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Background: Karyopherin alpha (KPNA), a nuclear transporter, has been

implicated in the development as well as the progression of many types of

malignancies. Immune homeostasis is a multilevel system which regulated by

multiple factors. However, the functional significance of the KPNA family in the

pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune

homeostasis are not well characterized.

Methods: In this study, by integrating the TCGA-LUAD database and Masked

Somatic Mutation, we first conducted an investigation on the expression levels

and mutation status of the KPNA family in patients with LUAD. Then, we

constructed a prognostic model based on clinical features and the

expression of the KPNA family. We performed functional enrichment analysis

and constructed a regulatory network utilizing the differential genes in high-and

low-risk groups. Lastly, we performed immune infiltration analysis using

CIBERSORT.

Results: Analysis of TCGA datasets revealed differential expression of the KPNA

family in LUAD. Kaplan-Meier survival analyses indicated that the high

expression of KPNA2 and KPNA4 were predictive of inferior overall survival

(OS). In addition, we constructed a prognostic model incorporating clinical

factors and the expression level of KPNA4 and KPNA5, which accurately

predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the

high-risk group showed a poor prognosis. Functional enrichment analysis

exhibited remarkable enrichment of transcriptional dysregulation in the

high-risk group. On the other hand, gene set enrichment analysis (GSEA)

displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic

in the high-risk group. Finally, analysis of immune infiltration revealed significant

differences between the high-and low-risk groups. Further, the high-risk group

was more prone to immune evasion while the inflammatory response was

strongly associated with the low-risk group.
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Conclusions: the KPNA family-based prognostic model reflects many

biological aspects of LUAD and provides potential targets for precision

therapy in LUAD.
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Introduction

Lung cancer is among the most prevalent tumors and

contributes to about 21% of all cancer-related fatalities (Siegel

et al., 2022). Non-small cell lung cancer (NSCLC) is the most

common subtype of lung cancer that represents at least 85% of all

cases of lung cancer. Histologically, NSCLC can be categorized

into three types, namely, large cell carcinoma, lung squamous cell

carcinoma (LUSC), and lung adenocarcinoma (LUAD), (Ko

et al., 2018; Majem et al., 2020). Currently, the principal

treatment modalities for lung cancer include targeted therapy,

chemotherapy, radiotherapy, surgery, and immunotherapy

(Catania et al., 2021). Due to the highly malignant nature of

lung cancer, 5-year survival rates of patients with stage I to IIIA

range from 14 to 49%, and those for stage IIIB to IV disease

are <5% (Ko et al., 2018). LUAD is the most common subtype of

lung cancer, accounting for approximately −40% of all cases (Yin

et al., 2019). The 5-years overall survival (OS) rate of patients

with LUAD is less than 20% (Wu et al., 2021). Therefore,

exploration of the pathogenetic mechanism of LUAD and

identification of potential therapeutic targets is a key research

imperative.

Karyopherin alpha (KPNA) are nuclear transporters (NTRs)

that consist of a cluster of basic amino acids, which selectively

through the nuclear pore complex (NPC) (Hazawa et al., 2020;

Miyamoto et al., 2020). NPC is composed of 30 nucleoporin

(NUP) proteins, which is the sole channel between the nucleus

and the cytoplasm (Hazawa et al., 2020). Active transport of

proteins from the cytoplasm to the nucleus through NPC usually

requires a carrier molecule that identifies the transport signal on

the cargo, which is called nuclear localization signal (NLS)

(Miyamoto et al., 2016). The classical mechanism of the

passage of proteins into the nucleus is as follows: cargoes

usually possess NLS that is initially detected by KPNA and

then exhibits interaction with karyopherin b1 (KPNB1), and

the created trimeric complex diffuses into the nucleus through

NPC (Myat et al., 2018). The main role of KPNA in

nucleocytoplasmic transport is to function as adaptor

molecules that carry protein cargoes carrying NLS and

Karyopherin beta (KPNB) from the cytoplasm to the nucleus

(Miyamoto et al., 2016). In addition to its function in mediating

nucleocytoplasmic transport, KPNA also has non-transport

functions such as lamin polymerization, nuclear membrane

formation, spindle assembly, protein degradation, cytoplasmic

retention, cell surface function, gene expression, and mRNA-

related function (Miyamoto et al., 2016). In addition, KPNA is

increasingly recognized to have a central in cancer growth and

progression (Wang et al., 2012; Xu et al., 2021).

The human type the KPNA family consists of seven subtypes,

KPNA1, KPNA2, KPNA3, KPNA4, KPNA5, KPNA6, and

KPNA7 (Miyamoto et al., 2016), and these subtypes exhibit

42–86% homology to one another (Oostdyk et al., 2019). The

KPNA family can be further divided into three subfamilies based

on sequence homology: α1, α2, and α3. The α1 subfamily

comprises three members, KPNA1, KPNA5, and KPNA6.

α2 subfamily comprises two members, KPNA2 and KPNA7.

α3 subfamily comprises two members, KPNA3 and KPNA4

(Miyamoto et al., 2016; Myat et al., 2018). KPNA1 was the

founding member of the α1 subfamily. The α2 and

α3 subfamilies are known to have evolved through duplication

of the founding KPNA, and to have developed cell and tissue-

specific roles which facilitate development and differentiation in

higher eukaryotes (Oostdyk et al., 2019). Aberrant expression of

the KPNA family has been detected in multiple cancers, which

was related to poor prognosis. For example, a study identified

high KPNA1 expression in breast cancer, which was associated

with poor overall survival (OS) (Tsoi et al., 2021). High

KPNA2 expression in melanoma was linked to poor OS and

disease-free survival (DFS) (Yang et al., 2020). High expression of

KPNA2 has been identified in ovarian carcinoma and cervical

cancer, which was associated with poor prognosis (Cui et al.,

2021; Wang et al., 2021). High KPNA4 expression in liver cancer

was shown to be associated with poor OS in patients (Xu et al.,

2021).

The KPNA family plays varied roles in different types of

malignancies. For example, KPNA1 was shown to modulate the

nuclear import of NCOR2 splicing variant BQ323636.1 and thus

promote tamoxifen resistance in breast cancer (Tsoi et al., 2021).

The expression of KPNA2 in ovarian carcinoma can promote

epithelial-mesenchymal transition (EMT), migration, and

invasion. The expression of KPNA2 in colorectal cancer tissue

was correlated with stage, differentiation status, and metastasis.

Overexpression of KPNA2 indicated a poor prognosis in patients

(Han and Wang, 2020). KPNA3 was shown to confer sorafenib

resistance via TWIST-regulated EMT in advanced liver cancer

(Hu et al., 2019). The expression of KPNA4 in prostate cancer

was shown to promote metastasis through miR-708-KPNA4-

TNF axes (Yang et al., 2017), and KPNA4 was found to enhance

cancer cell proliferation and cisplatin resistance in cutaneous

squamous cell carcinoma (Zhang et al., 2019). KPNA5, KPNA6,
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and KPNA1 binding regions can promote the proliferation of

breast cancer cells (Kim et al., 2015). KPNA7 promotes cell

growth and anchorage-independent growth, and reduces

autophagy of pancreatic cancer cells (Laurila et al., 2014).

Previous studies have reported overexpression of KPNA4 in

LUAD and identified it as a potential key driver of the

malignant phenotype (Hu et al., 2020). Nonetheless, the

functional role and underlying mechanism of the KPNA

family in LUAD are poorly understood.

In this study, we used the TCGA-LUAD database and

Masked Somatic Mutation to evaluate the expression,

mutation status, and prognostic value of the KPNA family in

LUAD. We built a prognostic model for individuals on the basis

of the clinical features and the expression of the KPNA family

and analyzed the differences in mutational signature in the two

risk groups. Next, we did a differential expression analysis, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis, and Gene Ontology (GO) enrichment

analysis in the two risk groups. Finally, we performed the

analysis of immune infiltration in these groups. This is the

first investigation to examine the function of the KPNA

family in LUAD, as per our best knowledge. Our findings

may avail both potential biomarkers and therapeutic targets

against LUAD.

Materials and methods

Data acquisition and pretreatment

TCGA-LUAD expression profile data were acquired from

UCSC Xena (http://xena.ucsc.edu/); the downloaded data type

was count, and the count values were transformed to transcript

per million (TPM) values in advance. Transcriptomic data from

594 patients in TCGA-LUAD, 535 tumor samples, and 59 normal

samples were included in the current analysis. In addition, we

selected “Masked Somatic Mutation” data as the somatic

mutation data (n = 561) of LUAD patients from TCGA GDC

(https://portal.gdc.cancer.gov/), processed these data using VarScan,

and performed an analysis of somatic mutation using themaftools R

package (Mayakonda et al., 2018). The copy number information

(n = 531) of patients in TCGA-LUAD was downloaded in UCSC

Xena, which assessed gene copy number variation (CNV).

In this analysis, we used the clinical information of

594 patients from TCGA-LUAD, including age, sex, survival

status, and TNM stage. We matched patient IDs in the clinical

database with the transcriptomic data as well as somatic

mutation data above and removed samples with unavailable

transcriptomic data and somatic mutation data.

The KPNA family (KPNA1, KPNA2, KPNA3, KPNA4,

KPNA5, KPNA6, and KPNA7) expression profiles, mutation

data, and CNV data were extracted via R languages for

subsequent analysis.

Differential expression analyses

Based on information in the TCGA-LUAD datasets, we

divided the samples into tumor samples and normal samples

and screened out differentially expressed genes (DEGs) utilizing

the DESeq2 package. The screening criteria were log2 (fold

change) > 1.0 and p-value < 0.05 (Love et al., 2014).

Subsequently, differential expression analysis was performed

using the DESeq2 package to determine the expression

profiles of low-and high-risk groups. The screening criteria

were log2 (fold change) > 2.0 and adj. p-value < 0.05.

Volcano plots were plotted using package ggplot2, heat maps

were drawn using package pheatmap to demonstrate the

differential gene expression.

Establishment of the prognostic model

Kaplan-Meier method in conjunction with the log-rank test

was utilized for survival analysis to establish the link between

high/low expression of the KPNA family genes and OS.

To determine the predictive power of the KPNA family for the

prognosis of LUAD individuals, we performed univariate Cox

regression analysis, LASSO regression analysis, and multivariate

Cox regression analysis based on the TCGA-LUAD to identify

independent prognostic factors, and created a prognostic model.

First, univariate Cox proportional regression analysis was utilized

to investigate the link between the expression levels of genes in the

KPNA family and OS; genes with an adjusted p-value < 0.1 were

retained. Subsequently, to eliminate the effect of multicollinearity, we

used the LASSO algorithm to screen meaningful variables in

univariate Cox regression analysis. Then we performed a stepwise

regression analysis using multivariate Cox regression to discover

independent prognostic factors. Finally, optimized gene expression

and correlation estimated Cox regression coefficients were taken into

consideration to generate a risk score formula: risk score = (exp-

Gene1*coef-Gene1) + (exp-Gene2*coef-Gene2)+. . .. . .+(exp-

Gene*coef-Gene).

The participants were then classified into the aforementioned

two risk groups as per the given risk score. Kaplan-Meier analysis

and log-rank test were performed to compare OS in the two

groups applying the survival package. Additionally, receiver

operating characteristic (ROC) curve analysis evaluated the

survival predictive value of the risk score. The area under

ROC curves (AUC) values were derived utilizing the R

package timeROC.

After detection of independent prognostic factors, we

combined clinical information such as age, sex, stage, and

other factors to establish a nomogram for prognostic

assessment of LUAD patients. In particular, we evaluated the

prognostic outcomes at 1, 3, and 5 years, correspondingly. The

reliability of the model was assessed by plotting the calibration

curve.
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Construct functional enrichment analysis
and regulatory network

We did GO enrichment analysis as well as KEGG pathway

enrichment analysis of the differentially expressed genes of two

risk groups utilizing the clusterProfiler R package and R package

GOPlot (Ogata et al., 1999; Ashburner et al., 2000; Yu et al.,

2012). GSEA was instrumental in developing the gene expression

matrix with clusterProfiler R package; “c2. cp.all.v7.0. symbols”

was chosen as a reference gene set. In addition, false discovery

rate (FDR) < 0.25 with p < 0.05 denotes substantial enrichment

(Suarez-Farinas et al., 2010). Based on the “c2. cp.all.v7.0.

symbols” gene set, we utilized the R package Gene set

variation analysis (GSVA) on the basis of the gene expression

matrix for each sample, calculated the related pathway scores,

and generated the Heat maps using the ssGSEA method

(Hänzelmann et al., 2013).

Using the STRING protein-protein interactions database, we

evaluated the link between the hub genes and their interactions

and exported the results; core genes were thoroughly screened

with the CytoHubba Plugin in Cytoscape (Chin et al., 2014).

In addition, hub genes-miRNA regulation analysis and

transcription factors-target genes regulatory network analysis

were performed with NetworkAnalyst (http://www.

networkanalyst.ca/NetworkAnalyst). Results were finally

exported from Networkanalyst, and miRNA-hub genes and

transcription factors-hub genes regulatory network plotted

using Cytoscape software.

Analysis of immune cell infiltration

We performed deconvolution with transcriptome matrix

using the CIBERSORT algorithm (which is premised on the

linear support vector regression principle) and assessed the

cellular composition and the abundance of immune cells in

the mixed infiltrate (Newman et al., 2015). Gene expression

matrices data were uploaded onto the CIBERSORT, and after

filtering the outputs (p-value < 0.05), we obtained the matrix of

infiltrating immune cells. Bar graphs were plotted using R

package ggplot2 to demonstrate the distributions of 22 types

of infiltrating immune cells in every sample. In addition, we

studied the correlation of two risk groups with immune and

inflammation by extracting HLA family-related genes (MHC

class I and II) and complement-related genes.

Statistical analysis

The R software (version 4.0.2) performed all the analyses and

data processing. Between-group variations with respect to

normally distributed continuous variables were investigated

with the aid of the Student’s t-test, whereas those with respect

to non-normally distributed variables were investigated utilizing

the Mann-Whitney U test (Wilcoxon’s rank-sum test).

Additionally, for between-group differences with respect to

categorical variables, the Chi-squared test or Fisher exact test

was used. Correlation between different genes was assessed using

Spearman correlation analysis. Kaplan-Meier survival analyses

were done through the utilization of the R package survival and

the between-group differences in survival outcomes were

assessed using the log-rank test. Univariate as well as

multivariate Cox regression analyses were utilized to ascertain

the independent prognostic factors. Two-sided p values <
0.05 denoted statistical significance for all analyses.

Results

Aberration of the KPNA family in TCGA-
LUAD

First, we extracted the KPNA family from the TCGA-LUAD

datasets, which included KPNA1, KPNA2, KPNA3, KPNA4,

KPNA5, KPNA6, and KPNA7, and the details are shown in

Supplementary Table S1. We plotted the heatmaps of the

KPNA family and found a non-uniform trend in their

expression with no significant correlations between them

(Figures 1A,B). We identified differential expression of

KPNA2, KPNA3, KPNA5, KPNA6, and KPNA7. Compared

with normal tissue, KPNA2, KPNA6, and KPNA7 were highly

expressed in LUAD, while KPNA3 and KPNA5 expression were

decreased in LUAD (Figure 1C). Subsequently, we plotted ROC

curves, which clearly showed the discriminative value of these

genes in differentiating between tumor samples and non-tumor

samples. The AUC values of KPNA2, KPNA3, KPNA5, and

KPNA7 were >0.7, which indicated a promising

discriminating ability. In addition, we did Kaplan-Meier

survival analysis to identify genes that affect the prognosis in

LUAD. The expression of KPNA2 and KPNA4 was found to

affect the OS of LUAD individuals, and the patients with high

expression of KPNA2 and KPNA4 showed a much worse

prognosis (Figures 1D–J).

The panorama of gene mutations was displayed in TCGA-

LUAD datasets; missense mutations accounted for the majority of

mutations, single-nucleotide polymorphisms (SNPs) occurred more

frequently than deletions or insertions, and C>A was most

frequently identified in single nucleotide variants (SNVs) among

patients with LUAD (Supplementary Figures S1A,B). Subsequently,

we extracted the KPNA family information and analyzed the

mutational signatures. The frequency of overall the KPNA family

mutations was low, and the mutation types were primarily missense

mutations (Figure 2A). We plotted the lollipop diagrams according

to mutational signatures (Figures 2B–G). In addition, we analyzed

CNV changes according to the information on the CNV of the

KPNA family. As shown in Figure 2H, the copy number
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amplifications of KPNA1, KPNA2, KPNA4, KPNA6, and KPNA7 in

total samples were higher than the copy number deletions, but the

copy number amplifications ofKPNA3 andKPNA5were lower than

the copy number deletions.

Creation of prognostic model based on
the KPNA family

We conducted a univariate Cox regression analysis to detect

the KPNA family genes linked to the prognosis of LUAD

patients. Four genes were discovered to be linked to survival.

To further screen the genes associated with prognosis, we

screened the genes using LASSO regression analysis and Cox

regression analysis and eventually identified KPNA4 and KPNA5

as independent prognostic factors (Figures 3A–C). As per their

expression values and regression coefficients, we derived the risk

score for LUAD specimens and plotted the heatmaps to visualize

the distribution of samples in the two risk groups (Figure 3D).

We conducted a survival analysis of LUAD individuals utilizing

their risk score-based grouping; the findings affirmed that

patients in the high-risk group experienced a poor prognosis

(Figure 4A). ROC curve analysis indicated good predictive

efficacy of risk score-based grouping for 1-year, 3-years, and

5-years survival outcomes (1-year AUC = 0.615, 3-years AUC =

0.645, 5-years AUC = 0.629) (Figure 4B).

FIGURE 1
Expression patterns of the KPNA family in TCGA-LUAD (A) Heat maps of gene expressions of the KPNA family (B) Heat map of gene-gene
correlations in the KPNA family (C) Boxplots of the KPNA family genes between the normal and tumor tissues (D–J) ROC curve showing group
differences and the Kapla-Meier curves showing survival differences. * represents p < 0.05; ** represents p < 0.01; *** represents p < 0.001; ns
represents no significant difference (p > 0.05).
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FIGURE 2
Mutations and copy number variations (CNV) of the KPNA family (A) Mutation frequency of the KPNA family (B–G) Mutated sites of the KPNA
family (H) Copy number alterations of the KPNA family; red dots indicate that amplifications are greater than deletions while blue dots indicate that
deletions are greater than amplifications.
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Subsequently, we constructed a nomogram incorporating

age, sex, clinical stage, and the expression level of KPNA4 and

KPNA5 for prognostic assessment of LUAD patients (Figure 4C).

Through calibration curves, we found that the prognostic model

for 1-year, 3-years, and 5-years had high reliability (Figure 4D).

Additionally, we performed risk stratification based on different

factors including age, sex, clinical stage, survival status, and

immune subtypes. The results affirmed that there were no

remarkable differences between the two risk groups with

respect to age or sex; however, there were substantial

differences between the two risk groups in terms of clinical

stage and immune subtypes (Figures 4E–I).

Comparison of tumor mutation burden
and microsatellite instability utilizing risk
score

We further compared the mutational signatures between

the two groups utilizing the risk score. There were no

remarkable differences in MSI scores between the two risk

groups, but the high-risk group had greater TMB scores in

contrast to the low-risk group (Figures 5A,B). Subsequently,

we analyzed the top 30 mutant genes of the two risk groups

and ascertained variations in genetic mutations between them

(Figure 5C).

FIGURE 3
Independent prognostic factors of the KPNA family (A) Forest plot of univariate Cox regression analysis of the KPNA family (B) Lasso regression
model of the KPNA family (C) Forest plot of multivariate Cox regression analysis of the KPNA family (D)Calculated risk score and the heatmaps of risk
factors based on the findings of multivariate Cox regression analysis.
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Differential expression analysis and
functional enrichment analysis of high-
and low-risk groups

According to the low-and high-risk groups, we did a

differential analysis of all genes within the expression

profiles in the TCGA cohort using the volcano plots and

heat maps (Figures 6A,B). Pathway enrichment analysis, as

well as GO enrichment analysis, were performed on DEGs

separately (Supplementary Tables S2, S3). GO enrichment

analysis included molecular function (MF), biological process

(BP), and cellular component (CC). The key DEGs enriched

the following principal biological processes: epithelium

development, cornification, tissue development, and

morphogenesis of a branching epithelium, morphogenesis

of a branching structure; the principal aggregation of

cellular components was as follows: extracellular region,

cornified envelope, and chromatin. The principal enriched

molecular functions were as follows: DNA-binding

transcription factor activity, sequence-specific double-

stranded DNA binding, and amino acid sodium symporter

activity (Figures 6C,D). The pathway enrichment was mainly

enriched in Neuroactive ligand-receptor interaction, Salivary

secretion, Galactose metabolism, Vascular smooth muscle

contraction, and Transcriptional dysregulation in cancers

(Figures 6E,F).

Subsequently, we constructed PPI networks by STRING

databases to identify the hub genes and reveal their potential

interactions. First of all, we built protein interaction networks by

DEGs and the minimum score of interactions was set to 0.7

(Supplementary Figure S2A). We additionally determined the

most relevant genes in the PPI networks by the Cytohubba plugin

and 15 genes were regarded as hub genes: SPANXD, MAGEA4,

MAGEC1, SPANXC, CTAG2, MAGEA10, CT45A1, MAGEA1,

MAGEA1, MAGEC2, SPRR2D, KRT6A, KRT14, CASP14, and

SPRR2E (Supplementary Figure S2B).

FIGURE 4
Evaluation of prognostic model and correlation analysis of clinical features (A) Analysis of prognosis in the two risk groups (B) ROC curves
displaying the predictive value of the models for 1-year, 3-year, and 5-year survival outcomes (C,D) Prognostic nomogram and calibration curves
according to clinical factors and the expression of KPNA4 and KPNA5 (E–I) Differences in clinical features between the two risk groups.
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We also predicted the potential miRNAs which regulate the

15 hub genes by the Networkanalyst databases; the final

subnetwork contained 49 nodes (i.e., miRNA) and 11 seeds

(i.e., matched hub genes) (Supplementary Figure S2C).

Similarly, we obtained the transcription factors-hub genes

regulatory networks based on the JASPAR databases, the final

contained 14 seeds (i.e., hub genes) and 46 nodes

(i.e., transcription factors) (Supplementary Figure S2D).

Subsequently, we carried out GSEA between the two risk

groups to identify remarkably enriched pathways (p-value <
0.05) (Supplementary Table S4). The GSEA results showed

enrichment of cell cycle checkpoints, cell cycle mitotic,

retinoblastoma gene in cancer, mitotic metaphase, and

anaphase in the high-risk group. CD22 mediated BCR

regulation, heme scavenging from plasma, asthma, and

antigen activates B cell receptor BCR resulting in the

generation of second messengers were enriched in the low-

risk group (Figures 7A,B). GSVA findings ascertained that

there were variations in a total of six gene sets between the

two risk groups, according to the screening of the hallmark

gene sets, for example, angiogenesis, apical surface, and

apical junction (Figure 7C).

FIGURE 5
Differences in mutation signatures between high-and low-risk groups (A) Differences in MSI score between high- and low-risk groups (B)
Differences in TMB score between high-and low-risk groups (C) Differences in the top 30 mutant genes between high-and low-risk groups.
*represents p < 0.05; ** represents p < 0.01; *** represents p < 0.001; ns represents no significant difference (p > 0.05).
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Analysis of immune infiltration in the high-
and low-risk groups

After ranking based on the risk score, the immune cell

infiltration for each sample in the TCGA LUAD is shown in

the bar graphs. The infiltration scores and correlation analysis

between the 22 immune cells were obtained by the CIBERSORT

algorithm, respectively (Figures 8A,B). We further evaluated the

differences in immune cell infiltrates in the two risk groups. As

shown in Figure 8C, the infiltration scores for naive B cells,

FIGURE 6
Differential expression analysis and functional enrichment analysis of the two risk groups (A,B) Heat map and volcano plot of differential
expression in high-and low-risk groups (C) GO analysis of the two risk groups. Outer circle, GO term; cylindrical of inner circle, number of enriched
genes; yellow, BP (Biological Process); blue, MF (Molecular Function); green, CC (Cellular Component) (D) Top 20 of BP, MF, CC (E) KEGG analysis of
high-and low-risk groups. Outer circle, the number of KEGG pathways; inner circle, number of enriched genes; yellow, metabolism; blue,
organismal systems; green, human diseases; purple, environmental information processing (F) Top 20 of KEGG pathways enrichment.
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plasma cells, CD4+ T cells memory resting T cells, and resting

dendritic cells were lower in the high-risk group than in the low-

risk group; however, the infiltration scores for CD8+ T cells and

M0 Macrophages were greater in the high-risk group. We

computed the correlation of the expression level of KPNA4

and KPNA5 and various types of immune cells by Spearman’s

correlation analysis (Supplementary Figures S3, S4).

Additionally, we combined the genes related to immunity and

inflammation (for example, HLA family and complement-

related genes), and analyzed the differences in the two risk

groups. We found that the MHC-II family was decreased in

the high-risk group, and the main function of the MHC-II gene is

antigen-presenting. This suggested that the antigen-presenting

function might be affected in the high-risk group (Figures 8D,E).

Additionally, there were variations of complement-related genes

in both groups, which illustrated a close association with

inflammation (Figures 8F,G).

Discussion

Due to its highly malignant nature and a paucity of methods

for early diagnosis, LUAD is linked to high incidence as well as

mortality rates. Therefore, recognition of particular principal

molecular pathways and extensively sensitive, reliable

biomarkers is required to improve the early diagnosis and

survival outcomes of LUAD patients. Previous investigations

have demonstrated the relationship of the KPNA family genes

FIGURE 7
GSVA and GSEA analysis of high- and low-risk groups (A)Main enriched pathways in the high-risk group (B)Main enriched pathways in the low-
risk group (C) Differential gene sets based on the hallmark gene sets.
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FIGURE 8
Immune infiltration in the two risk groups (A) The panorama of 22 immune cell infiltrates (B) Correlation analyses of 22 immune cell types (C)
Differences in the immune cell infiltration between high-and low-risk groups (D,E) Differential expression of HLA gene family between the two risk
groups (F,G)Differential expression of complement-related genes in the two risk groups. * represents p < 0.05; ** represents p < 0.01; *** represents
p < 0.001; ns represents no significant difference (p > 0.05).
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with tumor progression (Wang et al., 2012; Xu et al., 2021).

However, there is a lack of in-depth characterization of the role of

the KPNA family in LUAD. This is the first investigation to

develop a prognostic model premised on the expression of the

KPNA family genes, as per our best knowledge. Enrichment

analysis revealed the involvement of the KPNA family in

transcription, cell cycle, immune infiltration, and

inflammatory response, which are tumor-related processes.

Thus, our findings may be useful in the development of future

investigations to determine patient prognosis and to recognize

candidate therapeutic targets in LUAD individuals.

We explored the connection between the KPNA family

expression and the OS of patients. High expression of KPNA2

and KPNA4 were predictive of inferior OS. KPNA4 has

previously been identified as a tumor promoter gene in some

cancers (Wang et al., 2015). For example, high expression of

KPNA4 in cutaneous squamous cell carcinoma was discovered to

enhance cancer cell proliferation as well as cisplatin resistance

(Zhang et al., 2019). Inhibition of KPNA4 attenuated prostate

cancer metastasis (Yang et al., 2017). Regulating upstream

modulators facilitates angiogenesis as well as progression in

lung cancer by targeting the miR-340-5p/KPNA4 axis (Li

et al., 2020). A previous study identified overexpression of

KPNA2 in NSCLC, and KPNA2 was identified as a potential

biomarker for NSCLC (Wang et al., 2011). These studies support

our conclusions that KPNA2 and KPNA4 may be useful

prognostic biomarkers for LUAD patients.

KEGG enrichment analysis showed transcriptional

dysregulation in cancers enriched with DEGs in the high-risk

group. Transcription factors serve as a group of sequence-specific

binding proteins that can activate or suppress transcription through

transactivation or transrepression domains. Transcription factors

have been linked to the pathogenesis of a variety of human diseases

(including cancers); these account for approximately 20% of all

oncogenes identified so far (Lambert et al., 2018). Previous literature

reports have displayed the involvement of transcription factors in

regulating cell proliferation, differentiation, apoptosis, and their

remarkable function in the onset and development of tumors

(Sever and Brugge, 2015). Dysregulation of principal

transcriptional modulators not only defines the cancer phenotype

but is important for its development (Gonda and Ramsay, 2015).

Our results suggest that the KPNA family may influence the

transcriptional dysregulation in LUAD. Therefore, it is important

to study the mechanism of transcriptional dysregulation of the

KPNA family in LUAD.

In this study, we found that cell cycle checkpoints and cell cycle

mitotic were enriched in the high-risk group. Cell cycle checkpoints

are biochemical signaling mechanisms that detect DNA damage or

chromosomal dysfunction and trigger a series of sophisticated

cellular repair responses (Wu et al., 2005). Typically, cell cycle

checkpoints are disrupted in most malignancies and serve a vital

function in maintaining genomic integrity and inactivating

checkpoint genes (Zheng et al., 2010). In previous research,

impaired function of cell cycle checkpoints was found to raise

the risk of lung cancer (Wu et al., 2005). Mitosis is the critical

stage of the cell cycle, involving the passage of one of the sister

chromatids to each of the daughter cells. Therefore, precise

regulation of mitosis is essential for the maintenance of

chromosome stability in human cells (Pines, 2006). Aberrant

mitotic progression leads to chromosomal missegregation,

contributing to carcinogenesis (Kops et al., 2005; Holland and

Cleveland, 2009; Schvartzman et al., 2010). Our study identified

significant enrichment of these two pathways in the high-risk group,

which additionally validated the accuracy of the risk prediction

model constructed in this study.

The tumormicroenvironment (TME) is a heterogeneous system

consisting of immune cells, cancer cells, and an extracellular matrix

(Hoadley et al., 2014; Warrick et al., 2019). The roles for immune

homeostasis similar to a buffering system.While the immune system

is constantly stimulated and dampened, the system is maintained at

a relatively stable steady state (da Gama Duarte et al., 2018). In this

study, the infiltration scores for naive B cells, plasma cells, CD4+

T cells memory resting T cells, and resting dendritic cells were

lowered in the high-risk groups than in the low-risk groups, but the

infiltration scores for CD8+ T cells, M0 Macrophages were elevated

in the high-risk group. This could lead to different responses to

immunotherapies in the two risk groups. The purpose of

immunotherapy is to alter the environment, and thereby, the

equilibrium of the response. Therefore, the sensitivity of

immunotherapy in the two risk groups also remains unexplored.

Immune evasion is a significant feature of cancer, and

inhibition of HLA gene levels may lead to attenuated antigen

presentation, facilitating immune evasion (McGranahan et al.,

2017). HLA family genes were decreased in the high-risk group,

which suggests that the high-risk group was more prone to

immune evasion and thus have a worse prognosis. These

results are consistent with our survival analysis. Additionally,

we studied the expression of inflammation-related genes in the

two risk groups and captured the down-regulation of

complement-related genes in the high-risk group. These

findings suggest that inflammation was strongly associated

with the low-risk group.

This is the first-ever report on the association of the KPNA

family expression with survival outcomes of patients with LUAD.

Therefore, the KPNA family may potentially serve as a novel

prognostic biomarker in patients with LUAD and provide novel

targets for LUAD immunotherapy. However, this was

bioinformatics research and most of the findings were

generated from public databases and bioinformatics analysis.

Further in vitro and in vivo experiments are required to validate

our findings.

In conclusion, we found that KPNA2 and KPNA4 are

potential prognostic markers. We created a prognostic model

on the basis of the expression level of the KPNA family, which

was shown to accurately predict prognosis. This prognostic

model reflects many aspects of LUAD biology and provides
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new insights into precision therapy for LUAD. In the future, a lot

of basic experiments need to be carried out to validate the

applicability and accuracy of this model.
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