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Background: Gastric cancer (GC) is a digestive system tumor with high

morbidity and mortality. It is urgently required to identify genes to elucidate

the underlying molecular mechanisms. The aim of this study is to identify the

key genes which may affect the prognosis of GC patients and be a therapeutic

strategy for GC patients by bioinformatic analysis.

Methods: The significant prognostic differentially expressed genes (DEGs) were

screened out from The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus (GEO) datasets. The protein–protein interaction (PPI) network was

established by STRING and screening key genes byMCODE and CytoNCA plug-

ins in Cytoscape. Functional enrichment analysis, construction of a prognostic

risk model, and nomograms verify key genes as potential therapeutic targets.

Results: In total, 997 genes and 805 genes were related to the prognosis of GC

in the GSE84437 and TCGA datasets, respectively. We define the 128 genes

shared by the two datasets as prognostic DEGs (P-DEGs). Then, the first four

genes (MYLK, MYL9, LUM, and CAV1) with great node importance in the PPI

network of P-DEGs were identified as key genes. Independent prognostic risk

analysis found that patients with high key gene expression had a poor prognosis,

excluding their age, gender, and TNM stage. GO and KEGG enrichment analyses

showed that key genes may exert influence through the PI3K-Akt pathway, in

which extracellular matrix organization and focal adhesion may play important

roles in key genes influencing the prognosis of GC patients.

Conclusion: We found that MYLK, MYL9, LUM, and CAV1 are potential and

reliable prognostic key genes that affect the invasion and migration of gastric

cancer.
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Introduction

Gastric cancer (GC) is the fifth most common cancer and the

third most common cause of cancer-related deaths in the world.

The statistical results showed that there were more than one

million new cases of GC in the world every year, and the number

of GC-related death cases continuously increased; statistics for

2018 showed that the death toll had risen to 784,000 (Smyth et al.,

2020). Many interfering factors can cause the low survival rates of

GC patients, among which the diagnosis of GC patients usually

occurs in the middle and late stages; easy recurrence and

metastasis after an operation are the most common reasons

for the poor prognosis of GC patients (Fang et al., 2020). In

the past 10 years, a large number of studies have revealed that

there were quite sensitive and effective biomarkers that can affect

the occurrence and progression of GC, for example, Graziano

et al. (2004) found that methylation of the CpG island in the

promoter region of the CDH1 gene will lead to a change in

CDH1 expression, which may play an important role in the

occurrence and progression of diffusive GC, and CDH1 is likely

to be one of the therapeutic targets of GC. Several previous

studies (Digklia and Wagner, 2016) also found that

HER2 expression is not only an independent risk factor

affecting the prognosis of GC patients but also an effective

target for the treatment of GC patients. These experiences

provide the basis for the research on the occurrence,

progression, and treatment of GC. However, previous studies

on biomarkers on the occurrence and progression of GC were

based on a single-gene pattern, and cancer is usually a disease

involving multiple genes and mechanisms. Therefore, it is very

important to comprehensively explain the specific mechanism of

GC progression and identify significant biomarkers to improve

the prognosis of GC patients.

Bioinformatics is a broad multidisciplinary field.

Computational tools have been developed to analyze and

manage the increasing amount of biological data (Goujon

et al., 2010). Bioinformatics can be used to identify the key

drivers of each specific cancer patient. Therefore, they have the

potential to realize more personalized cancer treatment

programs, paving the way for new targeted drugs targeting

specific proteins (Zhang et al., 2009). With the development

of The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO), and the accumulation of cancer genetics

knowledge that has developed rapidly in the last 10 years,

tumor analysis based on databases not only reveals the whole

panorama of tumor-related genome changes but also lays a

foundation for the study of related tumor types (Cancer

Genome Atlas Research et al., 2013).

In this study, bioinformatics methods and techniques were

used to screen out prognostic differentially expressed genes

(P-DEGs) of GC from GEO and TCGA databases.

Furthermore , we established a PPI network to identify the

key genes in DEGs through module analysis and centrality

analysis, constructed a prognostic risk model, and verified an

unfavorable indicator. This study provides a reliable basis for

exploring the molecular mechanisms of GC pathogenesis and

identifying molecular targets for clinical diagnosis or treatment.

Methods

Data

The gene expression matrix data on GC patients were

obtained from the dataset (GSE84437) in the GEO database of

the national bioinformatics center of the United States. The data

set was composed of the gene chip expression profile data and the

survival information on 433 GC patients, which were collected

through the GPL6947 chip platform. Moreover, 380 cases of GC

tissue expression profile data and clinical information were

downloaded from TCGA database.

Screening of prognosis-related genes of
GC patients

The gene expression matrix of GC tissues was obtained from

the GEO (n = 433) and TCGA (n = 380) databases, respectively,

and then, the data were mined through R software. To obtain the

standardized gene expression matrix of GC patients, the

“impute” and “limma” packages in R were used to process the

missing value estimation and logarithmic transformation of data.

According to the K–Mmethod, each gene in the gene expression

matrix was divided into high- or low-expression groups based on

the median value of the gene expression. Subsequently, the

survival difference between these two groups was evaluated

and verified. The proportional hazards model was used for

multivariate analyses and survival estimation to analyze,

verify, filter, and screen out these genes, which were

significantly correlated with the prognosis of GC patients (p <
0.05). Finally, these genes filtered by the aforementioned survival

analyses were mutually verified in the two datasets GEO and

TCGA. Then, the common significant prognostic differentially

expressed genes were identified as P-DEGs.

PPI network

STRING (http://string-db.org) is an online tool, which is

often used to predict protein–protein interactions (Szklarczyk

et al., 2011). Through STRING, gene interaction analysis can be

conducted, including physical and functional interactions. In this

study, we used it to establish a PPI network of P-DEGs, while the

confidence score of connections in this network is required to

be >0.15, and the disconnected nodes in the network were

excluded.
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Module analysis and centrality analysis of
the PPI network

The PPI network of P-DEGs is visualized by Cytoscape

software. In this network, the functional modules and the

interactions between genes were identified and measured

through the MCODE plug-in (Bader and Hogue, 2003). In

all sub-modules, the higher the score was, the stronger the

protein correlation in the sub-module was, and the sub-module

with the highest score was considered the result of MCODE

analysis. The plug-in CytoNCA is used for centrality analysis,

including three parameters: degree, betweenness, and

eigenvector (Tang et al., 2015). Degree is a measurement of

the importance of a single node, which describes the number of

sides of a connected node (Luo et al., 2017). Betweenness is the

shortest path to analyze a specific node (Li et al., 2017).

However, for the eigenvector, the importance of the node

itself and its neighbors is considered (Negre et al., 2018).

The top 5% of the nodes under each parameter are

considered the important nodes of CytoNCA analysis, and

the genes represented were considered as the result of

centrality analysis. Finally, by combining the results of

MCODE and CytoNCA plug-ins, the common genes were

considered the most important genes in the PPI network of

P-DEGs and identified as key genes.

Prognostic analysis and validation of key
genes

Based on the gene expression matrix data on GC patients in

the GEO and TCGA databases, the median of key gene

expression value was set as the cut-off value, and the key

gene expression matrix of GC patients was divided into key

gene high- and low-expression groups. By using the “survival”

package in R, according to K–M analysis and a multivariate Cox

regression test, the difference in overall survival events between

the high- and low-expression groups of key genes was

compared. Then, the survival rate and survival curve were

analyzed and drawn. By using the “survival” package,

according to univariate and multivariate Cox regression

analyses, the hazard ratio (HR) and forest maps of

independent prognostic analysis of single-gene and multiple-

gene combinations of key genes were analyzed and drawn.

Finally, to precisely predict the survival rates of GC patients,

the risk scores of key genes and some clinicopathological

factors, such as age, gender, and pathological stage, were

linked together. According to the risk ratio-weighted key

gene expression data, the key genes (Lin T. et al., 2018) were

constructed as follows:

risk score � ∑
N

i

(expipHRi),

where N is the number of selected genes of key genes, expi is the

expression value of each single gene of key genes, and HRi is the

HR value of each single gene in the multivariate Cox regression

model. According to the median value of the risk scores of key

genes in the expression matrix of GC patients, GC patients were

divided into the low-risk group and the high-risk group, and the

prognostic risk rates were measured by K–M analysis.

Subsequently, based on the multivariate Cox regression

analysis, the nomogram is established and drawn through the

“RMS” package in the R language.

GO and KEGG analyses of key genes

According to the median value of each key gene, GC patients

in the GEO and TCGA databases were divided into high- and

low-expression groups for each gene, respectively. The

differentially expressed gene (DEG) sets between high- and

low-expression groups of each key gene were identified, and

the corresponding GO and KEGG functional enrichment

analyses of each DEG were conducted through “limma,”

“clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” and “ggplot2″ R

software packages. |log2FC|>0.5, p < 0.05, and adjusted p <
0.05 were considered as the cut-off criteria.

Statistical analysis

R language (version 4.0.1) was used for data statistical

analysis: K–M analysis, univariate Cox regression analysis, and

multivariate Cox regression analysis were used to identify the key

genes. Survival curves and forest maps of survival analysis and

independent prognostic analysis of single-gene or multiple-gene

combinations of key genes were drawn with the R language

through the “survival” package. p < 0.05 and adjusted p <
0.05 were considered as the cut-off criteria.

Result

Identification of P-DEGs

To explore the key genes affecting the prognosis of GC

patients and the roles these genes play in the mechanism of

GC progression, the gene expression matrix data obtained from

the GEO and TCGA databases were used to conduct multivariate

analyses and survival estimation to screen out the genes that were

significantly correlated with the prognosis of GC patients (p <
0.05). Subsequently, we obtained 997 and 805 genes related to the

prognosis of GC in the GSE84437 and TCGA gene expression

matrix datasets, respectively. Therefore, 128 common P-DEGs

were obtained by mutual validation between the two datasets,
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which means 128 of 997 genes in GSE84437 and 128 of 805 genes

in TCGA databases (Figure 1A).

Module analysis and centrality analysis of
the P-DEG-related PPI network

In order to study the molecular mechanism which can affect

the prognosis of GC patients from a systematic perspective, we

established a PPI network of P-DEGs to explore the molecular

mechanism. The results showed that there were 124 nodes and

819 edges in the PPI network. Furthermore, we used theMCODE

plug-in in Cytoscape software to analyze the modules available

for exploring more closely related genes in the PPI network. The

results showed that there were four modules and one non-

module in the PPI network, and the scores of the four

modules were as follows: 8.667 (module 1), 7.455 (module 2),

4.111 (module 3), and 2.667 (module 4), respectively. We found

that the first module (module 1) was the most interactive area in

the PPI network, which is located at the center of the whole

network, including 16 nodes and 65 edges (Figure 1B). Therefore,

the protein interactions in module 1, which rank the first, maybe

the strongest and most important part of the whole network. The

results of module 1 were considered the final result of the

MCODE analysis. At the same time, to obtain GC prognosis-

related key genes in this complex PPI network, we used the

centrality analysis method to analyze the PPI network. First, we

used the CytoNCA plug-in to analyze the score of three

parameters of each gene in the PPI network, which were

degree, betweenness, and eigenvector. Then, we selected the

genes whose scores ranked in the top 5% in three parameters.

Finally, we selected these genes which ranked top 5% in three

parameters and showed up in module 1 as key genes, which were

MYLK, MYL9, LUM, and CAV1, and they were all in module

1 with high centrality (Figure 1C).

Prognostic value of key genes in GC
patients

To analyze the role of key genes in the progression of GC, the

survival analyses of four genes of key genes were further analyzed

through the K–M method. According to the median expression

of the gene matrix, GC patients were divided into the high-

expression group and the low-expression group. The survival

curve showed that the expressions of MYLK, MYL9, LUM, and

CAV1 were significantly correlated with the survival rate and

overall survival time of GC patients in GEO and TCGA databases

(p < 0.05). According to the survival analyses, the median

survival time of GC patients with lower expression of MYLK,

MYL9, LUM, and CAV1 was1.37, 1.41, 1.35, and 1.42 years; with

higher expression ofMYLK,MYL9, LUM, and CAV1, the median

survival time was 1.06, 1.08, 1.15, and 1.06 years in TCGA

database, respectively. Compared with GC patients with lower

expression of MYLK, MYL9, LUM, and CAV1 (GEO, n = 217;

TCGA, n = 190), these patients with high expression of key genes

FIGURE 1
Selection of key genes for GC patients. (A) In total, 128 common P-DEGs were obtained from the intersection of TCGA and GEO datasets. (B)
Four modules, namely, modules 1–4, and one non-MCODE module and a score ranked up in the top 5% in three parameters from CytoNCA’s
centrality analysis. (C) Key genes (MYLK, MYL9, LUM, and CAV1, green diamond in the picture) were obtained.
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(n = 216, GEO; n = 190, TCGA) had significantly poorer

prognosis (p < 0.05, Figures 2A–D and Supplementary Figures

S1A-D). The results were verified through the GEO gene matrix

once again. According to the univariate and multivariate Cox

regression analyses, the results of independent prognosis of key

genes in the GEO and TCGA databases showed that the HR of

MYLK, MYL9, LUM, and CAV1 were all presented as HR > 1,

which were 1.15, 1.18, 1.19, and 1.31, respectively (p < 0.05).

These results indicate that key genes can independently affect the

prognosis of GC patients (Figure 3 and Supplementary Figure

S2). The influence of key genes is of great significance and has

potential value as prognostic biomarkers and therapeutic targets

for GC patients.

GO and KEGG enrichment analyses

To better elucidate the mechanisms of key genes affecting GC

prognosis, we performed GO and KEGG enrichment analyses.

Results of GO analyses showed that most GO terms were

significantly enriched in extracellular matrix organization,

extracellular structure organization, cell-substrate adhesion,

tissue migration, muscle contraction, muscle tissue

development, mesenchymal development, etc. (Figure 4 and

Supplementary Figure S3). Moreover, the results of KEGG

analyses showed that the related pathways were significantly

enriched in focal adhesion, PI3K-Akt signaling pathway, ECM

receptor interaction, cell adhesion molecules, proteoglycans in

cancer, protein digestion and absorption, cell cycle, calcium

signaling pathway, etc (Figure 4). These results indicate that

key genes affect the prognosis of GC patients mainly through

influencing the invasion, migration, and cell cycle functions of

GC cells.

Construction and validation of the
prognostic risk model of key genes

Based on multivariate Cox regression analysis, key genes

(MYLK, MYL9, LUM, and CAV1) were integrated, and a

prognostic risk model of key genes was established according

to GEO and TCGA data, respectively. The risk scores of key

genes were calculated using the formula mentioned in the

method, and processes were as follows: risk score = (HR

FIGURE 2
Survival analyses of key genes [(A) MYLK, (B) MYL9, (C) LUM, and (D) CAV1]. Patients with high expression of key genes have a poor prognosis
(p < 0.05).
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(MYLK) × MYLK expression level) + (HR (MYL9) ×

MYL9 expression level) + (HR (LUM) × LUM expression

evaluation rate, risk score, and clinical features of GC

patients can be estimated based on the total points)

(Supplementary Table S1). To confirm the prognostic value

of the risk signature, we constructed a nomogram based on the

prognostic risk model, and we determined the clinical relevance

and prognostic value of age, gender, and TNM staging. The 1-

year, 3-year, and 5-year survival rates can be estimated from the

total scores, which are the sum of the scores for each item, as

FIGURE 3
Independent prognostic analysis of key genes in TCGA database.
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shown in the nomogram (Figure 5 and Supplementary Figure

S4). The nomogram not only proved that the prognostic risk

model is reliable but also showed that the accuracy of predicting

survival in each patient was high.

To further verify the reliability of key genes, GC patients were

divided into the low-risk group and the high-risk group

according to the median risk score in TCGA and GEO

databases, respectively. The survival curves showed that the

prognosis of the high-risk group was worse than that of the

low-risk group (Figure 6, p < 0.05). With the risk score

increasing, the number of patients’ deaths increases (Figure 6

and Supplementary Figure S5). Univariate and multivariate Cox

regression analyses were performed based on the gene matrix

data, the results of which showed that the risk scores of key genes

were independently correlated with the overall survival rate of

GC patients (Table 1, p < 0.05). These results indicate that the key

genes can be a significant reference to the prognosis of GC

patients. The key genes can be used to guide the next step of

treatment after surgery or/and chemoradiotherapy treatment.

MYLK, MYL9, LUM, and CAV1 can be potential targets to

improve the prognosis of GC patients.

Discussion

GC is one of the most common and malignant tumors.

Although the main treatment methods for GC such as

surgery, radiotherapy, and chemotherapy have made progress,

the incidence rate and mortality rate of GC patients remain

stubbornly high (Ferlay et al., 2015; Li et al., 2020). More than

90% of the GC patients were in the late stage when diagnosed,

which was related to the unclear symptoms in the early stage of

GC patients and unclear influential factors of GC prognosis to a

large extent (Yan et al., 2018; Huang et al., 2019). The occurrence

and progression of GC is a multi-stage, slow-moving pathological

process, in which genetic mutations, epigenetic changes, and

abnormal molecular signal transduction pathways can all

participate in the occurrence, diffusion, and metastasis of GC

(Shan et al., 2019). Therefore, it is very important to find specific

prognostic biomarkers of GC to develop therapeutic strategies for

malignant behaviors of tumors. These problems highlight the

necessity of finding prognostic markers for GC. Nowadays, high-

throughput platforms for detecting gene expression have been

developed rapidly in the processes of disease progression, which

FIGURE 4
GO enrichment and KEGG enrichment analyses of key genes in TCGA database.
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lays the foundation for the discovery of new targets that can be

used to predict, diagnose, and treat cancer.

Module analysis (MCODE) and centrality analysis

(CytoNCA) in the PPI network play important roles in

screening molecular markers; these genes appear in the

modules with the highest scores and also rank higher in

centrality analysis results, which are the key genes that can

affect the occurrence of diseases (Tang et al., 2015). Studies

have shown that module analysis can help screen key genes in

cancers more accurately, such as cervical cancer (Xia et al.,

2018), glioblastoma (Yang et al., 2018), and head and neck

squamous cell carcinoma (Yang et al., 2017). However,

CytoNCA can analyze the centrality degree of each node in

the whole PPI network and can exhibit the nodes with

important connections, to help select key genes (Lu et al.,

2019). Combined with these two methods, key genes (MYLK,

MYL9, LUM, and CAV1) with important value in the whole

PPI network were obtained. Some studies also elucidated the

impact of key genes on various tumors.

Liang X et al. indicated that caveolin 1 (CAV1) plays an

important role in the occurrence and progression of varieties of

malignant tumors, especially in the malignant progression of

GC, by promoting epithelial–mesenchymal transition (EMT)

function. Under the conditions of the extracellular matrix

integrin interaction and Tyr-14 phosphorylation, CAV1-

enhanced melanoma cells will migrate, invade, and migrate

to the lungs (Liang et al., 2018; Luo et al., 2020). Positive

CAV1 expression is associated with progression and poor

prognosis in GC patients after radical gastrectomy (Seker

et al., 2017). The results of Jin et al. (2016) showed that,

compared with normal gastric mucosa, myosin light chain 9

(MYL9) was abnormally upregulated in GC patients’ tumor

tissues, and it could affect the prognosis of GC patients through

adhesion plaque and leukocyte cross-endothelial migration. As

an important part of the extracellular matrix, luminan (LUM)

can be expressed in many organs and tissues of the human

body. LUM can play an important role in tumor metastasis and

invasion through extracellular matrix (Chen et al., 2020). The

previous research study indicated that LUM could be regulated

FIGURE 5
Nomogram based on the risk model and clinicopathological
factors in TCGA database.

FIGURE 6
Survival analyses of the risk scores of key genes in TCGA
database.

TABLE1 Univariate and multivariate analyses of the prognostic risk
model in TCGA database.

Variable Univariate analysis Multivariate
analysis

HR p-value HR p-value

Risk score 1.0464 0.0003 1.0489 0.0004

Age 1.0129 0.0659 1.0196 0.0120

Gender 1.3037 0.1674 1.2572 0.2364

T 1.3004 0.0006 1.2674 0.0023

N 1.3263 0.0109 1.2162 0.1035
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as a potential prognostic marker and therapeutic target for GC

(Chen et al., 2020). Myosin light chain kinase (MYLK) can

catalyze the phosphorylation of the myosin light chain and

regulate the invasion and metastasis of some malignant tumors

(Tan and Chen, 2014; Lin J. et al., 2018).

In the past few years, there has beenmore andmore evidence of

the key role of the extracellular matrix in mediating different cell

processes (including cell adhesion, polarity, migration,

differentiation, proliferation, and survival), and tumor cells are

closely related to it (Moreira et al., 2020). Focal adhesion is a

strong adhesion of the sub-cellular structure to the extracellular

matrix. It also acts as a scaffold for many signal transduction

pathways involving integral proteins or mechanical force exerted

on cells (Burridge, 2017). Focal adhesion dysfunction is considered

to be an essential pathway in tumor invasion and migration

(Carragher and Frame, 2004; Paluch et al., 2016). Many cellular

processes in cancer are attributed to kinase signaling networks. Akt,

as a serine/threonine kinase, also known as protein kinase B, is a

carcinogenic protein that can regulate cell survival, proliferation,

growth, apoptosis, and glycogen metabolism. Over-expression of

Akt is a common molecular feature of human malignant tumors.

Many tumor tissues and tumor cells are accompanied by activation

of the PI3K/Akt signaling pathway (Song et al., 2019). In this study,

we explored the relationship between key genes and classical

carcinogenic signaling pathways by GO and KEGG enrichment

analyses. Results showed that key genes can promote the

development of GC by regulating various signaling pathways,

many of which have been proven to play important roles in the

occurrence and progression of cancer. In particular, focal adhesion

and PI3K/Akt signaling pathways may be the main signaling

pathways involved in the effect of key genes on GC prognosis,

and their influences cannot be divorced from the extracellular

matrix.

In this study, we integrated GEO and TCGA databases, using

bioinformatics analysis methods, to mine and analyze high-

throughput data to conduct module and centrality analysis of the

PPI network, which helped us screen out key genes (MYLK,MYL9,

LUM, andCAV1) that have an important impact on the prognosis of

GC patients and can be considered as a biomarker and potential

therapeutic target for GC prognosis. Then, the establishment of a

prognostic risk model of key genes further explained the kernel roles

the key genes may play in the development of GC.

Conclusion

The integrative analyses of the gene expression matrix

identified 128 common P-DEGs. The four key genes (MYLK,

MYL9, LUM, and CAV1) of P-DEGs may be predictive

biomarkers or therapeutic targets for GC prognosis. These

predictions should be verified through experimental

validation, although this study provided new insights into

the development of individualized therapeutic targets

for GC.
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