
Individual and combined effects
of the GSTM1, GSTT1, and
GSTP1 polymorphisms on type
2 diabetes mellitus risk: A
systematic review and
meta-analysis

Liang-shu Liu1, Di Wang1, Ru Tang1, Qi Wang1, Lu Zheng2,
Jian Wei2, Yan Li2* and Xiao-feng He3,4*
1Changzhi Medical College, Changzhi, Shanxi, China, 2Department of Endocrinology, Heping Hospital
Affiliated to Changzhi Medical College, Changzhi, Shanxi, China, 3Department of Epidemiology, School
of Public Health to Southern Medical University, Guangzhou, Guangdong, China, 4Institute of
Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China

Backgrounds: Compared with previously published meta-analyses, this is the first

study to investigate the combined effects of glutathione-S-transferase

polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes

mellitus (T2DM) risk; moreover, the credibility of statistically significant

associationswas assessed; furthermore,many neworiginal studieswere published.

Objectives: To determine the relationship between GSTM1, GSTT1, and

GSTP1 polymorphisms with T2DM risk.

Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure

Databases were searched. We quantify the relationship using crude odds ratios and

their 95% confidence intervals Moreover, the Venice criteria, false-positive report

probability (FPRP), and Bayesian false discovery probability (BFDP) were used to

validate the significance of the results.

Results:Overall, significantly increased T2DM riskwas found between individual

and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM

risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not

statistically significant. GSTT1 gene polymorphism significantly increases the

risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no

statistical significance. The GSTM1 null genotype was linked to a particularly

increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected

to a significantly higher risk of T2DM in Asians and Indians; and the

GSTP1 IIe105Val polymorphism was related to a substantially increased

T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype

was associated with substantially increased T2DM risk in Caucasians and

Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was

associated with higher T2DM risk in Caucasians. However, all significant

results were false when the Venice criteria, FPRP, and BFDP test were used

(any FPRP >0.2 and BFDP value >0.8).
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Conclusion: The current analysis strongly suggests that the individual and

combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be

connected with elevated T2DM risk.
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Introduction

Insulin resistance, excessive or improper glucagon secretion,

and insufficient insulin secretion are symptoms of type 2 diabetes

mellitus (T2DM), a chronic endocrine metabolic disorder.

According to the newly released International Diabetes

Federation Diabetes Atlas (10th edition), there are an

estimated 537 million people living with diabetes in the world

now, with that number expected to rise to 784 million by

2,045 based on current trends. In recent years, the incidence

of diabetic complications, such as diabetic nephropathy and

diabetic cardiovascular disease, has gradually increased. With

the increase of people’s lifestyle such as poor diet, sedentary and

inactive, the prevalence of T2DM will continue to rise, which will

undoubtedly bring a huge burden on human health and medical

expenditure (https://diabetesatlas.org/en/.). T2DM pathogenesis

is complicated and diverse, involving both environmental and

genetic risk factors. Currently, antioxidant and detoxification

gene polymorphisms are believed to play a significant role in the

risk of T2DM and related complications (Wu et al., 2014; Pahwa

et al., 2017; Dendup et al., 2018).

Oxidative stress is the result of imbalance of reactive oxygen

species generation and clearance, which is closely related to

insulin resistance and functional impairment of islet β-cells.
GST is a superfamily protease encoded by multiple genes with

antioxidant and detoxification functions (Tangvarasittichai,

2015; Vats et al., 2015). It catalyzes the formation of thioether

bonds between glutathione and electrophiles, thereby catalyzing

the reduction of hydrogen peroxide, reducing fatty acids,

phospholipids and DNA bases to corresponding alcohols, and

scavenging lipid free radicals and hydrogen peroxide, thus

reducing body damage (Hayes et al., 2005; Tabatabaei-Malazy

et al., 2017). GSTM1 and GSTT1 gene locus has been mapped on

chromosome 1p13.3 and 22q11.2, respectively, resulting in the

reduced activity of a functional gene product (Hayes and Strange,

2000; Gonul et al., 2012). GSTP1 gene polymorphism is a single

nucleotide polymorphism, a codon 105 A-G mutation at exon

5 in GSTP1 polymorphism leads to change in isoleucine (IIe) to

valine (Val), is linked to a change in decreased enzymatic activity

(Zimniak et al., 1994; Mastana et al., 2013). Thus, these three gene

mutations may increase the risk of T2DM based on biological

effects.

Independent and combined effects of GSTM1, GSTT1 and

GSTP1 IIe105Val polymorphisms with the risk of T2DM have

been described in a number of original investigations, and the

association of GSTs gene polymorphisms with T2DM

complications has also been reported. Of note, these results

were contradictory. Five published meta-analyses (Tang et al.,

2013; Yi et al., 2013; Zhang et al., 2013; Saadat, 2017; Nath et al.,

2019) reported the GSTM1, GSTT1 and GSTP1 IIe105Val

polymorphisms with T2DM risk. Three published meta-

analyses have investigated the association between GSTs gene

polymorphisms and T2DM complications (Orlewski and

Orlewska, 2015; Sun et al., 2015; Nath et al., 2019). Yet, their

studies had certain limitations. This could be due to the limited

sample size or the lack of quality assessments of the literature.

More importantly, past meta-analyses did not assess the

reliability of positive results. As a result, we conducted a

systematic review of the literature and a latest meta-analysis

to assess whether GSTM1, GSTT1, and GSTP1 gene contribute to

the risk of T2DM and related complications. We are also

investigated the effect of gene-gene interactions on T2DM risk.

Materials and methods

Search strategy

The present study followed the Preferred Reporting Items for

Systematic Review and Meta-Analysis (PRISMA) group’s

guidelines. The PubMed, Embase, Wan-fang, and China

National Knowledge Infrastructure (CNKI) databases were

used to conduct the literature search (deadline to 16 May

2022). The following was utilized as a search strategy

(polymorphism OR variant OR variation OR mutation OR

SNP OR genome-wide association study OR genetic

association study OR genotype OR allele) and (diabetes OR

mellitus OR diabetes mellitus) AND (glutathione S-transferase

M1 OR GSTM1 OR glutathione S-transferase T1 OR GSTT1 OR

glutathione S-transferase P1 OR GSTP1). References of the

retrieved articles and review articles on this topic were also

carefully examined in additional suitable studies. If necessary,

the respective authors were contacted by e-mail. Moreover, there

were no restrictions or limitations on language.

Inclusion and exclusion criteria

The inclusion criteria were: 1) case–control or cohort design;

2) studies must examine the correlation between the individual
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and combined effects of GST polymorphisms with T2DM or

T2DM complication risk; 3) studies with odds ratio (OR) and

their 95% confidence interval (CI), or enough data to calculate

these numbers. Exclusion criteria were: 1) case reports, reviews,

commentaries and meta-analyses; 2) studies that did not give

genotype frequencies or could not determine the number of

genotypes and alleles; 3) overlapping data or incomplete data.

Data extraction

Two investigators extracted and double-checked data. When

their conclusions differed, through discussion were reached a

consensus. The first author’s name, year, country, source of

control, match, race and other information were recorded,

among which race was divided into “Asian,” “African,”

“European,” “Caucasian,” “Indian” and “Mixed.”

Quality score assessment

The quality assessment scale was independently assessed by

two investigators (Supplementary Table S2). The total score was

18 points, studies scoring >12 were high, while scores of ≤12 were
regarded as low quality in this meta-analysis. The scale was

influenced by selection (two points), control and case source

(four points), diagnostic criteria for T2DM (two points),

Ascertainment of control (two points), matching (two points),

Genotyping examination (two points), Association assessment

(two points), and Hardy-Weinberg balance (HWE).

Statistical analysis

Stata 12.0 software (Stata Corporation, College Station, TX)

was used to calculate all statistical analyses. The strength of the

association of GSTM1, GSTT1, and GSTP1 polymorphisms with

T2DM and T2DM complications risk were estimated by

calculating the crude OR and their 95% CI. We used the Chi-

square-based Q-test and I2 value to evaluate heterogeneity

(Higgins et al., 2003). The random-effects model was used

when p was less than 0.10 and/or I2 was larger than 50%. if

not, the fixed-effects model was applied (DerSimonian and Laird,

2015). Furthermore, a meta-regression analysis was used to

investigate sources of heterogeneity (Baker et al., 2009).

Subgroups were carried out based on ethnicity, control source,

control type, and matching. Sensitivity analysis was performed

using the following methods: 1) excluded one study at a time; 2)

removed low-quality or Hardy–Weinberg Disequilibrium

(HWD) studies; 3) retained only high quality and HWE

research. HWE was evaluated by Chi-square goodness-of-fit

test, p < 0.05 was defined as HWE, otherwise as HWD. To

determine publication bias, Begg’s funnel plot (Begg and

Mazumdar, 1994) and Egger’s test (Egger et al., 1997) were

conducted. If publication bias existed, the missing studies

would be filled employing a nonparametric “trim and fill”

method (Dual and Tweedie, 2000).

The credibility of genetic association

To assess the reliability of statistically significant correlations,

the false-positive report probability (FPRP) (Wacholder et al.,

2004), Bayesian False Discovery Probability (BFDP) (Wakefield,

2008), and the Venice standard (Ioannidis et al., 2008) were used.

The FPRP and BFDP values were set to 0.2 and 0.8, respectively,

and statistically significant correlations satisfying the following

criteria were defined as “positive results” (Theodoratou et al.,

2012): 1) at least two genetic models were statistically important

(GSTM1 and GSTT1 polymorphisms are exempt from this

requirement); 2) FPRP <0.2 and/or BFDP <0.8; 3) statistical

power >80%; and 4) I2 < 50%. Otherwise, a positive result is

considered less reliable.

Results

Search results and study characteristics

207 records were returned by PubMed, EMBASE, Wan-fang

and CNKI databases. By carefully reading titles and abstracts,

147 publications were eliminated. Two authors independently

read the remaining 60 publications in their entirety. 12 is

excluded from the full text. As a result, 48 studies (Fujita et al.,

2000; Yang et al., 2004; Hayek et al., 2006; Wang et al., 2006; Hori

et al., 2007; Yalin et al., 2007; Oniki et al., 2008; Nowier et al., 2009;

Tiwari et al., 2009; Bid et al., 2010; Datta et al., 2010; Amer et al.,

2011; Ramprasath et al., 2011; Tsai et al., 2011; Amer et al., 2012;

Cilenšek et al., 2012; Gonul et al., 2012; Jana and Petrovic., 2012;

Moasser et al., 2012; Dadbinpour et al., 2013; Grubisa et al., 2013;

Mastana et al., 2013; Pinheiro et al., 2013; Vats et al., 2013; Abbasi

et al., 2014; Al-Badran and Al-Mayah, 2014; Moasser et al., 2014;

Purkait et al., 2014; Rao et al., 2014; Raza et al., 2014; Afrand et al.,

2015; Rasheed et al., 2015; Stoian et al., 2015; Zaki et al., 2015;

Etemad et al., 2016; Mergani et al., 2016; Mir et al., 2016; Rasheed

et al., 2016; Ahmed and Al-Bachary, 2017; Azarova et al., 2018; de

Lima et al., 2018; Abbas et al., 2019; Osman et al., 2019; Klusek et al.,

2020; Pourkeramati et al., 2020; Gusti et al., 2021; Albeladi et al.,

2022; Jamil et al., 2022) were included (Figure 1). There were

28 articles (involving 4,878 cases and 4,621 controls, Table 1) on

the GSTM1 present/null polymorphism, 28 articles (involving

4,710 cases and 4,471 controls, Table 2) on the GSTT1 present/

null polymorphism, 24 studies on the GSTP1 IIe105Val

polymorphism (including 4,297 cases and 4,244 controls,

Table 3),17 studies including 3,035 cases and 3,241 controls

concerned the combined GSTM1 and GSTT1 gene (Table 4),
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nine studies with 1,953 cases and 1,905 controls concerned the

combined GSTM1 and GSTP1 gene (Table 5), nine papers for the

combined of GSTT1 and GSTP1 gene studies, 1,953 cases and

1,905 controls were involved (Table 6), there were seven studies for

the combined of GSTM1, GSTT1, and GSTP1 gene, included

1,299 cases and 1,334 controls (Table 7). Finally, there were five

high-quality investigations on GSTM1, GSTT1 and GSTP1, the

combined of GSTM1 and GSTT1 had four high-quality

investigations, three high-quality researches combined of

GSTM1 and GSTP1 were found, the combined of GSTT1 and

GSTP1 had two high-quality studies, as well as two high-quality

research on the combined effects of GSTM1, GSTT1, and GSTP1

(Supplementary Table S3). 17 studies on the correlation between

GSTs gene and complications of T2DM (Supplementary Table S8).

Quantitative synthesis

Overall, the individuals who carried the GSTM1 null

genotype had a significantly increased T2DM risk (OR =

1.36, 95% CI: 1.04–1.72, Table 1). When subgroup analyses

were performed, the same substantial association were

found in Caucasians (OR = 1.44, 95% CI: 1.04–2.01),

hospital-based studies (OR = 1.37, 95% CI: 1.08–1.74),

matching (OR = 1.36, 95% CI: 1.02–1.82), non-diabetic

controls (OR = 1.97, 95% CI: 1.01–3.86), and Asia (OR =

1.48, 95% CI: 1.13–1.99).

Overall, a notable connection was discovered between the

GSTT1 polymorphism and an increased risk of T2DM (OR =

1.45, 95% CI: 1.18–1.79, Table 2). Similarly, high correlation

FIGURE 1
Flow diagram for searching studies in the current meta-analysis.
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was found in subgroup analyses in Indians (OR = 1.71, 95% CI:

1.20–2.43), Asians (OR = 1.46, 95% CI: 1.23–1.88), hospital-

based studies (OR = 1.60, 95% CI: 1.33–1.92), healthy controls

(OR = 1.43, 95% CI: 1.13–1.80), non-diabetic controls (OR =

1.63, 95% CI: 1.15–2.30), non-matching (OR = 1.98, 95% CI:

1.36–2.89), and Asia (OR = 1.55, 95% CI: 1.16–2.08).

The GSTP1 polymorphism were also found to be associated

with increased risk of T2DM (IIe/Val vs. IIe/IIe: OR = 1.24, 95%

CI = 1.02–1.50, Val/Val + IIe/Val vs. IIe/IIe: OR = 1.27, 95% CI =

1.05–1.53 and Val vs. IIe: OR = 1.22, 95% CI = 1.05–1.42,

Table 3). As for the subgroup analysis of populations in

different Ethnicity, high associations were observed in

Caucasians (Val/Val vs. IIe/IIe: OR = 2.17, 95% CI =

1.59–2.96, IIe/Val vs. IIe/IIe: OR = 1.54, 95% CI = 1.22–1.94,

Val/Val vs. IIe/IIe + IIe/Val: OR = 1.84, 95% CI = 1.37–2.47, Val/

Val + IIe/Val vs. IIe/IIe: OR = 1.61, 95% CI = 1.32–1.97, Val vs.

IIe: OR = 1.47, 95% CI = 1.27–1.70). In addition, similar result

was found in the population-based studies, healthy controls

and Asia.

This study revealed a strong association combination of

GSTM1 and GSTT1 polymorphisms and T2DM susceptibility

in overall analysis (model 2: OR = 2.28, 95% CI = 1.72–3.04;

TABLE 1 Meta-analysis of the association of GSTM1 polymorphism with risk of T2DM.

Variable n Cases/Controls Test of
association

Test of heterogeneity Model

Or
(95%CI)

Ph I2 (%)

Overall 28 4,878/4,621 1.36 (1.08–1.72) <0.001 83.8 Random-effect

Ethnicity

Indian 8 1,689/1,407 1.37 (0.85–2.20) <0.001 88.7 Random-effect

Asian 5 647/1,040 1.46 (0.81–2.64) <0.001 86.3 Random-effect

Caucasian 13 2,194/1940 1.44 (1.04–2.01) <0.001 79.3 Random-effect

Source of control

HB 25 4,330/4,162 1.37 (1.08–1.74) <0.001 83.1 Random-effect

PB 3 521/459 1.29 (0.45–3.73) <0.001 91.1 Random-effect

Type of control

HC 25 4,683/3,890 1.24 (0.99–1.56) <0.001 80.9 Random-effect

NDC 3 275/731 1.97 (1.01–3.86) 0.009 78.9 Random-effect

Matching

Yes 18 3,769/3,222 1.36 (1.02–1.82) <0.001 87.3 Random-effect

No 10 1,109/1,399 1.36 (0.93–1.99) <0.001 71.5 Random-effect

geographic region

Asia 19 3,584/3,254 1.48 (1.13–1.99) <0.001 74.0 Random-effect

Africa 3 183/167 1.10 (0.48–2.51) 0.022 68.8 Random-effect

Europe 4 1,011/966 1.29 (0.93–1.78) <0.001 83.4 Random-effect

Sensitivity analysis

Quality score>12
Overall 5 1,633/1,399 1.23 (0.65–2.32) <0.001 93.5 Random-effect

Ethnicity

Indian 3 933/779 1.58 (0.60–4.19) <0.001 94.9 Random-effect

Caucasian 2 700/620 0.84 (0.39–1.81) 0.012 84.3 Random-effect

geographic region

Asia 3 933/779 1.58 (0.60–4.19) <0.001 94.9 Random-effect

Source of control

HB 3 1,212/990 1.21 (0.52–2.85) <0.001 94.6 Random-effect

PB 2 421/409 1.22 (0.26–5.70) <0.001 95.5 Random-effect

Matching and Quality score>12
Overall 5 1,633/1,399 1.23 (0.65–2.32) <0.001 93.5 Random-effect
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model 3: OR = 2.19, 95% CI = 1.64–2.93; model 4: OR = 1.41,

95% CI = 1.15–1.72; model 5: OR = 1.89, 95% CI = 1.06–1.33;

model 6: OR = 1.75, 95% CI = 1.41–2.18, Table 4).

Furthermore, substantially association were showed in

Caucasians (model 3: OR = 2.12, 95% CI = 1.31–3.43;

model 4: OR = 1.47, 95% CI = 1.02–2.13; model 5: OR =

1.25, 95% CI = 1.02–1.53), Indians, hospital-based studies,

population-based studies, healthy controls, non-matching,

matching and Asia.

An increased risk of T2DMwas yielded on the combined effects

of both GSTM1 and GSTP1 (model 4: OR = 1.84, 95% CI =

1.13–3.00, model 6: OR = 1.37, 95% CI = 1.03–1.82, Table 5) in

overall analysis. subgroups also showed an increased T2DM risk in

Caucasians (model 4: OR= 2.72, 95%CI = 1.78–4.16, model 6: OR=

2.11, 95% CI = 1.29–3.44) and matching controls (model 4: OR =

1.75, 95% CI = 1.04–2.97).

Combinations of GSTT1 and GSTP1 polymorphism were

not associated with T2DM risk in overall analysis. However,

when subgroup analysis for ethnicity was stratified, important

association were found in Indians (model 6: OR = 1.75, 95%

CI = 1.10–2.78, Table 6).

In overall populations, combinations of GSTM1,

GSTT1 and GSTP1 polymorphisms was considerably

associated with T2DM risk (model 1: OR = 1.47, 95% CI =

TABLE 2 Meta-analysis of the association of GSTT1 polymorphism with risk of T2DM.

Variable n Cases/Controls Test of association Test of
heterogeneity

Model

OR (95% CI) Ph I2 (%)

Overall 28 4710/4471 1.45 (1.18–1.79) <0.001 71.5 Random-effect

Ethnicity

Indian 7 1582/1355 1.71 (1.20–2.43) <0.001 66.9 Random-effect

Asian 4 562/842 1.46 (1.23–1.88) 0.949 0.0 Random-effect

Caucasian 15 2345/1355 1.21 (0.86–1.70) <0.001 75.8 Random-effect

Source of control

HB 24 4138/3962 1.60 (1.33–1.92) <0.001 57.4 Random-effect

PB 4 572/509 0.69 (0.23–2.06) <0.001 91.1 Random-effect

Type of control

HC 25 4420/3888 1.43 (1.13–1.80) <0.001 74.3 Random-effect

NDC 3 290/583 1.63 (1.15–2.30) 0.620 0.0 Random-effect

Matching

Yes 19 3793/3218 1.28 (0.98–1.67) <0.001 77.5 Random-effect

No 9 917/1199 1.98 (1.36–2.89) 0.036 0.0 Random-effect

geographic region

Asia 18 3363/3204 1.55 (1.16-2.08) <0.001 84.8 Random-effect

Africa 4 283/217 0.63 (0.43-1.00) 0.622 0.0 Random-effect

Europe 4 1011/966 1.50 (0.91-2.46) <0.001 83.4 Random-effect

Sensitivity analysis

Quality score >12
Overall 5 1633/1399 1.34 (0.79–2.28) <0.001 87.0 Random-effect

Ethnicity

Indian 3 933/779 1.69 (0.86–3.31) 0.001 86.1 Random-effect

Caucasian 2 700/620 0.92 (0.29–2.92) 0.001 90.6 Random-effect

geographic region

Asia 3 933/779 1.69 (0.86-3.31) 0.001 86.1 Random-effect

Source of control

HB 3 1212/990 1.66 (0.86–3.23) 0.001 86.8 Random-effect

PB 2 421/409 0.94 (0.28–3.09) 0.001 90.7 Random-effect

Matching and quality score >12
Overall 5 1633/1399 1.34 (0.79–2.28) <0.001 87.0 Random-effect

HB = hospital-based studies, PB = population-based studies, HC = Healthy control, NDC = Non-diabetic controls

Frontiers in Genetics frontiersin.org06

Liu et al. 10.3389/fgene.2022.959291

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.959291


TABLE 3 Meta-analysis of the association of GSTP1 polymorphism with risk of T2DM.

Variable n
(Cases/Controls)

Val/Val vs. IIe/IIe IIe/Val vs. IIe/IIe Val/Val vs. IIe/IIe + IIe/Val Val/Val + IIe/Val vs. IIe/IIe Val vs. IIe

Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)

Overall 24 (4,297/4,244) 1.37 (0.99–1.88) 0.002/53.2 1.24 (1.02–1.50) 0.000/70.0 1.27 (0.98–1.61) 0.104/29.2 1.27 (1.05–1.53) 0.000/72.1 1.22 (1.05–1.42) 0.000/71.1

Ethnicity

Caucasian 14 (2049/2026) 1.11 (0.76–1.62) 0.057/42.7 1.13 (0.88–1.46) 0.000/67.6 1.00 (0.79–1.26) 0.534/0.0 1.16 (0.90–1.48) 0.000/70.1 1.11 (0.92–1.33) 0.000/64.1

Indian 6 (1751/1,328) 2.17 (1.59–2.96) 0.441/0.0 1.54 (1.22–1.94) 0.081/48.9 1.84 (1.37–2.47) 0.431/0.0 1.61 (1.32–1.97) 0.167/36.0 1.47 (1.27–1.70) 0.238/26.3

Source of control

HB 18 (3,605/3,182) 1.24 (0.89–1.73) 0.007/52.9 1.16 (0.91–1.47) 0.000/75.3 1.14 (0.90–1.45) 0.224/19.7 1.18 (0.93–1.49) 0.000/77.6 1.33 (0.96–1.34) 0.000/74.0

PB 3 (496/902) 2.56 (1.47–4.44) – 1.42 (0.98–2.07) 0.220/34.1 2.29 (1.36–3.85) – 1.45 (1.13–1.85) 0.540/0.0 1.48 (1.20–1.83) 0.566/0.0

Type of control

HC 20 (3,652/3,394) 1.38 (0.96–1.98) 0.001/59.3 1.34 (1.09–1.64) 0.000/69.5 1.23 (0.94–1.63) 0.046/39.8 1.37 (1.11–1.69) 0.000/73.5 1.28 (1.09–1.51) 0.000/72.5

NDC 4 (645/850) 1.28 (0.65–2.51) 0.635/0.0 0.77 (0.52–1.15) 0.168/44.0 1.41 (0.73–2.72) 0.790/0.0 0.89 (0.64–1.24) 0.171/40.1 0.91 (0.66–1.25) 0.174/42.9

Matching

Yes 14 (3,080/2,847) 1.49 (1.01–2.20) 0.001/63.2 1.35 (1.00–1.72) 0.000/74.7 1.32 (0.99–1.77) 0.051/42.7 1.40 (1.09–1.79) 0.000/77.8 1.31 (1.09–1.57) 0.000/76.3

No 10 (1,217/1,397) 1.09 (0.61–1.96) 0.228/25.2 1.04 (0.76–1.43) 0.021/55.5 1.12 (0.72–1.76) 0.420/1.3 1.07 (0.81–1.42) 0.020/54.4 1.07 (0.83–1.36) 0.025/54.3

Geographic region

Asia 15 (3,967/3,513) 1.76 (1.24–2.50) 0.112/32.9 1.38 (1.10–1.73) 0.000/64.9 1.52 (1.45–2.00) 0.299/14.1 1.42 (1.34–1.78) 0.000/66.5 1.32 (1.12–1.56) 0.001/60.4

Europe 5 (1,151/1,066) 0.99 (0.62–1.54) 0.124/44.6 0.88 (0.68–1.14) 0.140/42.2 1.00 (0.71–1.43) 0.269/22.8 0.92 (0.68–1.24) 0.036/61.1 0.98 (0.77–1.26) 0.016/67.1

HWE

Yes 4 (609/556) 1.34 (0.51–3.51) 0.038/64.5 1.52 (0.81–2.84) 0.003/78.4 1.27 (0.62–2.61) 0.162/41.6 1.50 (0.82–2.75) 0.003/79.0 1.38 (0.88–2.17) 0.005/77.0

No 19 (3,625/3,193) 1.35 (0.96–1.90) 0.007/51.7 1.19 (0.97–1.43) 0.000/66.9 1.24 (0.95–1.60) 0.121/30.3 1.23 (1.00–1.51) 0.000/71.3 1.19 (1.01–1.40) 0.000/69.6

Sensitivity analysis

HWD

Overall 19 (3,625/3,193) 1.35 (0.96–1.90) 0.007/51.7 1.19 (0.97–1.43) 0.000/66.9 1.24 (0.95–1.60) 0.121/30.3 1.23 (1.00–1.51) 0.000/71.3 1.19 (1.01–1.40) 0.000/69.6

Ethnicity

Indian 4 (1,303/899) 2.17 (1.15–3.12) 0.639/0.0 1.41 (1.06–1.86) 0.111/50.1 1.88 (1.33–2.65) 0.560/0.0 1.52 (1.16–1.99) 0.116/49.3 1.44 (1.17–1.78) 0.117/49.0

Caucasian 13 (1989/1986) 1.06 (0.72–1.55) 0.065/42.6 1.14 (0.88–1.47) 0.000/65.9 0.97 (0.76–1.23) 0.456/0.0 1.15 (0.89–1.49) 0.000/68.9 1.10 (0.92–1.32) 0.002/62.2

geographic region

Asia 11 (2060/1778) 1.63 (1.07–2.50) 0.091/40.0 1.22 (0.94–1.59) 0.001/66.3 1.44 (1.03–2.01) 0.253/20.7 1.27 (0.97–1.66) 0.000/69.3 1.21 (0.99–1.46) 0.003/62.9

Europe 5 (1,151/1,066) 0.99 (0.62–1.54) 0.124/44.6 0.88 (0.68–1.14) 0.140/42.2 1.00 (0.71–1.43) 0.269/22.8 0.92 (0.68–1.24) 0.036/61.1 0.98 (0.77–1.26) 0.016/67.1

Source of control

HB 13 (2,971/2,468) 1.20 (0.84–1.71) 0.021/49.7 1.17 (0.91–1.51) 0.000/72.3 1.10 (0.86–1.40) 0.311/13.3 1.20 (0.93–1.54) 0.000/75.9 1.14 (0.95–1.37) 0.000/72.4

PB 2 (433/497) 2.56 (1.47–4.44) – 1.42 (0.98–2.07) 0.218/34.1 2.29 (1.36–3.85) – 1.51 (1.15–1.99) 0.412/0.0 1.48 (1.20–1.83) 0.566/0.0

(Continued on following page)
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TABLE 3 (Continued) Meta-analysis of the association of GSTP1 polymorphism with risk of T2DM.

Variable n
(Cases/Controls)

Val/Val vs. IIe/IIe IIe/Val vs. IIe/IIe Val/Val vs. IIe/IIe + IIe/Val Val/Val + IIe/Val vs. IIe/IIe Val vs. IIe

Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)

Type of control

HC 17 (3,963/3,999) 1.43 (0.90–2.20) 0.001/62.6 1.32 (1.05–1.67) 0.000/68.6 1.21 (0.89–1.65) 0.053/42.4 1.37 (1.07–1.75) 0.000/73.8 1.28 (1.06–1.55) 0.000/73.4

NDC 3 (582/445) 1.28 (0.65–2.51) 0.635/0.0 0.77 (0.52–1.15) 0.168/44.0 1.41 (0.73–2.72) 0.790/0.0 0.81 (0.54–1.22) 0.142/48.9 0.91 (0.66–1.25) 0.174/42.9

Matching

Yes 12 (2,632/2,418) 1.40 (0.92–2.14) 0.002/65.5 1.24 (0.94–1.64) 0.000/75.6 1.26 (0.93–1.72) 0.067/43.7 1.32 (1.01–1.74) 0.000/78.3 1.26 (1.03–1.55) 0.000/77.2

No 7 (1,165/1826) 1.14 (0.61–2.12) 0.321/14.5 1.03 (0.77–1.38) 0.115/41.5 1.15 (0.65–2.06) 0.350/10.3 1.05 (0.79–1.39) 0.112/41.8 1.04 (0.83–1.31) 0.154/36.0

Quality score>12
Overall 5 (1,645/1,487) 1.64 (0.76–3.57) 0.001/81.9 1.39 (0.99–1.96) 0.002/76.8 1.46 (0.77–2.76) 0.006/75.8 1.47 (1.00–2.15) 0.000/82.5 1.39 (1.01–1.93) 0.000/85.0

Ethnicity

Caucasian 2 (712/708) 0.72 (0.48–1.10) – 1.21 (0.57–2.55) 0.012/84.2 0.77 (0.52–1.16) – 1.19 (0.55–2.59) 0.008/85.7 1.15 (0.59–2.25) 0.011/84.5

Indian 3 (933/779) 2.21 (1.51–3.24) 0.444/0.0 1.53 (1.09–2.15) 0.103/56.1 1.88 (1.30–2.73) 0.357/2.80 1.65 (1.21–2.26) 0.123/52.3 1.54 (1.18–2.00) 0.087/59.0

Geographic region

Asia 3 (933/779) 2.21 (1.51–3.24) 0.444/0.0 1.53 (1.09–2.15) 0.103/56.1 1.88 (1.30–2.73) 0.357/2.80 1.65 (1.21–2.26) 0.123/52.3 1.54 (1.18–2.00) 0.087/59.0

Source of control

HB 3 (1,212/990) 1.35 (0.54–3.39) 0.010/78.4 1.38 (0.80–2.39) 0.001/86.2 1.16 (0.59–2.27)) 0.060/64.4 1.43 (0.78–2.62) 0.000/89.5 1.33 (0.82–2.18) 0.000/90.1

PB 2 (443/497) 2.56 (1.47–4.44) – 1.42 (0.98–2.07) 0.218/34.1 2.29 (1.36–3.85) – 1.51 (1.15–1.99) 0.412/0.0 1.48 (1.20–1.83) 0.566/0.0

HB, hospital-based studies; PB, population-based studies; HC, healthy control; NDC, Non-diabetic controls.
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TABLE 4 Meta-analysis of the combined effects of GSTM1 present/null and GSTT1 present/null on T2DM risk.

Variable N (case/Control) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)

Overall 17 (3,035/3,241) 1.25 (0.82–1.92) 0.016/57.6 2.28 (1.72–3.04) 0.004/54.7 2.19 (1.64–2.93) 0.005/54.0 1.41 (1.15–1.72) 0.004/56.2 1.89 (1.06–1.33) 0.536/0.0 1.75 (1.41–2.18) 0.124/30.6

Ethnicity

Caucasian 8 (1,638/1,364) 0.88 (0.50–1.55) 0.184/38.0 1.55 (0.99–2.44) 0.034/65.4 2.12 (1.31–3.43) 0.005/65.7 1.47 (1.02–2.13) 0.037/57.8 1.25 (1.02–1.53) 0.399/2.70 1.39 (0.98–1.99) 0.203/30.9

Indian 5 (969/988) 1.30 (0.60–2.83) 0.158/49.8 1.06 (0.44–2.54) 0.081/67.1 2.39 (1.40–4.09) 0.034/61.6 1.37 (0.93–2.01) 0.007/71.7 1.14 (0.97–1.35) 0.377/5.20 2.08 (1.40–3.08) 0.175/37.0

Source of control

HB 14 (2,614/2,782) 1.18 (0.75–1.86) 0.014/60.3 1.28 (0.91–1.79) 0.007/64.0 1.90 (1.41–2.56) 0.033/46.6 1.27 (1.03–1.58) 0.220/50.6 1.13 (1.00–1.29) 0.570/0.0 1.59 (1.29–1.96) 0.339/10.8

PB 3 (521/459) – – – – 3.92 (2.56–6.00) 0.592/0.0 2.04 (1.54–2.70) 0.652/0.0 1.40 (1.11–1.77) 0.612/0.0 2.68 (1.68–4.29) 0.296/17.9

Type of control

HC 15 (2,938/2,681) 1.16 (0.74–1.82) 0.019/58.4 1.25 (0.90–1.74) 0.010/62.2 2.15 (1.58–2.92) 0.004/56.4 1.36 (1.10–1.69) 0.008/54.1 1.19 (1.05–1.33) 0.460/0.0 1.69 (1.37–2.08) 0.204/23.1

Matching

Yes 14 (2,847/2,615) 1.22 (0.74–2.01) 0.014/62.2 1.22 (0.83–1.79) 0.007/66.4 2.34 (1.73–3.17) 0.028/47.8 1.40 (1.11–1.76) 0.002/63.2 1.18 (1.03–1.33) 0.413/3.3 1.90 (1.53–2.36) 0.337/11.0

No 3 (288/626) 1.37 (0.45–4.17) 0.087/65.9 1.65 (1.07–2.53) 0.452/0.0 1.60 (0.63–4.05) 0.018/75.1 1.45 (0.98–2.14) 0.363/1.2 1.25 (0.89–1.77) 0.495/0.0 1.28 (0.70–2.35) 0.068/62.8

Geographic region

Asia 11 (2,761/2,943) 1.18 (0.87–1.60) 0.368/7.9 2.25 (1.70–3.0) 0.136/34.0 1.42 (0.96–2.10) 0.006/66.9 1.42 (1.10–1.81) 0.007/60.4 1.18 (1.04–1.34) 0.457/0.0 1.89 (1.53–2.27) 0.552/0.0

Europe 3 (811/745) – – 2.52 (0.85–7.47) 0.013/77.0 – – – – – – – –

Sensitivity analysis

Quality score

>12 4 (1,121/1,129) – – – – 3.40 (2.42–4.79) 0.669/0.0 2.00 (1.54–2.59) 0.616/0.0 1.39 (1.12–1.74) 0.61/0.0 2.21 (1.40–3.50) 0.299/17.1

Sample size

>200 11 (2,451/2,644) 1.40 (0.87–2.25) 0.030/59.5 1.17 (0.86–1.59) 0.096/46.5 2.30 (1.78–2.97) 0.162/29.9 1.34 (1.05–1.70) 0.016/57.6 1.16 (1.02–1.32) 0.518/0.0 1.80 (1.47–2.19) 0.768/0.0

HWE

Yes 15 (2,589/2,812) 1.31 (0.80–2.14) 0.014/60.3 2.34 (1.68–3.26) 0.006/55.6 1.42 (1.04–1.94) 0.040/52.3 1.56 (1.25–1.94) 0.040/46.1 1.27 (1.11-1-46) 0.667/0.0 1.69 (1.31–2.19) 0.118/34.0

Model 1 = M1 present/T1 null vs. M1 present/T1 present, Model 2 = M1 null/T1 present vs. M1 present/T1 present, Model 3 = M1 null/T1 null vs. M1 present/T1 present, Model 4 = All one risk genotypes vs. M1 present/T1 present, Model 5 = All risk

genotypes vs. M1 present/T1 present, Model 6 = M1 null/T1 null vs. M1 present/T1 present + M1 present/T1 null + M1 null/T1 present, HB, hospital-based studies; PB, population-based studies.

The bold values indicated that these results are statistically significant.
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TABLE 5 Meta-analysis of the combined effects of GSTM1 present/null and GSTP1 IIe105Val on T2DM risk.

Variable Sample
size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)
Or
(95%CI)

Ph/I2

(%)

Overall 9 (1953/1905) 1.40 (0.94–2.08) 0.002/69.8 0.98 (0.58–1.65) 0.001/73.3 1.15 (0.82–1.50) 0.114/41.5 1.84 (1.13–3.00) 0.001/70.1 1.26 (0.89–1.76) 0.007/66.2 1.37 (1.03–1.82) 0.290/18.3

Ethnicity

Caucasian 4 (836/767) 1.11 (0.60–2.07) 0.192/39.5 1.05 (0.49–2.22) 0.139/49.3 1.02 (0.67–1.56) 0.992/0.0 2.72 (1.78–4.16) 0.970/0.0 1.31 (0.87–1.96) 0.944/0.0 2.11 (1.29–3.44) 0.944/0.0

Indian 4 (869/938) 1.45 (0.74–2.87) 0.001/82.3 0.93 (0.44–1.96) 0.000/83.7 1.18 (0.78–1.77) 0.023/68.4 1.28 (0.53–3.06) 0.00/85.2 1.21 (0.71–2.04) 0.001/82.9 1.17 (0.86–1.59) 0.348/9.1

Source of control

HB 8 (1,632/1,596) 1.23 (0.85–1.78) 0.025/58.5 0.91 (0.47–1.76) 0.001/75.7.3 1.05 (0.82–1.33) 0.378/6.1 1.67 (0.96–2.91) 0.005/67.5 1.11 (0.82–1.50) 0.133/40.8 1.36 (0.91–2.03) 0.198/31.7

Matching

Yes 8 (1899/1854) 1.48 (0.97–2.25) 0.002/71.9 0.91 (0.52–1.61) 0.001/77.0 1.14 (0.84–1.55) 0.070/50.9 1.75 (1.04–2.97) 0.001/73.9 1.25 (0.85–1.82) 0.003/71.8 1.33 (0.98–1.79) 0.260/23.2

Sensitivity analysis

Quality score

>12 3 (1,021/1,029) 2.57 (1.53–4.31) 0.204/37.9 0.70 (0.16–2.98) 0.002/89.8 1.41 (0.88–2.56) 0.139/54.3 1.88 (0.84–4.18) 0.005/80.9 1.48 (0.69–3.19) 0.011/84.6 1.10 (0.58–2.06) 0.115/59.6

HWE

Yes 7 (1,505/1,476) 1.72 (1.15–2.58) 0.037/57.8 0.90 (0.48–1.70) 0.008/70.8 1.30 (1.01–1.67) 0.400/1.20 2.24 (1.41–3.54) 0.050/54.8 1.42 (1.01–2.01) 0.112/46.6 1.48 (1.03–2.15) 0.217/30.7

Model 1 = M1 null/P1 IIe/IIe, vs. M1 present/P1 IIe/IIe, Model 2 = M1 present/P1 Val* vs. M1 present/P1 IIe/IIe, Model 3 = (M1 null/P1 IIe/IIe + M1 present/P1 Val*) vs. M1 present/P1 IIe/IIe; Model 4 =M1 null/P1 Val* vs. M1 present/P1 IIe/IIe, Model

5 = All risk genotypes vs. M1 present/P1 IIe/IIe, Model 6 = M1 null/P1 Val* vs. (M1 present/P1 IIe/IIe + M1 null/P1 IIe/IIe + M1 Present/P1 Val*), HB, hospital-based studies; PB, population-based studies.
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TABLE 6 Meta-analysis of the combined effects of GSTT1 present/null and GSTP1 IIe105Val on T2DM risk.

Variable Sample
size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Or
(95%CI)

Ph/I2 Or
(95%CI)

Ph/I2 Or
(95%CI)

Ph/I2 Or
(95%CI)

Ph/I2 Or
(95%CI)

Ph/I2 Or
(95%CI)

Ph/I2

Overall 9 (1953/1905) 1.20 (0.72–1.20) 0.002/69.2 1.02 (0.68–1.53) 0.009/65.0 0.98 (0.73–1.31) 0.054/51.6 1.68 (0.90–3.15) 0.002/71.2 1.12 (0.79–1.59) 0.003/70.1 1.47 (0.94–2.28) 0.098/43.9

Ethnicity

Caucasian 3 (236/247) 0.79 (0.34–1.86) 0.118/53.2 1.41 (0.92–2.17) 0.534/0.00 1.14 (0.78–1.66) 0.832/0.00 1.22 (0.48–3.10) 0.129/51.2 1.15 (0.80–1.66) 0.911/0.0 1.04 (0.45–2.42) 0.172/43.1

Indian 4 (869/938) 1.45 (0.59–3.55) 0.002/76.9 0.82 (0.46–1.48) 0.005/76.9 0.89 (0.56–1.42) 0.009/74.0 2.04 (0.92–4.52) 0.006/76.2 1.09 (0.63–1.90) 0.000/84.9 1.75 (1.10–2.78) 0.203/34.9

Source of control

HB 7 (1,032/1,076) 0.85 (0.61–1.18) 0.434/0.00 1.01 (0.60–1.72) 0.005/70.5 0.90 (0.65–1.25) 0.099/46.0 1.46 (0.68–3.12) 0.004/70.6 1.03 (0.70–1.52) 0.010/67.0 1.36 (0.77–2.41) 0.083/48.7

Matching

Yes 7 (1,299/1,334) 1.29 (0.67–2.49) 0.002/72.9 0.97 (0.63–1.50) 0.006/69.2 0.98 (0.71–1.36) 0.031/59.4 1.58 (0.78–3.20) 0.001/75.9 1.11 (0.76–1.64) 0.001/75.1 1.40 (0.85–2.30) 0.065/52.0

Sensitivity analysis

Quality score

≤12 5 (680/676) 0.85 (0.56–1.28) 0.303/17.5 1.30 (0.95–1.78) 0.598/0.00 1.07 (0.82–1.38) 0.1962/0.0 1.87 (0.92–3.81) 0.029/62.9 1.27 (1.00–1.61) 0.947/0.00 1.47 (0.77–2.81) 0.060/55.8

HWE

Yes 6 (905/956) 1.30 (0.65–2.60) 0.001/74.6 1.00 (0.58–1.74) 0.004/74.3 0.96 (0.62–1.48) 0.015/67.6 1.24 (0.50–3.03) 0.002/76.2 1.02 (0.61–1.71) 0.001/78.9 1.23 (0.71–2.13) 0.147/41.2

Model 1 = T1 null/P1 IIe/IIe, vs. T1 present/P1 IIe/IIe, Model 2 = T1 present/P1 Val* vs. T1 present/P1 IIe/IIe, Model 3 = (T1 null/P1 IIe/IIe + T1 present/P1 Val*) vs. T1 present/P1 IIe/IIe, Model 4 = T1 null/P1 Val* vs. T1 present/P1 IIe/IIe, Model 5 = All

risk genotypes vs. T1 present/P1 IIe/IIe, Model 6 = T1 null/P1 Val* vs. (T1 present/P1 IIe/IIe + T1 null/P1 IIe/IIe + T1 Present/P1 Val*), HB, hospital-based studies; PB, population-based studies.

The bold values indicated that these results are statistically significant.
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TABLE 7 Meta-analysis of the combined effects of GSTM1 present/null, GSTT1 present/null and GSTP1 present/null on T2DM risk.

Variable Sample
size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)
Or
(95%
CI)

Ph/I
2

(%)

Overall 7 (1,299/

1,334)

1.47

(0.10–1.96)

0.218/27.6 0.80

(0.55–1.14)

0.242/24.5 0.73

(0.44–1.23)

0.009/67.2 0.91

(0.70–1.19)

0.143/39.4 1.61

(0.82–3.17)

0.010/64.5 1.17

(0.75–1.82)

0.098/46.1 1.06

(0.42–2.66)

0.002/74.0 1.18

(0.83–1.08)

0.065/51.9 2.71

(1.56–4.72)

0.276/20.9 2.69

(1.74–4.17)

0.382/5.4

Sensitivity analysis

Quality score

>12 2 (421/509) 1.81

(1.02–3.22)

0.185/43.2 0.64

(0.17–2.40)

0.063/71.1 0.44

(0.30–0.64)

0.474/0.0 0.84

(0.38–1.86)

0.015/83.3 1.08

(0.45–2.60)

0.555/0.0 0.81

(0.54–1.22)

0.993/0.0 0.66

(0.37–1.18)

0.682/0.0 0.80

(0.56–1.120

0.870/0.0 1.75

(1.00–3.07)

0.697/0.0 2.24

(1.32–3.80)

0.502/0.0

HWE

Yes 5 (851/905) 1.61

(1.15–2.25)

0.256/24.8 0.76

(0.42–1.39)

0.140/42.2 0.59

(0.33–1.04)

0.096/52.7 0.89

(0.57–1.38)

0.071/57.3 2.02

(0.65–6.31)

0.004/74.2 1.32

(0.66–2.64)

0.028/67.2 0.59

(0.35–1.00)

0.796/0.0 1.01

(0.64–1.60)

0.128/47.2 1.87

(1.12–3.11)

0.757/0.0 2.19

(1.35–3.54)

0.577/0.0

Model 1 = M1 null/T1 present/P1 IIe/IIe, vs. M1 present/T1 present/P1 IIe/IIe, Model 2 = M1 present/T1 null/P1 IIe/IIe, vs. M1 present/T1 present/P1 IIe/IIe, Model 3 = M1 present/T1 present/P1 Val 1 vs. M1 present/T1 present/P1 IIe/IIe, Model 4 = all

one high-risk genotype vs. vs. M1 present/T1 present/P1 IIe/IIe, Model 5 = M1 null/T1 null/P1 IIe/IIe, vs. M1 present/T1 present/P1 IIe/IIe, Model 6 = M1 null/T1 present/P1 Val 1 vs. M1 present/T1 present/P1 IIe/IIe, Model 7 = M1 present/T1 null/

P1 Val1 vs. M1 present/T1 present/P1 IIe/IIe, Model 8 = all two high-risk genotype vs. M1 present/T1 present/P1 IIe/IIe, Model 9 = M1 null/T1 null/P1 Val 1 vs. M1 present/T1 present/P1 IIe/IIe, Model 10 = M1 null/T1 null/P1 Val 1 vs. M1 present/

T1 present/P1 IIe/IIe + all one high-risk genotype + all two high-risk genotypes.

The bold values indicated that these results are statistically significant.
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1.10–1.96, model 9: OR = 2.71, 95% CI = 1.56–4.72, model 10:

OR = 2.69, 95% CI = 1.74–4.17, Table 7).

Overall, a notable association was discovered between the

GSTT1 null genotype and an increased risk of T2DM

complications (OR = 1.52, 95% CI: 1.16–1.99, Figure 2). No

association was found between GSTM1 and

GSTP1 polymorphisms and the risk of T2DM

complications (Figures 3, 4).

Heterogeneity and sensitivity analyses

We assessed heterogeneity source by applying a meta-

regression analysis. The source of heterogeneity for the

GSTT1 null genotype and the combined effects of GSTT1 and

GSTP1 was revealed to be the source of controls (p = 0.028 and

model 1: p = 0.037). HWE (model 7: p = 0.045) was the source of

heterogeneity between the combined effects of GSTM1, GSTT1,

and GSTP1 gene and T2DM risk.

Sensitivity analysis was estimated by applying three methods.

First, results did not change when removing a single study each

time to appraise the robustness. Second, there was no significant

connection individual GSTM1 and GSTT1 polymorphisms when

studies of low quality and non-matching were eliminated (Tables

1, 2). Moreover, concerning the GSTP1 polymorphism, a

noteworthy association with T2DM risk was found in the

overall analysis (Val vs. IIe: OR = 1.39, 95% CI = 1.01–1.93,

Table 3), Indians (Val/Val vs. IIe/IIe: OR = 2.21, 95% CI =

1.51–3.24, IIe/Val vs. IIe/IIe: OR = 1.53, 95% CI = 1.09–2.15, Val/

Val vs. IIe/IIe + IIe/Val: OR = 1.88, 95% CI = 1.30–2.73, Val/Val

+ IIe/Val vs. IIe/IIe: OR = 1.65, 95% CI = 1.21–2.26, Val vs. IIe:

OR = 1.54, 95% CI = 1.18–2.00), population-based studies (Val/

Val vs. IIe/IIe: OR = 2.56, 95% CI = 1.47–4.44, Val/Val vs. IIe/IIe

+ IIe/Val: OR = 2.29, 95% CI = 1.36–3.85, Val/Val + IIe/Val vs.

IIe/IIe: OR = 1.51, 95% CI = 1.15–1.99, Val vs. IIe: OR = 1.48,

95% CI = 1.20–1.83) and Asia when we retained research of low

quality and HWD in control.

When we restricted only high-quality studies, notably increased

T2DM risk was found the combinations of GSTM1 and

GSTT1 polymorphisms (model 3: OR = 3.40, 95% CI = 2.42–4.79;

model 4: OR = 2.00, 95% CI = 1.54–2.59; model 5: OR = 1.39, 95%

CI = 1.12–1.74; model 6: OR = 2.21, 95% CI = 1.40–3.50, Table 4).

Significantly increased T2DM risk was observed the GSTM1-GSTT1

polymorphisms (model 2: OR = 2.34, 95% CI = 1.68–3.26; model 3:

OR = 1.42, 95% CI = 1.04–1.94; model 4: OR = 1.56, 95% CI =

FIGURE 2
Forest plot of the association between GSTT1 polymorphism and T2DM complications risk.
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1.25–1.94; model 5: OR = 1.27, 95% CI = 1.11–1.46; model 6: OR =

1.69, 95% CI = 1.31–2.19, Table 4) When we excluded HWD.

When we removed low-quality studies, significantly

increased T2DM risk was found in overall analysis (model 1:

OR = 2.57, 95% CI = 1.53–4.31, Table 5), and when we removed

HWD, significantly association was revealed in the overall

analysis (model 1: OR = 1.72, 95% CI = 1.15–2.58; model 3:

OR = 1.30, 95% CI = 1.01–1.67; model 4: OR = 2.24, 95% CI =

1.41–3.54; model 5: OR = 1.42, 95% CI = 1.01–2.01; model 6:

OR = 1.48, 95% CI = 1.03–2.15) combined effects on GSTM1 and

GSTP1 polymorphisms.

Concerning the combination effects of GSTM1, GSTT1, and

GSTP1 IIe105Val polymorphisms, considerably increased

T2DM risk was observed (model 1: OR = 2.81, 95% CI =

1.02–3.22, model 9: OR = 1.75, 95% CI = 1.00–3.07, model

10: OR = 2.24, 95% CI = 1.32–3.80, Table 7) when we excluded

low-quality studies. Significantly increased T2DM risk was

revealed (model 1: OR = 1.61, 95% CI = 1.15–2.25, model 9:

OR = 1.87, 95% CI = 1.12–3.11, model 10: OR = 2.19, 95% CI =

1.35–3.54) when HWD was removed in overall analysis. On the

contrary, no notable was detected on the combined effects of

GSTT1 and GSTP1 polymorphisms (Table 6).

Publication bias

No publication bias was observed between GSTs

polymorphisms with T2DM risk through the Begg’s funnel

plot and Egger’s test (Figures not shown).

Discussion

Oxidative stress is considered to play an important role in

the pathogenesis of diabetes mellitus and related

complications. GST is a member of phase II metabolic

isoenzyme group, which has the effect of regulating

various cytotoxicity, genotoxicity and antioxidant. The

risk genotypes expressed by each gene (GSTM1 null,

GSTT1 null, and GSTP1 Val/Val) may decrease the

antioxidant activity of the enzyme, thus increasing the

susceptibility of T2DM and other diseases. There was

much important evidence showing that GSTM1, GSTT1,

and GSTP1 gene polymorphisms were potential genetic

factors for T2DM. Yet, previous research remains

contradictory. In addition, seven previously published

FIGURE 3
Forest plot of the association between GSTM1 polymorphism and T2DM complications risk.
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meta-analyses also had certain limitations, therefore the

association of the GSTs polymorphisms with T2DM risk

needs to be further evaluated. Furthermore, to our

knowledge, this research is the first large-scale meta-

analysis to investigate the relationship between individual

and combined GSTM1, GSTT1, and GSTP1 genes

FIGURE 4
Forest plot of the association betweenGSTPI polymorphism and T2DMcomplications risk [(A): VV vs. II; (B): IV vs. II; (C): VV vs. IV + II; (D): VV + IV
vs. II; (E): V vs. I].
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polymorphism of T2DM susceptibility, and utilizing FPRP

and BFDP to explore the validity of positive results.

Overall, on the individual and combined effects of

GSTM1, GSTT1, and GSTP1 polymorphisms, a statistically

significantly increased T2DM risk was found. We found that

GSTT1 null genotype increased the risk of T2DM

complications. However, GSTM1 and

GSTP1 polymorphism were not associated with T2DM

complications risk. The GSTM1 null genotype was

correlated to a significantly increased risk of T2DM in

Caucasians, Asia, hospital-based studies, and non-diabetic

controls. The GSTT1 null genotype was connected with an

increased risk of T2DM in Asians, Indians, Asia, and so on.

GSTP1 IIe105Val polymorphism was correlated with an

increased risk of T2DM in Indians, Asia, population-based

studies, and healthy controls. The GSTM1-GSTT1 double null

genotype significantly increased the risk of T2DM in both

subgroup and sensitivity analysis. The effects of GSTM1-

GSTP1 gene polymorphisms were related to the risk of

T2DM in Caucasians and matching. However, no

relationship was identified between GSTT1-GSTP1

polymorphisms and T2DM susceptibility, and, interestingly,

Indians had a significantly increased risk. For the triple

genotype combinations, we also discovered an association

with T2DM. These findings showed that the same gene has

variable susceptibility to T2DM in different race groups. It is

worth considering that the obvious inconsistencies could be

due to sample size, GSTs prevalence and environmental

factors (lifestyle). Additionally, because T2DM is a chronic

metabolic disease with multiple factors and genes, and

different genetic backgrounds may lead to such differences.

We found that GSTs gene polymorphism increased the risk of

T2DM in Asia, but not in Europe. Most of the original

research were conducted in Asia, which may lead to this

difference. Therefore, a larger sample size is needed to

study the relationship between GSTs gene polymorphism

and T2DM in Europe, America, Africa and other

geographic regions. The GSTM1- GSTT1, GSTM1-

GSTP1 and GSTM1-GSTT1-GSTP1 gene polymorphisms

combination are all associated with the increased

susceptibility of T2DM. These results indicate that

polygenes may have cumulative effects, but the potential

gene-gene interactions still need to be studied with a larger

sample size.

However, the present study used several subgroups and

diverse genetic models, resulting in multiple comparisons,

which necessitated adjusting the pooled p value (Attia et al.,

2003). FPRP is regarded an acceptable tool for calculating the

likelihood of positive findings in multiple hypothesis testing of

molecular epidemiology investigations (Wacholder et al., 2004).

Wakefield provided amuchmore reliable Bayesianmetric of false

positives in genetic epidemiology research (Wakefield, 2008).

Potential errors and bias may be caused by genotyping errors or

high inter-study heterogeneity (I2 > 50%) (Page et al., 2003;

Clayton et al., 2005; Pompanon et al., 2005; Balding, 2006; Zhang

et al., 2013), while large volumes evidence (statistical

power >80%) have stricter statistical significance levels or

lower false-discovery rate (Benjamini and Hochberg, 1995).

Therefore, we consider using FPRP tests, BFDP tests and the

Venice criteria to evaluate the false findings in present studies.

The current meta-analysis found that all substantial relationship

were deemed as less credible during did the reliability analysis.

According to the results of the meta-regression analysis, the

HWD studies and sources of controls were the main causes of

heterogeneity. Bias and errors are prevalent in some low-quality,

small-sample HWD studies, making the conclusions of these

original studies undependable, molecular biology and disease

susceptibility study, in particular. Furthermore, research with a

small sample size and substantial results may be likely to swallow

than studies with negative outcomes. When they produce

positive results, however, their research might not have been

rigorous and typically of poor quality.

Therefore, we assessed the sensitivity analysis using

matching, high-quality, and HWE.

These three GSTs gene polymorphisms and their interactions

were discovered to be strongly related to diabetes susceptibility in

this investigation. From 2012 to 2019, a total of five related meta-

studies were published. Recent meta-studies by Nath et al. (2019)

showed that the GSTM1, GSTT1 null genotype and GSTM1-

GSTT1 double null genotype increased the risk of T2DM in both

Asian and Caucasian populations, the results are consistent with

this study. An analysis of eleven studies by Yi et al. (2013)

revealed that the GSTM1 gene polymorphisms increases the

susceptibility to T2DM in Asians, Caucasians, and Africans.

However, Saadat (2017) selected 18 studies (2,595 patients

and 2,888 controls) and suggested that GSTP1 IIe105Val

polymorphism was not connected with the risk of T2DM,

which was contrary to the results of this study. Tang et al.

(2013) also analyzed the three genes and suggested that

GSTM1 and GSTT1 null genotypes were correlated to an

increased risk of T2DM in Asians, while GSTP1 gene

polymorphism was not. For the GSTP1 gene, the opposite

result was obtained. Three related meta-analysis were

published from 2015 to 2019. Nath et al. showed that

GSTT1 null genotype increased the risk of T2DM related

complications, but GSTM1 null genotype did not, which was

consistent with this study. On the contrary, Orlewski and

Orlewska (2015) found that GSTM1 gene polymorphisms

increased the risk of diabetic nephropathy, while GSTT1 and

GSTP1 gene polymorphisms were not statistically significant.

Sun et al. (2015) suggested that a strong association GSTM1 and

GSTP1 polymorphisms and diabetic retinopathy susceptibility.

Further investigate the effect of gene-gene interaction on T2DM,

two previous studies reported the correlation between GSTM1-

GSTT1 gene polymorphism and T2DM susceptibility, but did

not study the combined effect between the remaining genes. In
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this study, all except GSTT1-GSTP1 combination were found to

be related. Moreover, these published meta-analyses are

obviously inconsistent with current meta-analyses in terms of

racial classification. The variability in results may be due to a

variety of factors, such as small sample sizes, ethnic differences,

failure to assess quality in most eligible studies and failure to

develop a more complete genetic model.

There are several advantages to the newer meta-analysis.

First, The FPRP, BFDP test, and Venice criterion were used to

assess the credibility with positive outcomes. Secondly, quality

assessment of qualified research is carried out. Third, the

sample size was much larger and more detailed data and

information were collected. Fourth, quality assessment of

qualified research. Fifthly, a relatively complete genetic

model is established. Sixth, more subgroup analyses were

performed. Seventh, to our knowledge, this is the first meta-

analysis to explore the combined effects of GSTM1-GSTP1,

GSTT1-GSTP1, and GSTM1-GSTT1-GSTP1 gene

polymorphisms on the risk of T2DM. There are some

limitations of the present meta-analysis. To begin with, latest

meta-analyses only include published articles, and positive

results are frequently more likely to be published than

negative consequences. The zero effect of GSTM1 may be

overestimated if negative results are included. Second,

because we could not calculate the HWE of these two genes,

we did not evaluate whether the genotype distributions of

GSTM1 and GSTT1 polymorphisms in the control group

was in HWE. Third, heterogeneity between studies was

much large in overall and among several subgroups.

According to the results of the meta-regression analysis, the

HWD studies and sources of controls were the main causes of

heterogeneity, and adequate statistical correction and analysis

did not significantly improve the heterogeneity. The source of

heterogeneity may also be due to some other factors, such as

study area, lifestyle and so on. Fourth, we conducted a subgroup

analysis of race and region, and population heterogeneity has

been resolved. However, T2DM is closely associated with the

environment, the original study did not provide data on

lifestyle, so we failed to solve the heterogeneity caused by

lifestyle, and did not explore the effect of the gene-

environment combination. Fifth, we failed to further

investigate the effect of GSTs gene polymorphisms on the

risk of T2DM related complications.

In conclusion, the current study revealed the relationship

between GSTM1, GSTT1, and GSTP1 gene polymorphisms

with the risk of T2DM, which may be attributed to false

positive results rather than actual correlations or biological

variables. Larger epidemiological studies should be carried

out in the future to confirm or deny our findings.
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