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Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in
mammalian cells and functions as microRNA (miRNA) sponges involved in
transcriptional and posttranscriptional regulation of gene expression. Recognizing the
circRNA–miRNA interaction provides a new perspective for the detection and treatment of
human complex diseases. Compared with the traditional biological experimental methods
used to predict the association of molecules, which are limited to the small-scale and are
time-consuming and laborious, computing models can provide a basis for biological
experiments at low cost. Considering that the proposed calculation model is limited, it is
necessary to develop an effective computational method to predict the circRNA–miRNA
interaction. This study thus proposed a novel computing method, named KGDCMI, to
predict the interactions between circRNA and miRNA based on multi-source information
extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and
similarity, capturing the behavior information in RNA association through a graph-
embedding algorithm. Then, the obtained feature vector is extracted further by
principal component analysis and sent to the deep neural network for information
fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the
curve [AUC] = 89.30% and area under the precision–recall curve [AUPR] = 87.67%).
Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher
than the only existing model, and we conducted three groups of comparative experiments,
obtaining the best classification strategy, feature extraction parameters, and dimensions.
In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in
PubMed. These results suggest that KGDCMI is a feasible and useful method to predict
the circRNA–miRNA interaction and can act as a reliable candidate for related RNA
biological experiments.
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INTRODUCTION

Circular RNA (circRNA) is a kind of special single-stranded
circular endogenous non-coding RNA molecule. Numerous
studies have shown that circRNAs are highly conserved and
biostable throughout the organism. CircRNAs were first found
in RNA viruses in 1976. Sanger et al. (1976) thus described viroids
as highly base-paired rod-like and single-stranded closed circular
structures. In 1979, the study published by Hsu et al. provided
electron microscopic evidence for the circular form of RNA (Hsu
and Coca-Prados 1979). During the following 30 years, research
on circRNAs has achieved some results, and a small number of
circRNAs were discovered by accident (Nigro et al., 1991;
Cocquerelle et al., 1992). However, during the early stages of
research, circRNAs were considered to be abnormal splicing of
genes. Although these early studies found and documented the
existence of circRNAs and put forward guesses about their
functions, the potential impact of circRNAs may have been
largely ignored.

A surge in circRNAs research began around 2010 with the
progress of RNA-seq technology and specialized computational
pipelines, thus bringing circRNAs’ testing and sequence analysis
back to biological research. CircRNAs’ importance gradually
emerged, and many studies have indicated that circRNA has a
higher stability structure than linear RNAs, which makes
circRNA present the tissue-specific expression pattern and
play a crucial role in some cell activities (Armakola et al.,
2012; Li et al., 2015; Xu et al., 2015). In the meantime, the
important biological functions of circRNA also connect it with
the diagnosis and treatment of human diseases (Qu et al., 2015;
Kulcheski et al., 2016). The circRNA–miRNA interaction is a
classic and important aspect of circRNA-mediated gene
regulation (Memczak et al., 2013). The circRNAs contain
many miRNAs response elements making circRNA work as
miRNA sponges (Hansen et al., 2013; Memczak, Jens,
Elefsinioti, Torti, Krueger, Rybak, Maier, Mackowiak,
Gregersen and Munschauer 2013). This leads to the circRNA
binding to miRNA and repressing their function. MiRNA is one
of the most important kinds of ncRNAs involved in several
aspects of gene regulation in eukaryotes (Grishok et al., 2001;
Siomi and Siomi 2010; Hayes et al., 2014). At present, there is
numerous evidence showing that circRNAs are miRNA sponges
resulting in the up-regulation of downstream proteins, which is
closely associated with a variety of human diseases, such as type-2
diabetes, cardiovascular diseases, atherosclerotic vascular disease
risk, and cancers (Zhang et al., 2018; Chen and Shan 2021). For
example, circRNA can act as an oncogene in some tumors,
causing the proliferation and metastasis of cancer cells. Yang
et al. applied the RT-qPCR assay, CCK-8, wound-healing, and
cell colony formation assay to detect the expression level and the
effect of RNA molecular on cancer cell proliferation and
metastasis, finally finding that circSPECC1 could promote the
proliferation and migration of Bca and may be used as a new
diagnostic biomarker and effective therapeutic target for some
cancers (Yang et al., 2022). Chen et al. used quantitative real-time
PCR and established the stable knockdown of circXRCC5 in
U87 and U251 cells to assess the functions of RNA and detect the

expression of circXRCC5 in glioma tissues, which proved that
circXRCC5, as the sponge of miR-490-3p, regulates the
expression of the downstream gene and promotes the
progression of glioma (Chen et al., 2022). Tao et al. (2022)
treated human lens epithelial cells with high glucose and
detected gene expression by quantitative real-time polymerase
chain reaction (PCR). The Cell Counting Kit-8 test, EdU test, and
Western blot assay were used to detect cell proliferation and
viability. The dual-luciferase reporter method and RNA
immunoprecipitation assay were used to validate the target
interactions. They finally clarified that circPAG1 can mediate
the miR-211-5p/E2F3 axis to protect human lens epithelial cells
from damage induced by high glucose (Tao et al., 2022).

The above studies indicate that the research of the
circRNA–miRNA interaction can be a new biomarker for the
treatment and diagnosis of diseases. However, the traditional
biological experimental method is often expensive, time-
consuming, and requires a lot of labor. Thus, predicting the
interaction between miRNA and circRNA by computational
methods is crucial for relevant research. At present, many
prediction models have been applied in related fields. For
example, Li et al. combined a variety of similarities and
improved the traditional nonnegative matrix algorithm to
predict disease-related miRNAs (Li et al., 2021). Ren et al.
(2022) proposed a model named BioDKG-DDI, which
combines multi-characteristic biochemical information and
uses an attention machine to predict potential drug–drug
interactions. Yin et al. (2020) proposed a computational
method, NCPLP, which is based on the network consistency
projection and label propagation to predict disease-associated
microbes. Zhou et al. (2021) proposed a novel method that learns
features through multiple kernel learning and deep autoencoder,
finally predicting new microRNA -disease associations by
reconstruction error. Pan et al. (2022) combined protein
attribute and behavior vectors and used a deep neural network
(DNN) to fuse the protein feature vector to predict the
protein–protein interactions. Such computational models have
achieved very successful results and provided an experimental
basis for further studies.

Because the naming norms and studies on circRNA are not
mature, the computational models regarding the
circRNA–miRNA interaction are scarce compared with related
fields. In recent years, as the amount of circRNAs data increased,
a large number of databases have been developed to store
information about circRNAs, like circR2Disease (Fan et al.,
2018), circBase (Glažar et al., 2014), circRNA disease (Zhao
et al., 2018), and Circbank (Liu et al., 2019). CircR2Disease is
a manually curated database containing 661 circRNAs,
100 diseases, and 725 experimentally verified associations of
circRNA-diseases. Each pair of associations in the
circR2Disease database contains a brief description of the
circRNA–disease relationship, gene symbol, expression
patterns of circRNA, circRNA and disease name, experimental
techniques, year of publication, and the PubMed ID. Circbase is
an online database that includes thousands of circular RNAs in
animals, which users can search the circRNA sequence, gene
description, and circRNA ID. CircRNA disease is a database that
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documents a total of 354 circRNA–disease interaction pairs
between 330 circRNAs and 48 diseases. Each pair includes the
circRNA ID and circRNA name, the expression pattern and
biological function of circRNA, disease name, and
experimental detection techniques. Circbank is a
comprehensive database with standard nomenclature, which
includes approximately 140,000 human circRNAs, and the
other five features of circRNAs. These databases are public
and allow users to query the circRNA information based on
different search criteria, which allows users to conveniently
obtain data for research on circRNAs. This makes predicting
the interaction of circRNA–miRNA by computational method
possible.

For the purposes listed above, this study proposed a creative
efficient computational method named KGDCMI to predict the
circRNA–miRNA interactions based on multidimensional
feature extraction and fusion. First, we use the K-mer
algorithm to obtain the abundance of different fragment
sequences in the whole RNA sequence, which represents the
inherent attribute information of RNA molecules. To take full
advantage of the biological information of circRNA and miRNA,
we also constructed a Gaussian interaction profile kernel
similarity matrix of each RNA. Second, the sparse autoencoder
(SAE) was used to further extract features from redundant or
sparse information to obtain the final attribute features. Next, we
constructed a circRNA–miRNA bipartite graph to describe the
associations between these molecules, in which each node
represents an RNA molecule, and each link represents their
interaction. Then we employed high-order proximity reserved
embedding (HOPE), a graph-embedding algorithm to capture the
description of behavior information between nodes from the
interactions. At last, the DNN was used to objectively and
automatically fuse multiple features and predict the potential
circRNA–miRNA interactions effectively. To evaluate the
performance of the proposed method comprehensively and
fairly, the five-fold cross-validation was used in the
experiment, and a variety of evaluation indicators were
employed to evaluate the performance and practicability of the
proposed method. As a result, an 89.30% area under the curve
(AUC) and 87.67% area under the precision–recall curve (AUPR)
were obtained; meanwhile, in comparison with the known
predictive model with the same dataset, the KGDCMI
achieved the best prediction accuracy. In addition, in three
groups of comparative experiments, we verified an optimal
classifier, the most suitable K value of K-mer for RNA
fragment extraction, and feature extraction dimensions
respectively. In the prediction results of the proposed method,
seven of the 10 pairs with the highest predicted scores were
confirmed in published literature, meaning that the method is
powerful and feasible.

MATERIALS AND METHODS

Dataset
Circbank (Liu, Wang, Shen, Yang, and Ding 2019) is a publicly
available database including the five features of circRNAs, such as

a novel naming system of circRNAs based on the circRNAs host
genes and the conservation of circRNAs. The Circbank contains
approximately 140,000 human circRNAs and 1917 human
miRNAs. After removing redundant data, we obtained
9589 circRNA–miRNA interaction pairs, including
2115 circRNAs and 821 miRNAs from the Circbank database.

CircR2Cancer database (Lan et al., 2020) is a manually
managed database containing 1439 circRNA–cancer
associations between 1135 circRNAs and 82 cancers, and all
these associations have been verified by experiments and
existing literature. We obtained a total of 318 pairs of
circRNA–miRNA between 238 circRNAs and 230 miRNAs
from the circR2Cancer database.

After integrating these data from two databases, we finally
obtained a total of high-quality 9905 circRNA–miRNA
interaction pairs between 2346 circRNAs and 962 miRNAs.

Extracting Sequence Features of RNAs by
K-mer Algorithm
Counting all K-mers (substrings of length K) in RNA sequences is
usually used as an important and common step in bioinformatics
analysis, like variants detection, transcriptome assembly, and read
error correction. Related studies have confirmed that RNA
sequences contain abundant information. To obtain more
comprehensive attribute information on RNAs, we used the
K-mer algorithm to obtain a sparse matrix from the RNA
sequences, which represent the RNA’s attribute features.

For a given circRNA or miRNA sequence, K-mer was used to
split them into subsequences. It scanned each RNA sequence
from beginning to the end with a k nucleotides window, one
nucleic acid once a time. For a sequence of length K, we could
obtain 4K different possible K-mers. Different K values determine
different lengths of vectors. For example, 3-mers of circRNA can
be represented as AAA, AAC, . . ., TTG, and TTT, and the number
of possible 3-mers is l-3 + 1, whereas 5-mers can be represented as
AAAAA, AAAAC, . . ., TTTTG, TTTTT, and the possible 5-mers is
l-5 + 1. After processing circRNA and miRNA sequences, we
obtained the sequence characteristic representation matrices of
each RNA, which can be represented as

KcircRNA � 2346 × 45 (1)
KmiRNA � 962 × 42 (2)

The detail of the K-mer algorithm is shown in Figure 1.

Gaussian Interaction Profile Kernel
Similarity for CircRNA and miRNA
Homologous RNAs with similar associations may have receptors
with similar phenotypes; here, we increased the RNA Gaussian
interaction profile kernel similarity to represent circRNA and
miRNA similarity.

First, with the adjacent matrix, Pc × m represents the associations
of circRNAs and miRNAs, and the number of circRNAs and
miRNAs is defined as c and m. When circRNA i is related to
miRNA j, the value of the matrix P(ij) equals 1, and is otherwise 0.
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Each row of matrix,Pc × m represents a circRNA interaction profile,
and the column represents a miRNA interaction profile.
Furthermore, the gastric inhibitory polypeptide (GIP) kernel of
circRNA can be calculated by the following formula:

GC(ci, cj) � exp( − λc
∣∣∣∣∣∣∣∣∣∣LP(ci) − LP(cj)‖2) (3)

where GC (ci, cj) denotes the GIP kernel similarity between
circRNA ci, and circRNA cj, λc is an adjustable parameter,
which controls the kernel bandwidth:

λc � λc/⎛⎝ 1
nc

∑nc
i�1

∣∣∣∣∣∣∣∣Lp(ci)∣∣∣∣∣∣∣∣2⎞⎠ (4)

λc is defined as one according to the previous study (Van
Laarhoven et al., 2011).

Likewise, the GIP kernel similarity between miRNA mi and
miRNA mj is calculated as

GM(mi,mj) � exp( − λm
∣∣∣∣∣∣∣∣∣∣LP(mi) − LP(mj)‖2

(5)

λm � λm′/⎛⎝ 1
nm

∑nm
i�1

∣∣∣∣∣∣∣∣Lp(mi)
∣∣∣∣∣∣∣∣2⎞⎠ (6)

Sparse Autoencoder to Extract Features
RNA sequences contain a great deal of valuable information, and
we believe that using the K-mer algorithm can effectively
transform sequence information into a digital vector
containing rich attribute information. When using the K-mer
algorithm, the value of K ranges from 2 to 5, which is the most
effective empirical parameter verified. However, the length of

RNA sequences is not uniform. When the value of K is too small,
useful information will be lost. On the contrary, it will cause
“noise” disturbance and increase the computational overhead.

Principal component analysis is a data dimensionality
reduction and feature extraction method widely used before
data are preprocessed by other algorithms. Furthermore, it
removes noise and useless information about features to
maximize the information value of features and improve the
algorithm accuracy. In this work, we used the SAE (Ng 2011) with
sparse penalty terms to obtain a more effective and
comprehensive eigenvector.

SAE is a three-layer neural network including an input layer,
an output layer, and a hidden layer that include two functions:
encoding and decoding.

The function of encoding the layer is mapping the input
feature x to the hidden layer H2

H2 � σ(WH1x(i) + bH1) (7)
where x is the origin-dimensional input data vector, W is the
connection parameter between the input and the hidden layer,
and b represents a function offset.

Select σ(·) as the network’s activation function:

σ(x) � 1

(1 + e−x). (8)

H2= (h1, h2, . . ., hl) is the vector output from the hidden layer.
The average activation amount of the activated hidden unit t is

ρ̂j �
1
n
∑n
i�1
[aj(x(i))] (9)

aj(x) denotes the activation of hidden unit t.

FIGURE 1 | The K-mer algorithm for sequence feature extraction.
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SAE adds the sparsity penalty term to the target function,
which constraints on the hidden layer to maintain low-average-
activation values:

P � ∑h2
j�1

KL(ρ∣∣∣∣∣∣∣∣∣∣ρ̂j) (10)

h2 is the number of neurons in the hidden layer, and P reflects
the degree of penalization ρ̂j deviating from ρ.

The sparsity penalty term is expressed as the Kullback–Leibler
(KL) divergence. In general, ρ is a sparsity parameter, which is a
small value close to 0:

KL(ρ∣∣∣∣∣∣∣∣∣∣ρ̂j) � ρ log
ρ

ρ̂
+ (1 − ρ)log 1 − ρ

1 − ρ̂j
(11)

If ρ̂ = ρ, KL (ρ||ρ̂j) = 0; Otherwise, KL increases monotonically
as the gap grows.

The cost function of sparse penalty term is defined as

FC(W, b) � F(W, b) + κ∑KL(ρ∣∣∣∣∣∣∣∣ρ̂), (12)
where F (W, b) is the cost function of the neural networks, and κ is
the weight of the sparse penalty.

High-Order Proximity Reserved Embedding
Graph-embedding algorithm is an effective method to mine for
hidden information that can map graphs into the vector space
and retain the structure and inherent attributes of graphs. In this
part, we constructed a bipartite graph of the circRNA–miRNA
interactions and used a graph-embedding algorithm, HOPE (Ou
et al., 2016) to capture hidden information between nodes in a
large-scale network.

For a given graphGn =<V, E>, V is a collection of vertices, and
E represents the directed edge sets. HOPE embeds Gn into a
vector space, where the asymmetric transitivity and the structure
of the graph are preserved. HOPE preserves the asymmetric
transitivity by approximating high-order proximity, and it
adopts the L2-norm below as the minimized loss function:

min
∣∣∣∣∣∣∣∣M −Ns ·Nt⊤

∣∣∣∣∣∣∣∣2F (13)
M is a high-order proximity matrix, whereMij is the proximity

between vi and vj, and N = [Ns· Nt] represents the embedding
matrix, Ns, Nt ϵ γα × βare the source embedding vectors and target
embedding vectors respectively, where β is the dimension of the
embeddings. Many high-order approximations reflect
asymmetric transfer properties, HOPE adopts a general
formulation to facilitate the approximation of these proximities:

M � M−1
g ·Ml (14)

where Mg, and Ml are polynomial matrices. Furthermore, HOPE
uses singular value decomposition (SVD) to obtain an optimal
rank-K approximation of the proximity matrix M and
corresponding singular vectors to construct embedding vectors:

M � ∑N
i�1
σ iv

s
i v

tT
i (15)

where σi is a singular value sorted in descending order, and vsi
vti are corresponding singular vectors of σi. The obtained optimal
embedding vectors are

Ns � [ ��
σ1

√ · vs1,/,
��
σk

√ · vsk] (16)
Nt � [ ��

σ1
√ · vt1,/,

��
σk

√ · vtk] (17)

Deep Neural Network
In recent years, as a new machine learning technology, the neural
network has become a widely used method in many fields and
achieved satisfactory results. We used the DNN to effectively
learn and fuse multidimensional features and predict potential
circRNA–miRNA interactions.

After SAE extracted the attribute feature and HOPE
processed the embedded feature, the extracted attribute
feature and behavior feature were concatenated and formed
a complete sample feature vector. Then, the complete feature
vector was fed into the DNN composed of an input layer,
multiple hidden layers, and an output layer to obtain the final
prediction of the interaction between each circRNA and
miRNA.

DNN was fed features from the input layer, and then the
hidden layers transformed data in a non-linear way. At last, the
learned features were calculated to the output layer. In the whole
DNN model, the neuron units in layer n were connected to the
layer (n − 1), and the output data were generated by non-linear
transformation function f (·):

Di+1 � f⎛⎝∑H
i�1
widi + bi⎞⎠ (18)

where H represents the number of hidden neurons, and wi and bi
are the weight and bias of neurons respectively. In our method,
the rectified linear unit was used to capture hidden patterns
within the feature and reduce gradient vanishing:

FRELU(x) � max(0, x) (19)
and sigmoid was utilized to project the predicted value within a
reasonable range:

Fsigmoid(x) � 1
1 + e−x

(20)

We selected binary_crossentropy as the cost function to
minimize the objective function to minimize the loss, which is
shown as follows:

Fcos t � −1
L
∑L
j

yj · logŷj + (1 − yj) · log(1 − ŷj) (21)

where L is the length of the output size, yj represents the true label
for samples 0 or 1, respectively, and ŷj is the predicted probability
of the point being positive. For a given positive sample y = 1, the
closer the predicted value is to 1, the smaller the loss value is, and
vice versa. In an ideal sense, we hope the loss value approaches
0 infinitely. The specific step is shown in Figure 2.
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RESULTS

Evaluation Criteria
In this study, the samples were first divided into a training,
validation, and test set. Taking 70% of samples as the training set
to construct the representation vector and train the DNN
classifier, 20% of samples were regarded as a validation set,
and the remaining 10% of them were treated as a test set to
evaluate the performance of the model. At last, the mean and
standard deviation of the results of five experiments were
calculated. Meanwhile, to fully and fairly demonstrate the

performance of our method, we introduced five evaluation
criteria to comprehensively evaluate the results of the model,
which assesses the robustness and effectiveness of the model. The
evaluation criteria used include the ACC. (accuracy), Sen.
(sensitivity), Spec. (specificity), Prec. (precision), and MCC.
(Matthews correlation coefficient) to ensure
comprehensiveness and fairness of the results. The calculation
formula is as follows:

Acc. � (TN + TP)
(TN + TP + FN + FP) (22)

FIGURE 2 | Flowchart of KGDCMI.
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Sen. � TP

(TP + FN) (23)

Spec. � TN

(TN + FP) (24)

Prec. � (TP)
(TP + FP) (25)

Mcc. � (TP × TN − FP × FN)����������������������������������������������((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))√ (26)

where TP (true positive) is the count of true interactions predicted
to have interacting circRNA–miRNA samples; TN (true negative)
is the number of true interactions predicted to have non-
interacting circRNA–miRNA samples; FN (false negative) is
the count of interacting circRNA–miRNA samples that are
predicted to have no interaction; and FP (false positives) refers
to the number of non-interacting circRNA–miRNA samples
predicted to interact.

Assessment of Prediction Ability
In this part, to verify the practicability and performance of the
proposed method, the dataset, including data based on the
Circbank database and circR2Cancer database, has been used
to evaluate the method. Tables 1 list the experimental results of
the proposed method, the results on the dataset were as follows:
the averageACC. of experiments is 82.65%, Sen. is 80.19%, Spec. is

85.10%, Prec. is 84.35%, MCC. is 65.38%, AUC is 89.30%, and
AUPR is 87.67%. The standard deviations of these evaluation
criteria are 0.41, 1.02, 1.44, 1.16, 0.87, and 0.28 respectively.
Among the five-experiment validation, the highest AUC was
89.63%, and the lowest was 89.04%.

In addition, we plotted the receiver operating characteristic
curve (ROC) and precision–recall (PR) for visualization, while we
calculated the area under ROC (AUC) and area under PR
(AUPR) separately to facilitate comparison with other
methods. The AUC and PR curves are shown in Figures 3, 4,
respectively.

Comparison With Related Models
To demonstrate the superiority of KGDCMI in the prediction of
the circRNA–miRNA interaction, we compared the performance
of the proposed method with the only existing model in this field.
Since few models use computational methods to predict the
circRNA–miRNA interactions, we also compared our method
with several models in other highly related fields. In our
comparative experiment, all models used 9589 pairs of data
based on the Circbank and adopted five-fold cross-validation.
At last, it was found that our method achieved the best results.

To the best of our knowledge, the CMIVGSD (Qian et al.,
2021) is the only known computational framework for predicting
the circRNA–miRNA interactions, which obtains the linear

TABLE 1 | Five-fold cross-validation results performed by KGDCMI.

Test Set ACC. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%)

1 82.00 80.62 83.39 82.92 64.03
2 82.94 78.55 87.33 86.11 66.13
3 82.74 80.11 85.36 84.55 65.56
4 83.04 81.32 84.76 84.21 66.12
5 82.51 80.36 84.65 83.97 65.08
Average 82.65 ± 0.41 80.19 ± 1.02 85.10 ± 1.44 84.35 ± 1.16 65.38 ± 0.87

FIGURE 3 | Receiver operating characteristic curves generated by
KGDCMI. FIGURE 4 | Area under the precision–recall curves generated by

KGDCMI.
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features by SVD and uses the graph variational autoencoder to
generate the non-linear features. At last, the LightGBM classifier
is used to predict the circRNA–miRNA interactions. The deep
matrix factorization prediction model (Liu et al., 2020) uses a
neural network with an embedding layer to obtain a low-
dimensional dense vector and realize matrix factorization,
which is applied to obtain final scores of microbe–disease
pairs. The NTSHMDA (Luo et al., 2018) constructs a
heterogeneous network by similarity network and uses a
method based on the random walk to predict the
microbe–disease association. Furthermore, the AE–RF
(Deepthi et al., 2021) integrates a similar network to construct
features, uses a deep autoencoder to extract hidden features, and
trains the random forest classifier to predict the association
between circRNA and disease. The Deep Matrix Factorization
CircRNA-Disease Association (Lu et al., 2020) uses a projection
layer to learn latent features and applies a multi-layer neural
network to predict the association between circRNA and disease.

Table 2 shows the AUC and AUPR of our model and the other
five models under the five-fold cross-validation. Our model
obtains the best AUC and AUPR among the five models.
Moreover, our model achieves the highest accuracy in the field
of circRNA–miRNA interaction prediction, which is 2.37%
higher than the second-best model.

Comparison With Traditional Classifier
In the prediction method of the KGDCMI, we applied the DNN
to fuse multidimensional features and classify the interaction
between circRNA and miRNA. To reflect the superiority of our

classification strategy, we used some traditional classifiers to
replace our classification method and compare the results. In a
more concrete sense, we kept the multiple features of the
KGDCMI unchanged and conducted independent experiments
with four different classifiers, including the random forest
classifier (Breiman 2001), logistic regression classifier (LaValley
2008), support vector machine classifier (Cortes and Vapnik
1995), and gradient boosting decision tree (Friedman 2001) to
replace DNN for prediction, the prediction results are shown in
Figure 5.

It can be seen in Figure 5 that the results of the DNN classifier
are significantly better than the five traditional classifiers. The
results of these experiments indicated that DNN is applicable to
the proposed method. The main reason for this is that the DNN
has a better fusion for multidimensional features, which can give
full play to the advantages of behavior characteristics and
attribute characteristics in our method. Therefore, the DNN
shows a better performance than the traditional classifiers
when using the same feature description.

Parameter Settings for Attribute Feature
Dimension
This study used the K-mer method to extract attribute features
from RNA sequences. For a given RNA, we can obtain 4k-
dimensional vectors, which depend on the size of the value K.
The value sizes {2,3,4,5} of K are frequently used values.

However, miRNA is a non-coding RNA transcript with an
average length of 21 nucleotides (Buermans et al., 2010), and
circRNA is a long-stranded RNA molecule, where over 14% of
circRNAs in humans and over 10% of circRNA in mouse are
more than 800 nucleotides in length (Wu et al., 2020). Due to
the great difference in the sequence length between miRNA
and circRNA, we need to adopt different K values for different
RNAs to ensure that the most valuable features can be
extracted.

In this part, we treated miRNA and circRNA with K ∈ {2, 3, 4,
5} respectively and compared the experimental results produced
by different K values to obtain the most appropriate K value for
each RNA.

Table 3 shows the performance of our model under different K
values. To independently reflect the impact of different
dimensions on the performance of the model, in the
comparative experiment of K value, we do not add similarity
descriptors and do not use SAE to extract features.

To intuitively represent each group of data, we visualize the
data in three-dimensional space, as shown in Figure 6.

In Figure 6, evaluation criteria 1 through 4 represent Sen.,
Spec., Prec., and AUC., respectively. Meanwhile, mi_16 indicates

TABLE 2 | Performance comparison of five methods based on five-fold cross-validation.

Methods DMFCDA AE–RF DMFMDA NTSHMDA CMIVGSD KGDCMI

AUC 0.7321 0.7662 0.7922 0.8526 0.8804 0.9041
AUPR 0.7115 0.8239 0.8230 0.8772 0.8629 0.8937

FIGURE 5 | Performance comparison of five traditional classifiers and
DNN in terms of prediction.
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that the dimensions of miRNA are 16, which means KmiRNA = 2,
which is the same as for circRNA.

According to Table 3 and Figure 6, when mi_16_circ_1024
(KmiRNA = 2, KcircRNA = 5), KGDCMI obtained the highest
accurate value.When mi_64_circ_1024 (KmiRNA = 3, KcircRNA =
5) and mi_16_circ_64 (KmiRNA = 2, KcircRNA = 3), the method
achieved the second and third highest results, respectively.

The K value of the K-mer algorithm represents the abundance
of divided sequence fragments, larger K values tend to produce
more representative features. However, for miRNA with a short
sequence, when K > 3, the characteristic matrix generated by
K-mer becomes sparser, and the performance of KGDCMI begins
to decline. For circRNA with a long sequence, when 3<K≤ 5, the
method achieves satisfactory results, which shows that the

algorithm can effectively extract features, but not sufficiently.
When K = 5, we obtain the best performance.

According to our experiment, when KmiRNA = 2 and KcircRMA =
5, attribute feature extraction based on K-mer can obtain the best
effect. This is the first analysis of the different dimensions of
feature extraction from RNA sequence length in the field of
circRNA–miRNA interaction prediction, and we believe this
research will provide a reference for future experiments.

Different Dimensions Based on Sparse
Autoencoder
In our method, to obtain the most representative feature
descriptor, SAE was employed to process the resulting

TABLE 3 | Performances of different K values.

K-value Sen. (%) Spec. (%) Prec. (%) Acc. (%) AUC. (%)

KmiRNA = 2, KcircRNA = 2 74.89 86.46 84.70 80.67 86.25
KmiRNA = 2, KcircRNA = 3 77.20 85.29 84.00 81.25 86.77
KmiRNA = 2, KcircRNA = 4 75.49 86.55 84.88 81.02 86.33
KmiRNA = 2, KcircRNA = 5 76.77 86.15 84.72 81.46 87.21
KmiRNA = 3, KcircRNA = 2 76.75 85.17 83.83 80.96 86.39
KmiRNA = 3, KcircRNA = 3 77.27 85.29 84.04 81.27 86.63
KmiRNA = 3, KcircRNA = 4 75.72 86.90 85.26 81.31 86.43
KmiRNA = 3, KcircRNA = 5 77.52 85.56 84.31 81.54 86.97
KmiRNA = 4, KcircRNA = 2 77.79 84.86 83.91 80.83 86.16
KmiRNA = 4, KcircRNA = 3 78.44 85.04 84.00 80.73 86.17
KmiRNA = 4, KcircRNA = 4 77.08 85.57 84.33 80.33 86.43
KmiRNA = 4, KcircRNA = 5 77.67 84.42 84.21 80.74 86.61
KmiRNA = 5, KcircRNA = 2 76.70 84.50 83.73 79.10 85.26
KmiRNA = 5, KcircRNA = 3 76.58 84.93 83.68 80.25 85.89
KmiRNA = 5, KcircRNA = 4 76.74 85.00 83.93 79.11 85.75
KmiRNA = 5, KcircRNA = 5 76.87 85.52 83.66 79.70 85.92

FIGURE 6 | Performances of different K values.
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eigenvectors to learn the hidden and relatively sparse features. To
further evaluate the efficiency of the proposed feature extraction
strategy and determine the best extraction dimension, we applied
SAE to extract features with different dimensions as the final
behavior feature. In detail, we selected 5-mers circRNA and 2-
mers miRNA for which K showed the best performance in the
previous section, and used 64-, 128-, 256-, and 512-dimension
final behavior features extracted by SAE to perform experiments.
Figure 7 provides experiment results of the different feature
dimensions of the proposed method.

Figure 7 shows that compression of all four dimensions
improves the accuracy of the model, which suggests that the
use of SAE can effectively improve robustness, generalization
ability, and accuracy. In all five evaluation criteria, 128-dimension
compression achieves the best results in three evaluation criteria,
Therefore, in this experiment, we set the SAE compression
dimensions at 128.

CASE STUDIES

To verify the performance of our model in the real environment,
we implemented the case study based on our dataset. First, we
used known circRNA–miRNA interactions to construct the
features vectors and train the model. Second, the trained
model was used to predict the unknown association
interactions, and finally, we obtained the final score of
prediction of each pair after sorting the results from large to
small, the top 10 results are shown in Table 4. We can see from
table 4 that 7 of the top 10 circRNA–miRNA interactions were
confirmed in PubMed. The remaining three unconfirmed pairs of
interaction were not verified by biological experiments, but there
is no doubt that interaction is possible between them.

CONCLUSION

Due to the high labor cost and the production time of biological
methods, computational methods have increasingly received
attention and have been used to predict the association of
different molecules. Predicting the interaction between
circRNA and miRNA can not only save resources and time
but also help to find the potential relationship between
molecules and facilitate the understanding of complex disease
mechanisms (Lei et al., 2021). At present, there is only one
computational prediction model for circRNA and miRNA
interaction, to the best of our knowledge. This study proposed
a method called KGDCMI to predict the interaction between the
circRNA and miRNA.

First, we used the K-mer algorithm and Gaussian kernel
similarity to obtain the digital descriptor representing the
attribute characteristics of RNA. Second, SAE was used to
remove the redundancy and noise of attribute features to
obtain the final attribute vectors. Next, we used HOPE to
capture behavior information in molecular association
networks. At last, we used a DNN for feature fusion and get
the final predict score.

With the same dataset, our model obtained the highest AUC
(90.41%) and AUPR (89.37%), which is 2.37% and 3.08%
higher than the second-best model, respectively. Meanwhile,
we compared and discussed the extraction of fragments with
different lengths of molecular sequences for the first time, and
we obtained the most suitable K value for miRNA and
circRNA, which we believe will facilitate future research.
The results predicted by the model were verified in case
studies. There is no doubt that our model is an effective
computational tool to predict the circRNA–miRNA
interaction.

DATA AVAILABILITY STATEMENT

The datasets for this paper can be found in the Circbank http://
www.circbank.cn/, CircR2Cancer http://www.biobdlab.cn:8000/.
The data and source code can be found at https://github.com/
1axin/KGDCMI. KGDCMI is also publicly available as an online
predictor at http://120.77.11.78/KGDCMI/.

FIGURE 7 | Performance of five-dimensional compression to extract
features.

TABLE 4 | The top 10 results predicted in our model based on the dataset.

Num CircRNA miRNA Evidence

1 hsa_circ_0006916 hsa-miR-522-3p PMID:29726904
2 hsa_circ_0002142 hsa-miR-625-5p PMID:30988674
3 hsa_circ_0000977 hsa-miR-874-3p PMID:29454093
4 hsa_circ_0041089 hsa-miR-3192-5p unconfirmed
5 hsa_circ_0041103 hsa-miR-103a-3p PMID:27484176
6 hsa_circ_0007915 hsa-miR-106a-3p PMID:28727484
7 hsa_circ_0000673 hsa-miR-767-3p unconfirmed
8 hsa_circ_100242 hsa-miR-145-5p PMID:32218853
9 hsa_circ_0092306 hsa-miR-197-3p PMID:31689616
10 hsa_circ_0089776 hsa-miR-6752-5p unconfirmed
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