancer development,

maintenance, tumormicroenvironment, andmetastasis (Doherty and

Cleveland, 2013; Hayes et al., 2021). In breast cancer, GPR81 is

upregulated and promotes tumor growth by releasing lactate from

tumor cells (Longhitano et al., 2022). Lactate dehydrogenase A might

be a prognostic marker in clear cell renal cell carcinoma (Girgis et al.,

2014). Lactate/BDNF/TrkB signaling could mediate epithelial-stroma

interaction and lead to anlotinib resistance in gastric cancer (Jin et al.,

2021). In addition, lactate takes part in epigenetic regulation. Histone

lysine lactylation is involved in regulating gene transcription (Izzo and

Wellen, 2019).

Numerous studies have demonstrated that lactate is relevant to

the tumor immune microenvironment (TIME) and

immunotherapy. Elevated lactate levels are the primary cause of

tumor microenvironment (TME) acidosis, suppressing CD8 + and

CD4 + effector T cell function, and favoring immunosuppressive

Treg development (Nakagawa et al., 2015; Corbet and Feron, 2017;

Erra díaz et al., 2018). As to Innate immunity, tumor-associated

macrophages (TAMs) could subvert anti-tumor immune responses

and act as a negative prognostic marker (Gabrilovich et al., 2012).

Lactate could promote transcriptional polarization of TAM towards

the tumor-promoting M2 phenotype in cervical (Stone et al., 2019),

breast (Mu et al., 2018), lung cancer and melanoma (Zhang et al.,

2019a). In addition to surgery, chemotherapy, radiotherapy and

targeted therapies, immunotherapy is the fifth element of cancer

treatment. However, the immunosuppressive heavy tumor

microenvironment often limits immunotherapy and other

therapeutic efficacy. Studies have found that elevated lactate levels

can affect the therapeutic efficacy and overall survival of immune

checkpoint inhibitors for melanoma (Kelderman et al., 2014),

esophageal squamous cell carcinoma (Wang et al., 2019), and

non-small cell lung cancer (Zhang et al., 2019b).

LncRNA consists of RNA molecules with at least 200 base pairs

that originate from the non-coding region of the genome, involved in

almost all human biological processes and series of diseases (Esteller,

2011; Hauptman and Glavač, 2013; Fatica and Bozzoni, 2014).

Several studies have reported that lncRNAs could regulate lactate

metabolism and immune status in different cancers. The lncRNA

SNHG5 regulates BACH1 via miR-299 to promote glycolysis and

proliferation in breast cancer cells (Huang et al., 2022). LncRNA

NEAT1-associated aerobic glycolysis in prostate cancer could blunt

tumor immunosurveillance by T cells (Xia et al., 2022). Furthermore,

lncRNAs could be used as novel immunotherapeutic tools against

cancer, and immunotherapy based on lncRNAs could increase the

effectiveness and reduce off-target effects (Kaur et al., 2022).

Together, lncRNA plays a role in diagnosing, prognosis, and

treating BC (Rodríguez bautista et al., 2018).

Research has shown the critical value of lactate and lncRNAs in

cancer classification, prognosis, and immunotherapy (Sun et al.,

2022; Xie et al., 2022; Xu et al., 2022). However, lactate-related

lncRNAs have not beenwell studied in BC. Our study developed and

verified an LRLPS to predict BC patients’ prognosis, immune

infiltration and therapeutic response by applying bioinformatics.

As a result, our findings may provide new clues for cancer prognosis

evaluation and treatment guidance.

Materials and methods

Data collection

The R package “TCGAbiolinks” was used to acquire

transcriptome profiling, simple nucleotide variations, and

the clinical information of TCGA-BRCA patients

(Colaprico et al., 2016). We excluded male patients and

retained 1096 BC and 112 normal samples for the

differential analysis. Furthermore, 916 BC samples with

the OS > 30 days were included in the prognostic analysis.

They were randomly divided into the training (n = 458) and

test (n = 458) cohorts at a 1:1 ratio using the “caret” R

package. Clinical characteristics of the three cohorts were

analyzed with the “tableone” R package (Suppplementary

Table S1). In the subsequent clinicopathological

correlation analysis, we excluded patients with incomplete

information. We acquired 284 lactate-related genes by

querying the Molecular Signatures Database with “lactic”

as the search keyword (Suppplementary Table S2)

(Liberzon et al., 2015).
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Identification of differential expressed
lactate-related lncRNAs in Breast cancer

The “EdgeR” R package assessed the differentially expressed

lncRNAs and lactate-related genes (p < 0.05, |log2FC| = 1). For

further study, we retained differential expression lncRNAs expressed

in more than half of the patients. Further identification of lactate-

related lncRNAs was performed with Pearson correlation analysis at

a standard of |R| > 0.4 and the p-value < 0.001.

Construction and validation of the lactate-
related lncRNAs prognostic signature

The univariate Cox regression analysis identified the

prognostic LRLs in the training cohort. We performed LASSO

with the R package “glmnet” to avoid overfitting (Friedman et al.,

2010). Then, the LRLPS was built with the multivariate Cox

regression analysis based on the stepwise Akaike information

criterion (stepAIC) value. According to the LRLPS, each sample

could get the risk score with the following formula: Risk score =

Σ(Expp Coef). The Coef and Exp were the coefficients and the

expression level of each lncRNA, respectively. The high- and low-

risk groups were divided according to the median risk score of the

training cohort. We further performed the Kaplan–Meier survival

analysis, time-dependent ROC curves, and univariate and

multivariate analyses to evaluate the accuracy and independence

of the LRLPS in prognosis prediction in the three cohorts.

Stratified analysis and construction of the
nomogram

The stratified analysis could assess the prognosis value of

LRLPS in different subgroups stratified by several clinical

features, including age, pathologic stage, T stage, N stage, M

stage, ER, PR, and HER2 statuses.We constructed the nomogram

with the independent prognostic factors. Nomogram accuracy

was evaluated through ROC curves, C-index, and calibration

curves. Finally, we measured the net benefit of using a nomogram

and other clinical features alone based on decision curve

analysis (DCA).

Functional enrichment analysis

We identified the differentially expressed genes (DEGs)

between the two risk groups and annotated their functions

with Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) using the R package “ClusterProfiler” (Yu

et al., 2012). The variations of pathway activity of the subgroups

were further revealed with Gene Set Enrichment Analysis

(GSEA) (p < 0.05 and FDR<0.25) (Subramanian et al., 2007).

Annotated gene set “c2. cp.kegg.v7.5.1.symbols.gmt” could

acquire from the MSigDB (https://www.gsea-msigdb.org/gsea/

msigdb/).

Evaluation of immune infiltration and
immunotherapy response in the two risk
groups

We evaluated the proportion of tumor-infiltrating

immune cells through the CIBERSORT algorithm

(Newman et al., 2015). Tumor purity, immune, stromal,

and estimate scores were evaluated through the

ESTIMATE algorithm (Yoshihara et al., 2013).

Furthermore, we assessed twenty-seven potential immune

checkpoints (ICPs) in the two risk groups. In order to

predict immune checkpoint inhibitor (ICI) responses, we

applied IPS and TIDE. TIDE was an online analysis that

could predict the response to ICIs (http://tide.dfci.harvard.

edu/) (Jiang et al., 2018; Fu et al., 2020). The IPS is a machine

learning-based system, scored as z scores according to four

immunogenicity-related cell types (effector cells,

immunosuppressive cells, MHC molecules, and

immunomodulators), and it was positively correlated with

immunogenicity (Charoentong et al., 2017). It is reported

that IPS could assess the tumor immunogenicity and response

to ICI therapy in various tumor types. The IPS of BC patients

were downloaded from The Cancer Immunome Atlas (TCIA)

(https://tcia.at/home).

Correlation between the risk score and
tumor mutation

The mutation landscapes in the two risk groups were

analyzed with the “maftools” R package. Mutations in the

genome per million bases are known as the tumor mutational

burden (TMB), a potential immunotherapy biomarker (Lu et al.,

2019; Shum et al., 2022). We evaluated the TMB in the two risk

groups and explored the association between TMB and the risk

score.

Evaluation of the drug sensitivity and
potential target drugs

The “pRRophetic” R package was used to calculate the

half-maximal inhibitory concentrations (IC50) of the

common chemotherapy drugs based on the Genomics of

Drug Sensitivity in Cancer (GDSC; https://www.

cancerrxgene.org/) database (Yang et al., 2013; Geeleher

et al., 2014). As to the lncRNAs in the LRLPS, we explored

the potential target drugs (approved by the FDA and those in
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clinical tests) with the CellMiner database (https://discover.

nci.nih.gov/cellminer) (Shankavaram et al., 2007;

Shankavaram et al., 2009). The relationship between model

lncRNAs and drug sensitivity was studied using Pearson

correlation analysis.

Statistical analysis

We applied R software (version 4.0.5, https://www.r-project.

org/) for all statistical analyses. p-value < 0.05 was set as

statistically significant, and the significance levels were set as

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ns = p > 0.05.

Results

Identification of the differentially
expressed lactate-related lncRNAs in
Breast cancer patients

There were 30 differentially expressed lactate-related

genes and 4,256 differentially expressed lncRNAs,

respectively (Figures 1A,B). Based on Pearson

correlation analysis, we identified 196 differentially

expressed LRLs for further investigation. Figure 1C

showed the interaction between the lactate-related genes

and LRLs.

FIGURE 1
Identification of the differential expressed LRLs. The volcano plots of the differentially expressed lactate-related genes (A) and differentially
expressed lncRNAs (B). (C) The interaction between the differentially expressed lactate-related genes and LRLs.
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FIGURE 2
Construction and evaluation of the LRLPS. (A) The univariate Cox regression analysis of LRLs in the training cohort. (B) The cross-validation
graph shows the optimal parameter selection with minimum criteria in the LASSO model. (C)The LASSO coefficient profiles of the 14 LRLs. (D) The
forest graph showed the results of stepwise multivariable cox proportional hazards regression analysis. (E) The OS curve of the two risk groups. (F)
The time-dependent ROC curves of the LRLPS. (G) The risk score, clinical event, and themodel genes in the two risk groups. (H) The ROC curves
of the risk score and other clinicopathological parameters. The univariate (I) and multivariate (J) Cox regression analyses.

Frontiers in Genetics frontiersin.org05

Li et al. 10.3389/fgene.2022.956246

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.956246


FIGURE 3
Validation of the LRLPS. The OS curve of the two risk groups in test (A) and entire (D) cohorts. The time-dependent ROC curves in test (B) and
entire (E) cohorts. The risk score, clinical event, and the model genes in the two risk groups in test (C) and entire (F) cohorts. The ROC curves of the
risk score and other clinicopathological parameters in test (G) and entire (J) cohorts. The univariate Cox regression analyses in the test (H) and entire
(K) cohorts. The multivariate Cox regression analyses in the test (I) and entire (L) cohorts.
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Development and evaluation of the
lactate-related lncRNAs prognostic
signature

In the training cohort, 17 LRLs with prognostic values were

identified with the univariate Cox regression analysis

(Figure 2A). We performed LASSO cox analysis and identified

14 LRLs to avoid overfitting the model (Figures 2B,C). The

multivariate Cox regression analysis identified 7 LRLs to

construct the LRLPS based on the lowest AIC 507.17

(Figure 2D). Each patient would acquire a risk score by

calculating the following: risk score= (1.915272666 *C9orf163)

+ (−0.677100153 * RP1-28O10.1) + (−0.503780886 * RP11-

496I9.1) + (1.048467864 * CTD-3065J16.9) + (−0.692769124 *

FIGURE 4
Stratification analyses of the prognostic signature. Kaplan-Meier curves indicated the OS of the two risk groups stratified by age (>60 years
vs. ≤60 years) (A,B), ER stage (negative vs. positive) (C,D), HER2 stage (negative vs. positive) (E,F), PR stage (negative vs. positive) (G,H), stages (stage
I–II vs. stage III-IV) (I,J), AJCC T stage (T I–II vs. T III-IV) (K,L), AJCC N stage (N 0-I vs. T II-III) (M,N), AJCC M stage (M 0 vs. M I) (O,P), respectively.
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USP30-AS1) + (−0.835154753 * LINC01569) + (−1.077081426 *

RP11-707G18.1) (Supplementary Table S3). Subsequently, we

evaluated the ability of the LRLPS in prognosis prediction.

Kaplan-Meier analysis showed that patients in the high-risk

group had shorter overall survival (OS) (Figure 2E). The area

under the 3-, 5-, and 10-year time-dependent ROC curves (AUC)

were 0.7536, 0.7229, and 0.7703, respectively, which

indicated the accuracy of the LRLPS (Figure 2F).

Figure 2G indicated the correlation between the risk score

and the outcome of BC patients. Figure 2H indicated that the

AUC of risk score was the highest (0.749), followed by the N

stage (0.663) and pathological stage (0.649). The univariate

(Figure 2I) and multivariate (Figure 2J) Cox regression

analyses indicated the independent prognostic value of the

risk score.

Validation of the lactate-related lncRNAs
prognostic signature

To assess the stability of the LRLPS, we used the same

analyses in the test and entire cohorts. High-risk patients

always had a worse OS than low-risk patients in the two

cohorts (Figures 3A,D). The AUCs of the 3-, 5-, and 10-year

ROC curves were 0.7284, 0.6964, and 0.6716 in the test cohort

(Figure 3B), and 0.7484, 0.7111, 0.7179 in the entire cohort

(Figure 3E). Figures 3C,F indicated that the higher risk score

was correlated with increased mortality. In the test cohort, the

AUC of the risk score was the highest (0.761) (Figure 3G). The

risk score was an independent prognostic factor in the

multivariate Cox regression analysis but not a statistically

significant independent prognostic according to the univariate

Cox regression analysis (Figures 3H,I). In the entire cohort, the

risk score had the highest AUC (0.752) and was an independent

prognostic factor (Figure 3J-L). We performed the stratification

and Kaplan-Meier survival analyses to further explore whether

the signature was suitable for different clinical subgroups. There

were always significant differences in survival between the two

risk groups in all clinical subgroups (Figures 4A–P). The results

indicated that the prognostic signature was accurate,

independent, and widely applicable.

Comparison with other prognostic
signatures

The robustness of our LRLPS was assessed by comparing

it with 11 existing OS-related lncRNAs prognostic

signatures, such as ferroptosis, pyroptosis, necroptosis,

N6-methyladenosine, CD4 + conventional T cells,

immunity, and autophagy. We included only signatures

from the TCGA database to eliminate the effects of

heterogeneity. Signatures were analyzed based on their

AUC, with larger AUCs showing better classification

ability (Fawcett, 2006). As shown in Table 1, we have

integrated all the important information of the eleven

signatures, including the author, year, gene signature, and

the AUCs for the signatures (Table 1). Our signature had

many advantages in predicting OS in BC patients. In our

study, the AUCs of the signatures at 3-, 5-, and 10-year were

0.7536, 0.7229, and 7,703, respectively, significantly higher

than most hallmark predictive models. Table 1 showed that

the 3-, 5-, and 10-year AUCs of another 7 lncRNA prognostic

signatures, namely, the ferroptosis- and Immune-related

lncRNA signature (3-, 5-, and 10-year AUCs: 0.71, 0.63,

and 0.68) (Wei et al., 2022) and necroptosis-related

lncRNA signature (3-, 5-, and 10-year AUCs: 0.643, 0.641,

and 0.694) (Chen et al., 2022) had lower AUCs than ours;

while the 12 hypoxia-related lncRNA signature (3-, 5-, and

10-year AUCs: 0.727, 741, and 0.786) (Gu et al., 2021) were

TABLE 1 The area under the ROC curve (AUC) showed the sensitivity and specificity of the known gene signatures in predicting the prognosis of BC
patients.

Author Year Gene signature Gene number AUC for OS

Our study 2022 Lactate 7 0.7536 (3-year), 0.7229 (5-year), 0.7703 (10-year)

Chen F, et al. 2022 Necroptosis 7 0.731 (1-year), 0.643 (3-year), 0.641 (5-year), 0.694 (10-year)

Wei T, et al. 2022 Ferroptosis and Immune 7 0.75 (1-year), 0.71 (3-year), 0.63 (5-year), 0.68 (10-year)

Gu P, et al. 2022 Hypoxia 12 0.734 (1-year), 0.727(3-year), 0.741 (5-year), 0.786 (10-year)

Zhang Y, et al. 2022 Necroptosis 4 0.696 (3-year), 0.705 (5-year), 0.664 (7-year)

Zhao Y, et al. 2021 Hypoxia 4 0.650 (1-year), 0.681 (3-year), 0.691 (5-year), 0.642 (7-year)

Li X, et al. 2021 Autophagy 18 0.724 (3-year), 0.685 (5-year)

Jia C, et al. 2021 Ferroptosis 11 0.682 (1-year), 0.710 (3-year), 0.712 (5-year)

Lv W, et al. 2021 N6-methyladenosine 6 0.677 (1-year), 0.678 (3-year), 0.692 (5-year)

Dai Y, et al. 2022 Acid Metabolism 8 0.881 (1-year), 0.766 (3-year), 0.713 (5-year)

Ning S, et al. 2022 CD4 + Conventional T Cells 16 0.742 (1-year), 0.751 (3-year), 0.723 (5-year)

Yang X, et al. 2022 Pyroptosis 10 0.75 (1-year), 0.73 (3-year), 0.73 (5-year)
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comparable to the predictive capabilities of our predictive

model, and our signature stand out with a clear advantage in

predicting the short-term survival of BC patients. We also

listed the other signatures that focus more on short-term (3-

and 5-year survival) survival. We found our signature usually

have better short-term survival prognostic value compared

with them, such as the necroptosis-related lncRNA signature

(Zhang et al., 2022), hypoxia-related lncRNA signature

(Zhao et al., 2021), autophagy-related lncRNA signature

(Li et al., 2021), ferroptosis-related lncRNA signature (Jia

et al., 2021), N6-methyladenosine-related lncRNA signature

(Lv et al., 2021), acid metabolism-related lncRNA signature

(Dai et al., 2022), and CD4 + conventional T cells-related

lncRNA signature (Ning et al., 2022) and pyroptosis-related

lncRNA signature (Yang et al., 2021). In addition, our model

only involves 7 lncRNAs, while other models (6/11) tend to

have more, which is more convenient to use to a certain

extent. The results indicated that our gene signature

predicted BC prognosis better than most other signatures.

Construction and evaluation of the
nomogram

In order to make our model better assist clinical decision-

making, we constructed a nomogram that could predict the 3-,

5-, and 10-year survival probability (Figure 5A). The

nomogram’s 3-, 5- and 10-year AUCs were 0.7570,

0.7196 and 0.6237, indicating the reliability of the

nomogram (Figure 5B). The calibration curves proved that

our prognostic nomogram could accurately predict the

survival probabilities (Figures 5C–E). Furthermore, DCA

curves indicated that the nomogram was more beneficial to

BC patients than other clinicopathological factors

(Figures 5F,G).

Function analyses

We used GO/KEGG and GSEA analyses to analyze the

functions of the two risk groups. There were 3,962 DEGs

between the two-risk groups, including 1,524 up-regulated

genes and 2,168 down-regulated genes for the high-risk

group. GO analysis showed that these DEGs participated in

many biological processes, such as humoral immune response,

lymphocyte-mediated immunity, and epidermis development

(Figure 6A). They could act as structural constituents in the

T cell receptor complex, plasma membrane signaling receptor

complex, and immunoglobulin complex and play an essential

part in receptor ligand activity, signaling receptor activator

activity, and gated channel activity (Figure 6A). KEGG

analysis showed that the down-regulated genes were

related to PD-L1 expression, primary immunodeficiency,

cytokine-cytokine receptor interaction, and PD-1

checkpoint pathway in cancer (Figure 6B). Through GSEA

analysis, we further observed the variations of pathway

FIGURE 5
Construction and evaluation of the nomogram. (A) The nomogram for predicting BC patients’ survival probability. (B) The nomogram’s 3-, 5-,
and 10-year ROC curves. (C,D,E) The 3-, 5-, and 10-year calibration curves. (F) The 3-, 5- and 10-year DCA curves of the nomogram. (G)DCA curves
of clinicopathological factors and the nomogram.
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activity between the two risk groups. The low-risk group was

enriched with the classical immune-related pathways, such

as T/B cell receptor signaling pathways, leukocyte

transendothelial migration, and antigen processing and

presentation, while the high-risk group was enriched with

the cell cycle-related pathways, including cell cycle, DNA

replication, and mismatch repair (Figure 6C).

Differential immune infiltration and
immunotherapy response in the two
groups

To further study the immune landscape, we performed

CIBERSORT and ESTIMATE algorithms. The heat map

demonstrated the levels of the immune infiltrating cells in

FIGURE 6
Functional enrichment analysis. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C) The results of GSEA in two risk groups.
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FIGURE 7
The immune infiltration and immunotherapy response in the two groups. (A,B) The heatmap and box plots of the proportions of tumor-
infiltrating cells in the two risk groups. (C) Comparisons of tumor purity stromal, immune, and ESTIMATE scores between the two risk groups. (D)
Correlations between the risk score and tumor purity, stromal, immune, and estimate score. (E)Comparisons of the 27 ICPs in the two risk groups. (F)
Comparisons of the proportions of non-responders and responders to ICIs between the two risk groups. (G) Comparison of the risk score
between the responders and non-responders. (H–K) Comparison of the IPS between the two risk groups.
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the two risk groups (Figure 7A). The macrophages M0, M2,

and NK cells resting were the main components in the high-

risk group; However, the resting CD4 T memory cells,

CD8 T cells, naive B cells, activated dendritic cells,

monocytes, and gamma delta T cells were mainly in the

low-risk group (Figure 7B). The ESTIMATE results showed

that high-risk patients had lower stromal and immune scores

but had higher tumor purity (Figure 7C). Furthermore, the

risk score was negatively associated with the stromal and

immune scores while positively associated with tumor

purity (Figure 7D). ICP was proved related to

immunotherapy (Topalian et al., 2015). We assessed the

expression levels of 27 ICPs in the two risk groups. They

all expressed much higher in the low-risk group, such as

CTLA4, HAVCR2, TIGIT, PDCD1, and LAG3 (Figure 7E).

TIDE could identify the patients’ response to ICIs. As shown

in Figure 7F, the low-risk group had a significantly higher

response rate to immunotherapy. The risk score for non-

responders to immunotherapy tended to be much higher

than that for responders (Figure 7G). Furthermore, all four

FIGURE 8
Association between DNA mutation and prognostic model. Waterfall plots of the top 30 mutated genes in the high-risk (A) and low-risk (B)
groups. Comparisons of the mutation status of TP53 (C) and PIK3CA (D) in different risk groups. (E) Comparisons of the TMB between the two risk
groups. (F) Correlation between TMB and the risk score. (G) Comparisons of the expression of the lncRNAs in different BRCA1mutation statuses. (H)
Comparisons of the expression of the lncRNAs in different BRCA2 mutation statuses.
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types of IPS were higher in the low-risk group, indicating that

the low-risk patients could acquire more benefits from ICIs

(Figures 7H–K). These results indicated that the low-risk

group with the immune signature might have a better

immunotherapy response.

In addition, we investigated whether the seven LRLs in our

signature were associated with the immune signature. USP30-

AS1 was significantly positively related to activated CD4memory

T cells, Macrophages M1 and CD8 T cells, and classic ICPs, such

as PD-1 and CTLA4 (Supplementary Figures S1A,B). These

results indicated that USP30-AS1 might make a difference in

the TIME.

Somatic mutation analysis

The potential contribution of genomic changes to tumor

immunity and immune infiltration has been explored in previous

studies (Rooney et al., 2015; Thorsson et al., 2018). Figures 8A,B

showed the top 30 genes mutated most frequently in the two risk

groups. Although the overall mutation frequency is similar

between the two groups (high vs. low, 89.49% vs. 92.12%),

about one-third of the genes are different. SPTA1, APOB,

ARID1A, BIRC6, GSMD3, RELN, RYR3, LRP1, and

HUWE1 were not observed in the low-risk group. Regarding

the most common BRCA biomarkers, the high-risk group had

significantly more patients with TP53 mutations (low vs. high,

25.6 vs. 40.8%) (Figure 8C). A higher mutation frequency of

PIK3CAwas observed in the low-risk group (low vs. high, 39.7 vs.

26.7%) (Figure 8D). Further, the TMB in the high-risk group was

significantly higher (p = 0.035) (Figure 8E). The Pearson

correlation analysis indicated a positive correlation between

TMB and the risk score (Figure 8F).

Mutations in the BRCA1 and BRCA2 genes are known risk

factors and drivers of breast cancer (Kuchenbaecker et al., 2017).

As to the lncRNAs identified as a molecular signature in our

analysis, we further explore the associations between the

expression of the lncRNAs and BRCA1/2 mutation status. We

found that the expression of USP30-AS1 was significantly

increased in the BRCA1/2 mutant group, and in addition,

C9orf163 and LINC01569 were significantly decreased in the

BRCA2 mutant group (Figures 8G,H). We did not find an

association between the expression of other lncRNAs and

BRCA1/2 mutation status.

FIGURE 9
The sensitivity of chemotherapeutic agents and the prediction of potential drugs. The IC50 values of six chemotherapy and targeted agents in
the two risk groups, including 5-Fluorouracil (A), Sorafenib (B), Tamoxifen (C), Temozolomide (D), Temsirolimus (E), and Vinblastine (F). (G) Sensitivity
correlation analyses of the LRLs and potential drugs according to the CellMiner Database.
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Prediction of potential drugs and the
sensitivity of chemotherapeutic agents

To further explore effective drugs for BC patients to guide

precision treatment, we analyzed the sensitivity to common

chemotherapeutic agents of the two risk groups. High-risk

patients had higher IC50 of 5-Fluorouracil, Sorafenib, Tamoxifen,

Temozolomide, Temsirolimus, and Vinblastine (Figures 9A–F),

indicating they were more likely to be resistant to the above

drugs. Furthermore, we explored the potential drugs targeted to

the seven model genes with the CellMiner database. We finally

acquired 16 gene-drug correlations, of which 11 correlations pointed

to the USP30-AS1, and five correlations pointed to the C9orf163

(Figure 9G). C9orf163 expressed higher in the high-risk group, while

C9orf163 expressed higher in the low-risk group. Ribavirin,

Fulvestrant, SR16157, 8-Chloro-adenosine, and

Methylprednisolone were positively related to C9orf163 so they

might benefit high-risk patients. Conversely, the BRCA drug

Ifosfamide was positively correlated with USP30-AS1; it might

benefit low-risk patients (Figure 9G).

Discussion

BC has the highest incidence rate among all cancers globally,

which causes tens of thousands of female deaths yearly (Harbeck

et al., 2019). BC is characterized by tumor heterogeneity at the

molecular level of tumor cells and the tumor microenvironment

(TME) (Baker et al., 2018; Sousa et al., 2019). Tumor heterogeneity

complicates the aggressiveness and treatment of BC (Januškevičienė

and Petrikaitė, 2019). Recent studies have revealed lactate’s diverse

roles in the TME. Although cancer cells have a sufficient oxygen

supply, they still use glucose and produce lactate excessively, which

could cause acidosis, angiogenesis, and immunosuppression (Ho

et al., 2019). In BC, lactate is correlated with resistance to PI3K

inhibitors (Hillis and TOKER, 2020). In several cancers, lactate is

essential in predicting prognosis, tumor microenvironment, and

immune response (Mai et al., 2022; Sun et al., 2022; Xie et al.,

2022). However, the prognostic value of lactate in BC remains largely

unknown. This is the first study investigating the role of lactate in

predicting prognosis, immune status, and therapeutic response in BC.

We first identified 196 differential expression LRLs for further

study. We used the univariate Cox regression analysis, LASSO, and

multivariate Cox regression analysis to construct the LRLPS. Survival

analysis and the time-dependent ROC curves confirmed the

prognostic value and reliability of the LRLPS. The AUC of the

risk score was higher than other clinicopathological characteristics,

indicating the highest prognostic performance of the LRLPS.

Subsequent univariate and multivariate Cox regression analyses

further indicated the independent prognostic predictability of the

risk score. Stratified analysis showed that the LRLPS was suitable for

patients in any clinical subgroup. The predictive ability of our

signature was further explored by comparing it with various

molecular signatures commonly used to predict OS in BC

patients. Our signature displayed much higher AUCs than

ferroptosis, necroptosis, pyroptosis, and immune-related

signatures, which implied a stronger predictive ability, especially

in predicting short-term survival status. Furthermore, the nomogram

provided a powerful tool for clinicians to make decisions.

The GO/KEGG and GSEA indicated that the immune-related

pathways differed between the two-risk groups. Previous research

has demonstrated that lactate could regulate TMB. Through its

ability to enhance the metabolic profile of the Treg and maintain

acidity in the TME, lactate could enhance the immunosuppressive

effect (Dastmalchi et al., 2021). Excessive lactate inhibits T-cell

proliferation, such as Natural killer, dendritic, and CD8+ T cells

(Haas et al., 2015; Certo et al., 2021; Grote et al., 2021). In addition,

lactate could potentiate the anti-inflammatory effects by activating

macrophages, promoting angiogenesis, tissue remodeling, and

accelerating tumor growth and invasion (Certo et al., 2021).

Hence, we further explore TIME through several algorithms.

Tumor immune cell infiltration (TIICs) is a crucial component of

the TIME. We calculated the levels of TIICs in BC with

CIBERSORT. The high-risk group was enriched with

immunosuppressive immune cells, such as macrophages M0 and

M2, which were also critical members of EMT and cancermetastasis

(Biswas and Mantovani, 2010; Qian and Pollard, 2010). Instead,

CD4/8+ T cells, the vital factors in killing tumors and promoting

immune response, were the main component in the low-risk group

(Charoentong et al., 2017). According to the ESTIMATE analysis,

the low-risk group had a higher immune score and stromal content

while lower tumor purity than the high-risk group.

Immunotherapy has been a new treatment modality in BC,

especially for metastatic BC (Adams et al., 2019). We further

estimated the immunotherapy responses of the two risk groups.

It is reported that ICIs antitumor relay on the CD8+ T cells, CD4+

T cells, and dendritic cells (Sato et al., 2018; Farhood et al., 2019). The

immune cell infiltration levels were positively correlated with the

responsiveness to ICIs (Karn et al., 2017; Kümpers et al., 2019). As an

essential biomarker for predicting cancer immunotherapy (Patel and

Kurzrock, 2015), the 27 ICPs expressed higher in the low-risk

group. Therefore, we speculated that the low-risk group could

respond better to immunotherapy and further verified the

conclusion through TIDE and IPS analyses. All IPSs of CTLA4-/

PD-1-, CTLA4+ /PD-1-, CTLA4-/PD-1+, and CTLA4+/PD-1 +

were higher in the low-risk group, indicted that the low-risk group

had a better response to immunotherapy. Patients with high risk had

the higher TMB in our study. Some research has indicated that TMB

could act as a biomarker for predicting the response to ICIs (Lu et al.,

2019; Shum et al., 2022). However, the predictive value varies among

different cancers and might be insufficient in solid tumors (Xu et al.,

2019). Thus, ICIs could benefit low-risk patients, while other

immunotherapy might be appropriate for high-risk patients.

These results indicated the significant differences in the degree of

immune cell infiltration and immunotherapy response between the

two risk groups identified by lactate-related signature.
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Regarding the seven LRLs in our signature, some have been

studied before in other cancers. USP30-AS1 is involved in

autophagy, proliferation, and apoptosis in acute myeloid

leukemia, glioblastoma, and cervical cancer (Chen et al., 2021;

Wang et al., 2021; Zhou et al., 2022). In our study, USP30-AS1

was positively correlated with the antitumor immune cells and the

classic ICPs. These results indicated the potential role of USP30-AS1

in TME. C9orf163 could develop the tumor microenvironment

through cytokine and chemokine signaling and might act as a

tumor suppressor in anaplastic gliomas and pancreatic cancer

(Wang et al., 2016; Zhuang et al., 2020). Furthermore, we found

that the expression of USP30-AS1 and C9orf163 were associated

with BRCA1/2 status, indicating that they were involved in breast

cancer development. However, more research is required to clarify

the molecular mechanism of the seven LRLs in BC.

In treating BC, chemotherapeutic drugs could reduce tumor

recurrence and be a primary treatment option for metastatic disease.

However, chemo-resistance severely limited the clinical efficacy of

chemotherapeutic drugs for BC patients (O’driscoll and Clynes,

2006). Thus, we assessed the BC patients’ response to chemotherapy

with the IC50 value. The pRRophetic showed that low-risk patients

were more sensitive to the common chemotherapy drugs, such as 5-

Fluorouracil, Sorafenib, Tamoxifen, Temozolomide, Temsirolimus,

and Vinblastine. Furthermore, we performed the CellMiner

database to predict the candidate small-molecule compounds.

The results indicated that Ribavirin, Fulvestrant, SR16157, 8-

Chloro-adenosine, and Methylprednisolone might benefit high-

risk patients. In combination, these discoveries may provide BC

patients with suitable treatment options.

However, there were still a few limitations to our study. We

used the TCGA dataset for all analyses since other databases

lacked the needed LRLs data, including the Gene Expression

Omnibus (GEO) and METABRIC databases, which prevented us

from verifying the results. Therefore, it is better to validate in a

prospective cohort. Secondly, further studies on the biological

functions of the seven LRLs are needed to be performed in vivo

and in vitro.

Conclusion

Altogether, this study identified a novel lactate-related

lncRNAs prognostic signature for BC patients, which could

predict the prognosis and immune infiltration. The LRLPS

also provided an effective method for personalized risk

estimation and assessment of treatment response to

immunotherapy and chemotherapy, which may be clinically

helpful. Finally, the seven LRLs could become potential

treatment targets for BC.
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