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Genetic differentiation in aquatic organisms is usually shaped by drainage

connectivity. Sympatric aquatic species are thus expected to show similar

population differentiation patterns and similar genetic responses to their

habitats. Water bodies on the Qinghai–Tibet Plateau (QTP) have recently

experienced dramatic physicochemical changes, threatening the biodiversity

of aquatic organisms on the “roof of the world.” To uncover ecological genetics

in Tibetan loaches (Triplophysa)—the largest component of the QTP

ichthyofauna—we characterized population differentiation patterns and

adaptive mechanisms to salinity change in two sympatric and

phylogenetically closely related Tibetan loaches, T. stewarti and T. stenura,

by integrating population genomic, transcriptomic, and electron probe

microanalysis approaches. Based on millions of genome-wide SNPs, the two

Tibetan loach species show contrasting population differentiation patterns, with

highly geographically structured and clear genetic differentiation among T.

stewarti populations, whereas there is no such observation in T. stenura, which

is also supported by otolith microchemistry mapping. While limited genetic

signals of parallel adaption to salinity changes between the two species are

found from either genetic or gene expression variation perspective, a catalog of

genes involved in ion transport, energy metabolism, structural reorganization,

immune response, detoxification, and signal transduction is identified to be

related to adaptation to salinity change in Triplophysa loaches. Together, our

findings broaden our understanding of the population characteristics and

adaptive mechanisms in sympatric Tibetan loach species and would

contribute to biodiversity conservation and management of aquatic

organisms on the QTP.
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Introduction

Aquatic organisms usually show population differentiation

in accordance with the connectivity of water bodies. Therefore,

for sympatric species, their genetic differentiation patterns and

adaptive mechanisms to hydrological environments are expected

to be similar unless affected by other factors (e.g., the degree of

gene flow and effective population size difference). Freshwater

organisms are vulnerable to drastic climate changes because they

have limited abilities to disperse; and availability of water–their

habitat–are highly climate-dependent (Sala et al., 2000; Dudgeon

et al., 2006; Woodward et al., 2010; Poff et al., 2012; Tickner et al.,

2020). The Qinghai–Tibet Plateau (QTP) is inevitably faced with

the threat of climate change (Yao et al., 2012; Yao et al., 2019).

For example, the mean air temperature has increased at a rate of

0.16–0.35 °C decade−1 from the early 1950s to 2014 on the QTP

(Yao et al., 2012; Shen et al., 2015; Yao et al., 2019) in the context

of global warming, which results in acceleratedmelting of glaciers

and permafrost degeneration. To this end, the volume of many

lakes on the QTP has increased rapidly in the past 40 years (Yang

et al., 2017; Zhang et al., 2017; Zhang et al., 2020). Water storage

of Lake Sêrling Co increased by 19–20 Gt from the 1970s to 2015

(Zhang et al., 2017). However, lakes in Southern Tibet (e.g., Lake

Yumzhog Yumco) slightly decreased the water volume (Qiao

et al., 2019). It suggests that water bodies on the QTP are

susceptible to climate change. In addition, the salinity of lakes

and rivers on the QTP varies widely, ranging from freshwater

(e.g., Lake Mapam Yumco of 0.2 psu) to saltwater (e.g., Lake

Lungmu Co of 138.6 psu) (Liu et al., 2021). The ongoing

dramatic lake volume change may lead to rapid water salinity

changes. For example, the salinity of Lake Sêrling Co has reduced

from 18.5 g L−1 in 1979 to 12.4 g L−1 in 2017 (Zhu et al., 2019).

Aquatic organisms on the QTP are thus facing challenges due to

climate change.

Triplophysa loaches (Cypriniformes: Nemacheilidae),

Schizothoracinae carps (Cypriniformes), and Sisoridae

catfishes (Siluriformes) are the only native ichthyofauna on

the QTP, with Triplophysa loaches being the largest

component. Triplophysa loaches are mainly distributed on the

QTP and its adjacent areas (Zhu, 1989). The genus Triplophysa

originated ~23.5 million years ago (Mya) (Wang et al., 2016) and

rapidly diversified into ~150 species accompanying the uplift of

the QTP (Chen and Zhu, 1984; Chen et al., 1996; Fricke et al.,

2019; GBIF, https://www.gbif.org/). Triplophysa loaches could be

found in freshwater (e.g., River Lhasa He of 0.1 g L−1; Zhang,

2017) to saltwater (e.g., Lake Ngangla Ringco of 12.8 psu; Liu

et al., 2021). For example, T. stewarti could be found in Lake Bam

Co and Lake Sêrling Co with salinity exceeding the salinity

tolerance reported in Triplophysa species (4.17 g L−1 in T.

yarkandensis (Yao et al., 2018) and 3.74 g L−1 in T. dalaica

(Wu et al., 2017). Earlier studies in Triplophysa loaches

mainly focused on taxonomy (Zhu, 1989; Wu and Wu, 1992;

Prokofiev, 2010; Kottelat, 2012), systematics (Wang et al., 2016;

Chen et al., 2019; Wang T. et al., 2020), and biogeography (Chen

et al., 1992; Wang et al., 2012; Feng et al., 2019; Hu et al., 2020).

Next-generation sequencing (NGS) data are now largely adopted

to identify molecular signatures of adaptation to high altitude

(Wang et al., 2015a; Wang et al., 2015b), cave (Zhao et al., 2020),

and salt/alkali (Chen et al., 2020) in Triplophysa loaches with

comparative genomic approach, and several Triplophysa

genomes have been determined with NGS data (Yang L. et al.,

2019; Yang X. et al., 2019; Yuan et al., 2020; Zhou et al., 2021).

However, the population genetics and adaptive mechanisms to

salinity changes using NGS data have been rarely investigated in

Triplophysa loaches (but see Chen et al., 2020; Hu et al., 2020;

Yuan et al., 2020; Huo et al., 2022). How salinity changes caused

by climate changes on the QTP may influence the biodiversity of

Triplophysa loaches is still underexplored, especially at an

intraspecific level.

Population genomics has been widely applied to wild

populations. With either outlier analysis or environmental

association analysis (EAA), it is possible to identify genetic

variants underlying environmental adaptation (Guo et al.,

2015; Guo et al., 2016; Ahrens et al., 2018; Liberles et al.,

2020). However, these classical methods can only identify loci

discretely. Linkage disequilibrium- (LD-) based analysis can

screen for contiguous adaptive loci as a cluster and also

possibly uncover interacting genetic elements. The LD-based

analysis thus has facilitated our understanding of adaptive

mechanisms in non-model organisms (Kemppainen et al.,

2015; Li et al., 2018; Fang et al., 2020; McKinney et al., 2020).

By conducting LD-based network analysis among loci,

evolutionary phenomena, including chromosomal

rearrangements, local adaptation, and geographic structure,

which leave LD signals on genomes, can be identified

(Kemppainen et al., 2015; McKinney et al., 2020). However,

these earlier LD-based network methods can only handle tens of

thousands of loci and thus are usually applicable to restriction-

site-associated DNA (RAD) sequencing data or low-coverage

Illumina sequencing data due to computational constraints

(Kemppainen et al., 2015; McKinney et al., 2020). To deal

with more loci, they have to incorporate stepwise dimension

reduction (Li et al., 2018; Fang et al., 2020). Herein, we develop a

novel sparse graph construction and learning based LD approach

to identify the interconnection between multiple loci and cluster

correlated loci with millions of loci. Our LD graph learning

approach applied sparse high dimensional regression

(Meinshausen and Bühlmann, 2006) to estimate the

covariance structure among loci by estimating the skeleton of

an undirected graph following the terminology of graph

representation learning. Then, a graph community detection

algorithm (Pons and Latapy, 2006) was used to cluster loci

into LD blocks. These inferences were conducted first on loci

within each chromosome and then on the genome-wide level.

The advantages of our method include utilizing small-scale

computational resources, the possibility of utilizing parallel
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computation, avoiding choosing arbitrary LD-related parameters

(e.g., without splitting SNPs into non-overlapping windows, or

specifying the LD thresholds to cluster loci (Fang et al., 2020)),

and the capability of simultaneously inferring the LD structure

among multiple loci without the need to calculate pairwise LD

values.

In this study, we aim to investigate the population genetics

and adaptive mechanisms to salinity changes in two Triplophysa

loaches, T. stewarti and T. stenura, and are particularly interested

in whether the two Triplophysa species show similar population

differentiation patterns and common adaptive mechanisms to

salinity changes. Therefore, we incorporated population

genomic, transcriptomic, and electron probe microanalysis

(EPMA) approaches. First, we characterized spatial-temporal

habitat changes of the two Triplophysa species from sympatric

populations using the otolith EPMA technique. Then, we

generated single nucleotide polymorphism datasets including

70 individuals of seven populations from five localities of the

FIGURE 1
(A) Sampling sites in this study. SWT, T. stewarti; SNR, T. stenura; YAM, Lake Yamzhog Yumco; DOQ, Lake Doqēn Co; BAM, Lake Bam Co;
SER, Lake Sêrling Co; LHA, River Lhasa He. (B) Top panel: two-dimensional imaging of Sr concentrations using otolith EPMA mapping analyses
(SWT-YAM-07 and SWT-DOQ-14 taken as examples). Sr concentrations are represented by 16 colors, from red (highest) to green to blue
(lowest). Bottom panel: comparisons of otolith Sr:Ca ratios along line transects from the core to the edge between Lake Yamzhog Yumco
and Lake Doqēn Co populations of the two Triplophysa species. The significance test was complemented using the Wilcoxon Rank Sum
Test with continuity correction. (C) Top panel: effective population size changes of T. stewarti and T. stenura estimated using PSMC.
Thick lines represent population size inferences, and thin lines represent 100 bootstraps. Bottom panel: genetic diversity (Tajima’s π) of
each population. (D) IQ-TREE reconstructed using the “common” SNP dataset. The color of each branch corresponds to the population in
C (bottom panel).
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two Triplophysa species to explore their population genetic

features by utilizing whole-genome re-sequencing data and

identified loci that bear similar signals of population genetic

differentiation with a newly developed unsupervised LD graph

learning method. Finally, we carried out RNA-seq in sympatric

populations to investigate the transcriptomic responses to

salinity changes in the two Triplophysa species.

Materials and methods

Sample collection

The animal procedures were approved by the Animal

Experiment Board of the Institute of Zoology, Chinese

Academy of Sciences. Fish specimens were collected in

June–July 2018 and May–June 2019 from five locations,

including seven populations of the two Triplophysa species,

T. stewarti and T. stenura (Figure 1A; Table 1). The base map

in Figure 1A was generated using Google Earth Pro 7.3.3.7786

(2020 Google LLC). The fishes were captured with hand seines

and/or minnow traps, temporally raised in drinking mineral

water, and delivered to a laboratory in Beijing. Fishes for re-

sequencing were kept in 95% ethanol, and fin clips were

dissected for DNA extraction and sequencing. Fish gills for

RNA sequencing were dissected and instantly frozen in liquid

nitrogen.

Electron probe microanalysis

The asteriscus otoliths were extracted from 21 individuals,

including 18 individuals used in RNA-seq (Table 1). The

experimental procedures followed the study of Liu et al.

(2020). The extracted otoliths were embedded in epoxy resin

(Epofix, Struers, Copenhagen, Denmark), mounted on a glass

slide, and ground to expose the core using a grinding machine

(70 μm/35 μm, Discoplan-TS, Struers, Copenhagen, Denmark).

The otoliths were further polished on an automated polishing

wheel (LaboPol-35, Struers, Copenhagen, Denmark). After

polishing, the otoliths were cleaned in an ultrasonic bath

and rinsed with Milli-Q water. Finally, the otoliths were

dried and carbon-coated using a high vacuum evaporator

(JEE-420, JEOL Ltd., Tokyo, Japan) before the EPMA

examination. The line transect analyses, which measured Sr

and Ca concentrations along the longest axis from the core to

the edge of the otoliths, as well as the mapping analyses, which

measured Sr concentrations evenly on the whole cross section,

were complemented using a wavelength dispersive X-ray

electron microprobe (JXA-8100, JEOL Ltd., Tokyo, Japan).

Strontium titanate (SrTiO3) and calcium carbonate (CaCO3)

were used as standards. For the line transect analyses, the

accelerating voltage, beam current, and counting time were

15 kV, 2 × 10−8 A, and 15 s, respectively. The electron beam was

2 μm in diameter, spaced at 4 μm intervals. For the mapping

analyses, the accelerating voltage, beam current, and counting

time were 15 kV, 5 × 10−7 A, and 30 ms, with the electron beam

of 2 μm in diameter. The pixel size for the mapping analyses was

3 × 3 μm.

DNA and RNA sequencing

DNA and RNA extraction, library construction, and

sequencing were done by Novogene Technology Co., Ltd.

Briefly, DNA was extracted from the fin clips and then

TABLE 1 Sampling information of populations used in this study.

Species Location Population
code

Coordinates Number of
individuals
for DNA
sequencing

Number of
individuals
for RNA
sequencing

Number of
individuals
for otolith EPMA

Salinity
(mg·L−1)

T. stewarti Yamzhog Yumco SWT-YAM 29.07°N, 90.39°E 11 7 8 1845.1a

T. stewarti Doqēn Co SWT-DOQ 28.22°N, 89.39°E 11 2 2 927a

T. stewarti Sêrling Co SWT-SER 31.67°N, 89.44°E 10 NA NA 7662.84a

T. stewarti Bam Co SWT-BAM 31.35°N, 90.65°E 10 NA NA 8233.89a

T. stenura Yamzhog Yumco SNR-YAM 29.07°N, 90.39°E 9 3 4 1845.1a

T. stenura Doqēn Co SNR-DOQ 28.22°N, 89.39°E 9 6 7 927a

T. stenura Lhasa He SNR-LHA 29.69°N, 90.89°E 10 NA NA 100b

NA indicates that no individual is studied.
aSalinity of these locations was adopted from Yang (2018).
bSalinity of River Lhasa He was adopted from Zhang (2017).
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sheared into short fragments by ultrasonication. Short DNA

fragments were end-repaired, phosphorylated, A-tailed, and

ligated to index adapters. After purification and PCR

amplification, the constructed libraries were sequenced on the

Illumina HiSeq platform with a 150 bp paired-end strategy. In

total, 408.84 G of raw data of 70 individuals from the seven

populations were produced. Low-quality reads were removed

according to the following criteria: 1) paired reads were removed

when containing adapters; 2) paired reads were removed if the N

content of either single-end read exceeds 10% of the total length;

and 3) paired reads were removed if the number of low-quality

bases (Q ≤ 5) of either single-end read exceeds 50% of the total

length. Read quality control was double-checked using FastQC

v0.11.9. Finally, 408.01 G of clean genomic data were obtained

(Supplementary Table S1).

Total RNA was first extracted, and magnetic beads with oligo

(dT) were used for enriching mRNA. Then, the mRNA was

fragmented into short fragments. cDNA was synthesized using

these mRNA fragments as templates and random hexamers as

primers. The short cDNA fragments were purified, end-repaired,

A-tailed, and then ligated to index adaptors. Fragments of

250–300 bp were selected for PCR amplification, purification,

and cDNA library construction. These libraries were sequenced

on Illumina NovaSeq 6000 platform with a 150 bp paired-end

strategy. In total, 299.6 million raw reads of 18 transcriptomes

from four populations were obtained (Supplementary Table S2).

The number of clean reads for each transcriptome ranged from

11.1 and 19.8 million (Supplementary Table S2), and

286.0 million clean reads were obtained after quality filtering

following the criteria of DNA read filtering.

SNP calling

The T. tibetana genome was retrieved from GenBank

(accession number SOYY00000000; Yang X. et al., 2019) and

used as the reference. The reference genome was first indexed

using the “bwa index” in BWA Version 0.7.17-r1188 (Li, 2013),

and then re-sequencing clean reads were aligned to the reference

using “bwa mem.” SAMtools (Version 1.8) (Li et al., 2009;

Danecek et al., 2021) were used to convert SAM to BAM

format, remove PCR duplicate reads, and calculate mapping

rate and depth of coverage. The percentage of reads aligned to

the reference genome ranged from 74.80% to 87.74%, and the

depth of coverage was 4.53 × to 7.08 × (Supplementary Table S1).

Raw SNPs were obtained using BCFtools Version 1.8 (Li,

2011; Danecek et al., 2014; Danecek et al., 2021) commands

“bcftools mpileup -C 50 -d 10,000 -q 20 -Q 20” and “bcftools call

-m.” SNPs were further filtered using “bcftools filter” in BCFtools

and VCFtools Version 0.1.13 (Danecek et al., 2011), using the

following criteria: 1) SNPs within 10 bp of an indel were

removed; 2) only bialleles were retained; 3) only genotypes

with a minimum depth of 2 and a maximum depth of

20 were retained; 4) SNPs with a proportion of missing

data >50% across all populations and within each population

were removed; 5) only SNPs with quality value ≥25 were retained;
and 6) only SNPs with a minor allele frequency ≥0.05 were

retained.

With the abovementioned criteria, an SNP dataset,

hereinafter referred to as the “common” SNPs, was generated

by including all 70 individuals from the two Triplophysa species,

as well as “individual” SNP datasets for each of the two

Triplophysa species. The “common” SNP dataset consists of

590,335 SNPs with 589,179 SNPs on 25 chromosomes and

1,156 SNPs on 267 scaffolds. The “individual” SNP dataset for

T. stewarti contained 351,745 SNPs with 350,930 SNPs on

25 chromosomes and 815 SNPs on 267 scaffolds, and the SNP

dataset for T. stenura contained 235,689 SNPs with 234,682 SNPs

on 25 chromosomes and 1,007 SNPs on 267 scaffolds,

respectively. The number of shared SNPs between the two

“individual” SNP datasets was 18,428.

Effective population size, genetic diversity,
and population structure analysis

In order to estimate effective population size changes in the

two species, two individuals of SWT-YAM-10 and SNR-YAM-

03 were further DNA-sequenced to ~100 × depth of coverage.

Read mapping, sorting, and PCR duplicates removing were

complemented, as shown in the above section. Effective

population size changes were estimated using Pairwise

Sequentially Markovian Coalescent (PSMC) Version 0.6.5-r67

(Li and Durbin, 2011). Consensus calling was done using

“samtools mpileup -C50 -Q20 -q20 -d10000,” “bcftools view

-c,” and “vcfutils.pl vcf2fq -d20 -D120 -Q20.” Fastq format was

converted to a psmc input file format using fq2psmcfa. PSMC

was run with options of -N25 -t15 -r5 -p “4+25*2+4+6”.

Bootstrap was conducted by randomly sampling with

replacement from 500 kb sequence segments generated by the

splitfa tool, and 100 rounds were performed. The effective

population size changes were calculated with the generation

time of 2 years and 4 × 10−9 substitutions per synonymous

site per year following the study on T. bleekeri (Yuan et al.,

2020) and visualized using psmc_plot.pl and R package “ggplot2”

v3.3.2 (Wickham, 2016).

Non-overlapping 100 kb sliding window Tajima’s π was

calculated based on “individual” SNP datasets using VCFtools

to estimate genetic diversity in each population. To investigate

genome-wide differentiation in each species, Weir and

Cockerham’s FST in non-overlapping 100 kb sliding windows

between populations was calculated by VCFtools using

“individual” SNP datasets. Windows with 15–205 SNPs,

comprising ~90% of genome-wide windows, were included in

genetic diversity and FST calculations. Principal component

analysis (PCA) was performed using PLINK Version
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1.90b6.18 (Chang et al., 2015; Purcell and Chang, 2020) with the

“common” dataset and two “individual” datasets, respectively.

Population stratification and genetic admixture were inferred

based on “individual” SNP datasets of the two species using

ADMIXTURE v1.3.0 (Alexander et al., 2009). Genetic clusters

(K) ranging from 1 to n + 1 (n is the number of populations in the

dataset) were applied. The optimal K was determined through a

cross-validation procedure (Alexander and Lange, 2011).

Maximum-likelihood trees were reconstructed using IQ-TREE

multicore Version 2.0.6 (Nguyen et al., 2014; Minh et al., 2020),

with 1,000 ultrafast bootstrap replicates to determine branch

confidence values (Hoang et al., 2017). The best-fitting model

was estimated using ModelFinder and selected based on the

corrected Akaike information criterion (cAIC)

(Kalyaanamoorthy et al., 2017).

Identifying genetic differentiation with
LD-based analyses

An unsupervised linkage disequilibrium graph learning

method (hereinafter referred to as LD graph learning) was

developed to identify loci showing similar genetic

differentiation signals. The object of LD graph learning is first

to build an undirected correlation network among SNPs on the

basis of their pairwise LDs and then use a graph-based clustering

approach to classify SNPs into LD blocks. The proposed LD

graph learning comprises two steps: chromosome-wise LD

network construction and genome-wide LD network

construction.

First, the local LD network was constructed on the basis of

SNPs separately in each chromosome using an adapted version of

the sparse high dimensional graph estimation approach

introduced in Meinshausen and Bühlmann (2006). In turn,

each SNP j (j = 1, .., pc; pc is the total number of the SNPs in

the chromosome c) is considered a response variable, and all the

SNPs other than SNP j are considered explanatory variables in a

multinomial LASSO regression model (Friedman et al., 2010),

defined as

max
βk

⎡⎢⎢⎣1
n
∑n
i�1
yik logp(xij � k

∣∣∣∣xil) − λ∑
l≠j

∣∣∣∣βkl∣∣∣∣⎤⎥⎥⎦ (1)

with p(xij � k|xil) �
exp(∑

l≠j
xilβkl)∑

s∈{0,1,2}
exp(∑

l≠j
xilβsl)

,where xij is the genotype

value of individual i and SNP j, coded as xij = 0, 1, 2 for
genotypes AA, AB, and BB, respectively. yik is an indicator
variable: if xij = k (k = 0, 1, or 2), yik = 1; otherwise, yik = 0.
βkl is the regression parameter of SNP xil, λ ∑

l≠j
|βkl| is a penalty

term that can shrink many of the regression parameters to zero,
when there is no correlation between these SNPs and the SNP j,
and λ is a shrinkage factor that decides the number of SNPs to
have zero regression coefficients. In practice, Equation 1 was

solved by the coordinate descent algorithm, implemented in the
R package “glmnet” (Friedman et al., 2010). The optimal value of
the shrinkage factor λ was determined by maximizing the Akaike
information criterion (AIC). From Equation 1, the non-zero

regression coefficients








∑
k∈(0,1,2)

β2kl

√
> 0 indicate that the SNP j and

l are in LD with each other. If SNP j and l are presented as two
nodes in an undirected graph, there is an edge between j and l.
Consequently, on the basis of the output of Equation 1, we can
generate an undirected and unweighted graph, which can be
represented by a pc × pc adjacency matrix A, with element Alj =
1 indicating SNP l and j are in LD andAlj = 0 indicating l and j are
not in LD. The graph is expected to be sparse, meaning that most
of the elements of A equal zero. We then applied a random-walk-
based clustering approach (Pons and Latapy, 2006) to define LD
blocks, using the function “cluster_walktrap” in the R package
“igraph” (Csardi and Nepusz, 2006).

Next was to construct the genome-wide network based on the

chromosome-wise clusters. To reduce the dimension of the data,

in each chromosome-wise cluster, we calculated the principal

components of the SNPs within that cluster and then took the

first PCs that accumulatively explained 80% of the genetic

variance to be used as covariates in the genome-wide LD

network analysis. Considering each chromosome-wise cluster

Cj (j = 1, . . . , M) as the basic unit (like “SNP”), a group LASSO

regression (Yuan and Lin, 2006) was then applied to detect the

correlation between each cluster j and all other clusters as

min
αj

1
2n
⎛⎝zij1 − ∑

l ≠ j

∑mj

k�1
zilkαlk⎞⎠2

+ λ∑
l≠j

���������∑mj

k�1
α2lk

���������
2

(2)

where zij1 (j = 1, . . . , M; M is the total number of chromosome-

wise clusters) represents the first PC within the cluster j, zilk (l = 1,

. . . , ml; ml is the total number of PCs in cluster l) are the PCs

defined in clusters other than j, αlk are the regression coefficients

that define the level of correlation between the first PC in cluster j

and all the PCs in cluster l, and λ ∑
l≠j

‖ ∑mj

k�1
α2lk‖2 � λ ∑

l≠j






∑mj

k�1
α2lk

√
is

the group LASSO penalty, and it can shrink a group of regression
parameters defined within a cluster to zero if that cluster was not
correlated with the cluster j. The optimal shrinkage was again
decided by AIC. Here, algorithm (2) generates a sparse
undirected and unweighted graph of M nodes representing M
chromosome-wise clusters, and the edge between a pair of
clusters tells whether the two are correlated with each other.
The genome-wide SNP clusters were then obtained using the
same random-walk-based clustering approach as in
chromosome-wise LD network construction.

To further validate the robustness of our LD graph learning

approach in detecting clusters of highly differentiated SNPs, an

earlier developed LD-based network analysis, three-step LDna

(Kemppainen et al., 2015; Fang et al., 2020), was used. Three-

step LDna was performed following the procedures described in

Fang et al. (2020). In brief, pairwise LD (measured by r2
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statistic) between SNPs was first calculated using ngsLD v1.1.1

(Fox et al., 2019) within the maximum distance of 100 SNPs

between any two SNPs. SNPs were then divided into non-

overlapping windows within each chromosome using the

“LDnClusteringEL” function in LDna package v0.65

(Kemppainen et al., 2015; Li et al., 2018). The desired

number of SNPs per window (“nSNPs” parameter) was set

as 800 for T. stewarti populations and 1,000 for T. stenura

populations, with other parameters of w1 = 10,

LD_threshold1 = 0.5, and LD_threshold2 = 0.8. Maximally

connected loci (MCL) that exhibited the highest median LD

with all other SNPs in the same window were chosen. Next,

MCL were used to perform LDna within each chromosome.

The parameters were set to λlim = 8 and |E|min = 50 to extract

single outlier clusters (SOCs). Finally, only MCL in each SOC

was selected to perform genome-wide LDna. SOCs were

grouped into genome-wide LD clusters, and original SNPs

were extracted. In T. stenura, only 4.513 windows were

obtained in LDnClusteringEL, so genome-wide LDna was

directly performed using the MCL of these 4,513 windows.

Pairwise FST per site of these LD clusters was calculated using

VCFtools. Absolute differentiation Dxy was calculated using the

script popgenWindows.py (https://github.com/simonhmartin/

genomics_general/blob/master/popgenWindows.py).

In order to identify genetic variation associated with salinity

variation in each of the two Triplophysa species, both the LD

graph learning and three-step LDna were performed with

“individual” SNP datasets by considering different scenarios of

parallel adaptation according to salinity in population locations

(Figure 1A; Table 1). Seven populations from the five water

bodies of the two species were thus classified as a low-salinity

group of River Lhasa He population, mid-salinity group of Lake

Yamzhog Yumco and Lake Doqēn Co populations, and high-

salinity group of Lake Bam Co and Lake Sêrling Co populations,

which was used in the LD graph learning and three-step LDna for

adaptation signal detection.

Environmental association analysis

BAYENV2 (Coop et al., 2010; Günther and Coop, 2013)

was used to analyze the association between genetic variation

and salinity variation with “individual” SNP datasets. The two

“individual” datasets were first filtered to estimate the null

model, allowing no missing data and limited LD (r2 < 0.2).

SNPs showing the maximum/minimum 5% of average FST,

which might indicate a directional or balancing selection, were

also removed. The remaining neutral SNPs (9,448 SNPs in T.

stewarti and 38,047 SNPs in T. stenura) were used to estimate

covariance matrices from 100,000 iterations. Covariance

matrix estimation was independently run three times. By

using the mean matrix as the null model and original

“individual” SNP datasets, correlations between genetic

variation and salinity variation were detected.

BAYENV2 was independently run three times using

different random seeds for 50,000 iterations. Bayes factors

were averaged across the three independent runs. SNPs

associated with salinity adaptation using the above

unsupervised and supervised methods were annotated using

ANNOVAR (version date 7/6/2020; Yang and Wang, 2015).

Differential gene expression analysis

RNA-seq reads were aligned to the reference genome using

HISAT2 version 2.2.1 (Kim et al., 2019). 31.53%–67.76% of reads

were aligned to the reference genome (Supplementary Table S2).

Next, transcripts were assembled and quantified for each

transcriptome using StringTie v2.1.4 (Pertea et al., 2015; Pertea

et al., 2016; Kovaka et al., 2019) with default parameters and with

the reference annotation guiding the assembly processes. The

assembled transcripts for each sample were then merged, and

the merged transcripts were used to estimate transcript

abundances for each sample. The “prepDE.py” script in the

StringTie package was used to create a gene count matrix as

input for differential expression analysis.

PCR duplicate reads in BAM files were removed using

SAMtools. SNP calling and filtering were complemented using

BCFtools and VCFtools with parameters the same as in re-

sequencing data analysis. The filtering criteria were the same

as described in the “SNP filtering” section, except that genotypes

with depth >20 were also retained and SNPs with a proportion of

missing data >20% across all populations were removed. PCA

was performed using PLINK.

Differential expression analysis based on the negative binomial

distribution was done by R package “DESeq2” v1.26.0 (Love et al.,

2014). The DESeq2 model was corrected internally for library size

differences. In order to avoid the distance measure being dominated

by a few highly variable genes, rlog-transformed data were used to

calculate Euclidean distance between samples. The significance level

was adjusted with the Benjamini and Hochberg correction

(Benjamini and Hochberg, 1995) to control for the false

discovery rate in multiple pairwise comparisons. Only genes with

raw count >0 for each sample of each species were kept for

extracting differential expressed genes to avoid the impacts of a

relatively low depth of coverage. Expression was deemed

significantly different for genes with a corrected p-value below 0.05.

Results

Ecological and population genetic
characteristics

Microchemical mapping with EPMA showed that T. stewarti

from Lake Doqēn Co has a significantly higher Sr:Ca ratio in
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otolith than T. stewarti from Lake Yamzhog Yumco (the

Wilcoxon Rank Sum Test, p < 2.2e-16), whereas the Sr:Ca

ratio is not significantly different between populations of T.

stenura (the Wilcoxon Rank Sum Test, p = 0.08). The Sr:Ca

ratio in otolith is significantly different between T. stewarti and T.

stenura populations either from different lakes or from the same

lakes (the Wilcoxon Rank Sum Tests, p < 0.001) (Figure 1B).

PSMC showed that both species in Lake Yamzhog Yumco

experienced population contraction from about 1–2 Mya,

though T. stenura population expanded to 5×105 at 200 Kya,

whereas T. stewarti maintained a relatively low effective

population size at the same period (Figure 1C). Population

FIGURE 2
(A) PCA of genome-wide SNP clusters identified using the LD graph learningmethod in all four populations of T. stewarti, with cluster 2 showing
the pattern of parallel adaptation to salinity between high- (triangles) and mid-salinity (circles) groups. (B,C)Distributions of fixation index FST (B) and
absolute population differentiation Dxy (C) of SNPs in genome-wide SNP cluster 2 (red bars) compared with all SNPs (gray bars) between high- and
mid-salinity groups. Red and gray dash lines represent the average FST/Dxy of SNPs in genome-wide SNP cluster 2 and FST/Dxy of all SNPs,
respectively. (D) Environmental association analysis of T. stewarti (upper panel) and T. stenura (lower panel). SNPs with a Bayesian factor above the
threshold (log10(BF) = 1.5, dash line) are colored in black.
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genetic diversity was lower in populations SWT-DOQ and SWT-

YAM compared to SNR-DOQ and SNR-YAM, respectively

(paired t-tests, p < 2.2e-16; Figure 1C). Population genetic

relationships were inferred with the “common” and

“individual” SNP datasets obtained. PCA and phylogenetic

inference with the “common” dataset showed that the two

species were explicitly separated into two clusters

(Supplementary Figure S1 and Figure 1D). The four T.

stewarti populations were grouped into three clusters, with

two populations (SWT-BAM and SWT-SER) in one cluster.

The three populations of T. stenura were mixed together

(Figure 1D and Supplementary Figure S1). Bayesian clustering

inference in ADMIXTURE and pairwise FST of “individual” SNP

datasets also supported the above pattern of population

differentiation, with T. stewarti populations deeply diverged

but T. stenura populations unseparated (Supplementary Figure

S1, Supplementary Figures S2, S3).

Genetic differentiation associated with
salinity variation

Using the newly developed unsupervised LD graph learning

approach, four genome-wide SNP clusters were identified with

an “individual” SNP dataset of the 350,930 SNPs for the four T.

stewarti populations, of which the genome-wide SNP cluster

2 containing 120,484 SNPs showed clear genetic differentiation

between high- and mid-salinity groups (Figure 2A). SNPs in

cluster 2 showed significantly higher differentiation than all SNPs

between the two salinity groups according to FST and Dxy values

(Figures 2B, C). A total of 45 out of 71 chromosome-wide SNP

clusters within this genome-wide SNP cluster 2, composed of

63,344 SNPs, showed higher weighted FST than all SNPs between

high- and mid-salinity groups. The newly developed

unsupervised LD graph learning approach was also performed

in pairwise high- andmid-salinity T. stewarti populations. A total

of 350 genome-wide SNP clusters were identified in comparison

between SWT-SER and SWT-YAM, 311 in comparison between

SWT-SER and SWT-DOQ, 275 in SWT-BAM and SWT-YAM,

and 258 in SWT-BAM and SWT-DOQ, of which 15, 10, 14, and

11 genome-wide SNP clusters showed higher FST than weighted

FST calculated using all SNPs between the two populations,

respectively. 1,640 SNPs were found in these highly

differentiated genome-wide SNP clusters in all the four T.

stewarti population pairs (Supplementary Figure S3). Of these

1,640 SNPs, 1,615 SNPs (98.5%) were included in genome-wide

SNP cluster 2 when LD graph learning was done with all of the

four T. stewarti populations, and 1,583 SNPs (96.5%) were in

45 highly differentiated chromosome-wide clusters of genome-

wide cluster 2. The unsupervised three-step LDna with the

“individual” SNP dataset of the 350,930 SNPs in the four T.

stewarti populations identified 11 LD clusters, and LD cluster 2,

containing 20,311 SNPs, showed similar genetic signatures

between high- and mid-salinity populations as the genome-

wide SNP cluster 2 identified by LD graph learning

(Supplementary Figures S3, S4). 18,545 out of 20,311 SNPs

(91.3%) in this LD cluster 2 identified by three-step LDna

were also included in the genome-wide SNP cluster

2 identified by LD graph learning. Using these

abovementioned unsupervised methods, we identified

1,443 common SNPs showing high genetic differentiation

between salinity groups. Furthermore, the supervised EAA

method with BAYENV2 identified 410 SNPs, which were

strongly associated with salinity variation, and 20 of the

410 SNPs were highly differentiated loci and associated with

salinity variation with the abovementioned unsupervised

methods (Figure 2D and Supplementary Figure S3). These

20 SNPs were annotated within or close to genes that

function in response to osmotic stress or salinity acclimation,

for example, hepatocyte nuclear factor 4-alpha (HNF4A),

facilitated glucose transporter member 1 (GLUT1), gamma-

glutamyl hydrolase (GGH), and dipeptidyl aminopeptidase-like

protein 6 (DPP6) (Supplementary Table S4).

The newly developed unsupervised LD graph learning, three-

step LDna, and supervised EAA with BAYENV2 were also carried

out to identify genetic differentiation associated with salinity

variation in T. stenura. Because PCA of genome-wide SNP

clusters did not separate the low-salinity group (SNR-LHA) from

the mid-salinity group (SNR-YAM and SNR-DOQ), FST instead of

PCA was used as a benchmark in LD graph learning. 142 out of

368 genome-wide SNP clusters containing 77,730 SNPs showed

higher weighted FST than those of all SNPs. Totally, 61,858 SNPs

were commonly found to be in highly differentiated genome-wide

clusters in LD graph learning in the two pairwise T. stenura

populations, SNR-YAM and SNR-LHA, as well as SNR-DOQ

and SNR-LHA. Moreover, 22,213 SNPs were commonly found

to be in highly differentiated genome-wide SNP clusters when LD

graph learning was performed with all populations and between

population pairs in T. stenura. Using three-step LDna, 16 SOCs

containing 2,265 SNPs were identified (Supplementary Figure S5). A

total of 1,122 SNPs in six SOCs out of these 2,265 SNPs showed

higher genetic differentiation, of which 433 SNPs overlapped with

the 22,213 SNPs identified using LD graph learning.

BAYENV2 detected 38 SNPs strongly associated with salinity in

T. stenura, with only one SNP overlapping with SNPs identified

using the above-unsupervised methods of LD graph learning and

three-step LDna (Figure 2D). No common SNP showing genetic

differentiation associated with salinity variation was identified

between the two species T. stewarti and T. stenura.

Transcriptome responses to salinity
change

The two species of T. stewarti and T. stenurawere separated by

the first PC based on 8,025 SNPs from RNA-seq data (Figure 3A).
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The expression profiles of samples from the same location showed

higher similarity (Figure 3B); that is, Euclidean distances among

Lake Yamzhog Yumco samples were closer compared to those

between samples from Lake Yumzhog Yumco and Lake Doqēn

Co., and the same for Lake Doqēn Co samples. In T. stewarti,

642 out of 10,480 genes were identified as differentially expressed

genes (DEGs) between population SWT-YAM and SWT-DOQ,

with 264 downregulated and 378 upregulated in the Lake Yamzhog

Yumco population (Figure 3C). In T. stenura, 3,445 genes

remained after filtering, and 190 genes were identified as DEGs

between population SNR-YAM and SNR-DOQ, with

135 downregulated and 55 upregulated genes in the Lake

Yamzhog Yumco population (Figure 3D). Twenty genes were

identified as common DEGs in both species (Figures 3C,D). Of

these 20 genes, eight were novel genes assembled by StringTie and

12 genes were genes with annotations, including peroxiredoxin-1

(PRDX1), C member 5 multi-specific organic anion transporter

(ABCC5), and adenomatous polyposis coli protein (APC).

Discussion

The most salient finding in this study is that the two

sympatric and phylogenetically closely related Tibetan loach

species show contrasting population differentiation patterns,

which broaden our understanding of the Tibetan loach

diversification on the QTP. In addition, a catalog of genes

involved in ion transport, energy metabolism, structural

reorganization, immune response, detoxification, and signal

transduction is found to be related to adaptation to salinity

change in Triplophysa loaches, whereas the two

phylogenetically closely related Tibetan loach species show

limited genetic signals of parallel adaption to salinity changes

from either genetic or gene expression variation perspective. We

will discuss these findings in detail below. Finally, we highlight

the utilization of our newly developed unsupervised LD graph

learning approach with large SNP datasets in the molecular

ecological study of non-model organisms.

FIGURE 3
(A) PCA of four populations using SNPs called from RNA-seq data. (B) Euclidean distances among RNA-seq samples calculated using the gene
count matrix after DESeq2 correction for library differences and rlog-transformation. (C,D) Volcano plots showing DEGs between Lake Yamzhog
Yumco and Lake Doqēn Co populations of T. stewarti (C) and T. stenura (D). The number of genes upregulated (orange dots) and downregulated
(blue dots) in Lake Yamzhog Yumco populations are marked. The 20 gene IDs labeled are common DEGs between the two species.
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Causes of contrasting population
differentiation

Phylogeography provides the key to understanding the

evolutionary history of organisms and responses of

populations and species to geological events (Schluter,

2000). The phylogeography of Triplophysa loaches on the

QTP is thought to result from the occurrence of geological

events associated with the QTP uplift (Wang et al., 2016).

Based on millions of genome-wide SNPs, T. stewarti

populations are deeply diverged into three clusters of the

BAM/SER populations, the YAM population, and the DOQ

population (Figure 1D), which may be attributed to

geographical barriers. The Gandisê Mountains and the

Nyainqêntanglha Mountains divided these lakes and rivers

into the northern part (including Lake Sêrling Co and Lake

Bam Co) and the southern part (including Lake Yamzhog

Yumco, Lake Doqēn Co, and River Lhasa He). These two parts

were once connected when the Qiangtang Palaeolake, merging

Sêrling Co and Bam Co together, outflew into the external

drainage system of southern Tibet during 40–35 ka BP, but

then disconnected due to lake level decrease (Zhao et al.,

2002a; Zhao et al., 2002b). As a result, the geographical

barriers facilitate the genetic divergence between the

northern (BAM/SER) and southern (YAM and DOQ)

populations in T. stewarti. As lake volume in the northern

part is rapidly increasing in the past 40 years, the genetic

mixture between BAM and SER populations in T. stewarti

suggests that the drainage is still connected between Sêrling

Co and Bam Co nowadays. Interestingly, the three T. stenura

populations are genetically mixed, which is different from

sympatrically distributed T. stewarti populations in Yamzhog

Yumco and Doqēn Co (Figure 1D). The difference between

sympatric populations in the two species of Tibetan loaches is

also seen in trajectories of changes in effective population size.

It showed that T. stewarti had experienced a recent population

contraction; meanwhile, T. stenura experienced population

expansion in Yamzhog Yumco, and as such, a lower genetic

diversity is found in T. stewarti than that in T. stenura in

Yamzhog Yumco (Figure 1C). In addition, otolith Sr:Ca ratio

EPMA showed that sympatric populations in the two species

possess different ecological characteristics. Otolith Sr:Ca ratio

EPMA reflects the spatial-temporal habitat changes in fish

(Campana, 1999; Secor and Rooker, 2000; Yang et al., 2006).

Thus, genetic divergence patterns in sympatric populations in

the two species are in accordance with their ecological

divergence patterns. Furthermore, according to Wu and

Wu (1992), T. stewarti and T. stenura possess different

morphs of the posterior chamber of the swim bladder. The

posterior chamber of the swim bladder in T. stewarti is well

developed but degenerated in T. stenura. With a well-

developed swim bladder, T. stewarti might prefer still water

or argodromile, whereas T. stenura prefers flowing water or

riffle streams. T. stewarti thus may possess restricted dispersal

capability compared with T. stenura. Therefore, the

morphological difference in the posterior chamber of the

swim bladder between the two Triplophysa loaches might

explain their explicit ecological and genetic differentiation

between sympatric populations. Herein, we further confirmed

that the deeply diverged T. stewarti populations belong to one

taxonomic species rather than different ones. According to

Wu and Wu (1992) and Zhu (1989), Triplophysa species (T.

brevicauda, T. leptosoma, T. microps, T. stoliczkai, T. stenura,

and T. orientalis), showing sympatric distributions with our

sampling sites, are morphologically distinct to T. stewarti,

with caudal peduncle laterally compressed and/or swim

bladder reduced, whereas T. stewarti showed more slender

caudal peduncle with roughly round-shaped cross-section and

developed posterior chamber of the swim bladder. Moreover,

the genetic distance among T. stewarti populations measured

by Kimura 2-parameter (K2P) distance of mitochondrial COI

gene sequences ranged from 0.0013 to 0.0170, within the range

of intraspecific genetic distance in Triplophysa (Wang T. et al.,

2020). In fact, many species in Triplophysa loaches are

distributed in sympatry as the two species T. stewarti and

T. stenura in our study, with the posterior chamber of the

swim bladder well developed in one species but reduced in

another (Zhu, 1989; Wu and Wu, 1992). It seems that

divergence in functional traits, such as swim bladder, might

have played an important role in Triplophysa diversification

along with geological events.

Genetic mechanisms underlying
adaptation to salinity change

Lakes and rivers on the QTP exhibit large salinity

heterogeneity (Liu et al., 2021). Worldwide climate change

has recently led to drastic lake volume changes on the QTP

(Yang et al., 2017; Zhang et al., 2017; Zhang et al., 2020), which

may result in continuous salinity changes in these lakes. Thus,

adaptation to salinity changes is key to the biodiversity

evolving in aquatic organisms on the QTP. In this study,

we investigated the genetic mechanisms of salinity adaptation

in the two Triplophysa species: T. stewarti and T. stenura.

First, the two Triplophysa species showed limited genetic

signals of parallel adaption to salinity changes from either

genetic or gene expression variation. A total of 39 genes were

identified to harbor highly differentiated loci associated with

adaptation to salinity changes in both T. stewarti and T.

stenura with millions of genome-wide SNPs using

unsupervised genetic differentiation methods. With RNA-

seq data, 20 common DEGs in gill were identified between

T. stewarti and T. stenura, of which few seem to be associated

with salinity adaptation (Figures 3C,D). In fact, non-parallel

genetic changes more frequently occur at the interspecific
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level, especially with adaptation to given selection pressure

involving polygenes, such as adaptation to salinity change in

fishes (Wang and Guo, 2019), although parallelism often

underlies adaptation to a similar environment (Stern,

2013). For example, genetic changes associated with

repeated marine-freshwater divergence in two

geographically coexisting and ecologically similar

stickleback species, nine- and three-spined sticklebacks, are

largely non-parallel (Wang Y. et al., 2020; Kemppainen et al.,

2021). Second, we noticed that prevalent genetic changes

associated with salinity change were identified in T.

stewarti but few in T. stenura (Figure 2D), which might be

due to T. stewarti having populations adapted to Lake Bam Co

and Lake Sêrling Co with ~8 mg L−1 of salinity and high

genetic connectivity among T. stenura populations

(Figure 1D). It suggests that T. stewarti is a better model

for understanding genetic mechanisms of adaptation to

salinity change on the QTP.

A catalog of genes involved in ion transport, energy

metabolism, structural reorganization, immune response,

detoxification, and signal transduction may be responsible for

adaptation to salinity change in Triplophysa loaches (Figure 4). A

total of 26 genes were commonly identified with both

unsupervised and supervised approaches to be associated with

adaptation to salinity change in T. stewarti, and they are involved

in energy metabolism to maintain osmotic pressure, ion

transport, structural reorganization, and signal transduction to

transduce signals in osmosensing (Supplementary Table S4). Of

genes involved in energy metabolism, HNF4A is involved in the

transcriptional regulation of long-chain polyunsaturated fatty

acid biosynthesis (Dong et al., 2016), and it is assumed to play an

important regulatory role in osmotic acclimation in rabbitfish

(Wang et al., 2018), killifish (Whitehead et al., 2012), and striped

catfish (Schmitz et al., 2017). GLUT1 is responsible for glucose

uptake and energy supplementation under salinity stress

(Mueckler, 1994), and earlier studies showed that the

expression of GLUT1 is upregulated in response to salinity

increase in sea bream (Balmaceda-Aguilera et al., 2012) and

striped catfish (Nguyen et al., 2016). Of genes related to ion

transport, DPP6 promotes cell surface expression and modulates

the activity and gating characteristics of the potassium channel

KCND2 (Soh and Goldstein, 2008; Seikel and Trimmer, 2009).

Of 39 genes identified to be associated with adaptation to salinity

changes in both T. stewarti and T. stenura using unsupervised

genetic differentiation methods, KCNG4 is presumed to be

involved in ion transport under osmotic stress (Mederos et al.,

FIGURE 4
Candidate genes associated with adaptation to salinity change in Triplophysa loaches. Genes marked in red were associated with adaptation to
salinity changes in both T. stewarti and T. stenura. Genes marked in black were identified in T. stewarti. The schematic model in which genes are
assigned to different functional categories was adapted fromNguyen et al. (2016). KCNG4: potassium voltage-gated channel subfamily Gmember 4,
ABCC5: C member 5 multi-specific organic anion transporter 5, DPP6: dipeptidyl aminopeptidase-like protein 6, IL1RAPL1A: interleukin-1
receptor accessory protein-like 1-A, GLUT1: facilitated glucose transporter member 1, HNF4A: hepatocyte nuclear factor 4-alpha, PPARA:
peroxisome proliferator-activated receptor alpha,GATA2: GATA-binding factor 2,GGH: gamma-glutamyl hydrolase,NLRC5: NOD-like receptor C5,
PRDX1: peroxiredoxin-1, CDH13: cadherin-13,CADM1: cell adhesionmolecule 1, PTPDC1: protein tyrosine phosphatase domain-containing protein
1, XIRP2: Xin actin-binding repeat-containing protein 2, HYDIN: hydrocephalus-inducing protein-like protein, APC: adenomatous polyposis coli
protein, MAP2K1: dual specificity mitogen-activated protein kinase 1.
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2009), and genes (e.g., CDH13, CADM1, and PTPDC1) are

involved in structural reorganization during cell volume

change under salinity stress (Nguyen et al., 2016). Genes,

CBFB and NLRC5, are identified to be associated with salinity

change with BAYENV2 in both Triplophysa species. NLRC5 was

involved in the immune response during the smoltification

process in Atlantic salmon (Pontigo et al., 2016), marine-

freshwater divergence in three-spined stickleback

(Terekhanova et al., 2014), and biological invasions in round

goby (Adrian-Kalchhauser et al., 2020). Of 20 common DEGs

identified in both Triplophysa species, the APC gene may

function in Wnt signaling by promoting the rapid degradation

of CTNNB1 (Aoki and Taketo, 2007), and Wnt signaling has

been demonstrated to involve a marine-freshwater divergence in

three-spined sticklebacks (Yu et al., 2009; Jones et al., 2012).

Interestingly, WNT7B involved in Wnt signaling is associated

with adaptation to salinity change in T. stewarti (Supplementary

Table S4).

Methodological consideration

Graph learning has rarely been used in population

genomics data analysis (but see McKinney et al., 2020).

However, the graph learning-based method should be

applied to identify groups of loci that showed similar

evolutionary signals. Our newly developed LD graph

learning method produced consistent results with the

previously developed three-step LDna method (Fang et al.,

2020). The large proportion of overlapping highly

differentiated SNPs between our LD graph learning and

three-step LDna (Supplementary Figure S3) and

disproportionally more SNPs identified as salinity-associated

using EAA also identified as highly differentiated in LD graph

learning and three-step LDna validate the effectiveness of our

newly developed LD graph learning method. Instead of

calculating LD values measured by r2 statistic between every

two pairwise SNPs or between SNPs within a limited distance

(e.g., a distance of 100 SNPs in three-step LDna), we modeled

the correlation between one SNP and all the other SNPs

simultaneously and used these correlation coefficient values

to represent the correlation between SNPs. In addition, our LD

graph learning method incorporates only two steps and uses

fewer parameters (e.g., no need to set λlim and |E|min in LDna

and the derived three-step LDna). According to the LDna

method (Kemppainen et al., 2015), the values of λlim and |

E|min will affect the clustering of SNPs, though LD clusters are

robust to these parameter settings. Compared with early

developed LDna (Kemppainen et al., 2015) and network

analysis of linkage disequilibrium (McKinney et al., 2020),

our LD graph learning method can handle up to millions of

loci, which is memory-saving and more applicable to re-

sequencing data. Our script also supports parallel computing.

In conclusion, by integrating population genomic,

transcriptomic, and electron probe microanalysis approaches, we

unraveled the population differentiation patterns and possible

adaptive mechanisms to salinity change in two Triplophysa

species: T. stewarti and T. stenura. Our results showed

contrasting population differentiation patterns between the two

species, which may be attributed to their different ecological

characteristics and population histories. Using both unsupervised

and supervised genetic differentiation methods, including our

brand-new LD graph learning method, we found that the two

Triplophysa species showed limited genetic signals of parallel

adaption to salinity changes from either genetic or gene

expression variation perspective. However, a catalog of genes

involved in iron transport, energy metabolism, structural

reorganization, immune response, and signal transduction may

function in adaptation to salinity change in Triplophysa, of which

several genes are also identified in other fishes. These findings help

predict how aquatic organisms will respond to similar selective

pressures on the QTP when facing challenges from climate changes.
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