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This study analyzed PSAT1-targeted miRNAs as a prognostic predictor for

gastric cancer. The relationship between the clinical manifestations of

gastric cancer in patients and phosphoserine aminotransferase 1 (PSAT1) was

analyzed using correlation analysis. PSAT1 was highly expressed in gastric

cancer, and its low expression was associated with a poor prognosis. By

pan-cancer analysis, PSAT1 could affect the tumor immune

microenvironment by immune infiltration analysis. Nine microRNAs targeting

PSAT1 and associated with gastric cancer were screened by miRwalk and

microRNA expression in TCGA tumor tissues. Six microRNAs were obtained

by survival curve analysis, including hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-

145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p. Based on the

above six microRNAs, a model for bone metastasis prediction in gastric cancer

prediction was constructed. An analysis of a decision curve was performed

based on the microRNAs obtained to predict bone metastasis from gastric

cancer. It had a positive area under the curve (AUC) value of 0.746, and the

decision curve analysis (DCA) indicated that it was clinically significant. Dual-

luciferase reporter genes indicated that hsa-miR-497-5p and PSAT1 were

targeted, and qRT-PCR results confirmed that hsa-miR-497-5p could down-

regulate PSAT1 expression. MicroRNAs targeting the regulation of

PSAT1 expression can well predict the prognosis of gastric cancer.
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Introduction

Cancer of the gastric mucosa arises from the epithelium of

the mucosa, and most of its clinical manifestations are

indigestion, abdominal pain, early satiety, or anorexia, but

it may also present as reflux, dysphagia, and gastrointestinal

bleeding (Machlowska et al., 2020). Gastric cancer is a

heterogeneous and multifactorial disease caused by a

combination of environmental and genetic factors, with a

complex pathogenesis (Oliveira et al., 2015). Infections with

H. pylori, nitrate- and nitrite-rich diets, smoking and drinking

alcohol are all risk factors for gastric cancer (Machlowska

et al., 2020; Joshi and Badgwell, 2021). Some genetic

syndromes, such as CDH1, Lynch, and Peutz-Jegher

syndromes, are also associated with gastric cancer

(Hansford et al., 2015; Lott and Carvajal-Carmona, 2018).

There were approximately 1.089 million new cases of gastric

cancer worldwide in 2020, accounting for 5.6% of all cancers,

making it the fifth-largest malignant tumor in the world after

breast, lung, colorectal, and prostate cancers. (Sung et al.,

2021). In addition, since gastric cancer exhibits insidious

symptoms in the early stages, metastases are often detected

at the time of diagnosis, making the prognosis poor and the

mortality rate high. Globally, approximately 769,000 people

will die from stomach cancer in 2020, accounting for 7.7% of

all cancer-related deaths. The most common sites of metastasis

for gastric cancer are the peritoneum, liver, lung, and lymph

nodes, while bone metastases are rare, occurring in less than

5% of patients (Park et al., 2013; Turkoz et al., 2014). However,

studies have shown that bone metastases from gastric cancer

are an independent poor prognostic factor for gastric cancer

and are significantly associated with overall patient survival.

Bone metastases from gastric cancer have a significantly lower

5-year survival rate than non-bone metastases, with a median

survival time of only about four months (Lee et al., 2007;

Xiaobin et al., 2022). Because most bone metastases do not

show significant clinical symptoms, the actual incidence of

bone metastasis may be higher than reported. There is an

urgent need for biomolecular markers that can determine the

risk factors for bone metastasis in gastric cancer, assess their

risk in patients, and detect early and accurately.

PSAT1 encodes the catalytic enzyme phosphoserine

aminotransferase, which is associated with cell proliferation

and serine anabolism (Hart et al., 2007; Montrose et al.,

2021). Researchers have found that PSAT1 is aberrantly

expressed in various tumor cells and promotes proliferation,

metastasis, invasion, and drug resistance in a variety of

malignancies, including breast, lung, and colorectal cancer

(Metcalf et al., 2020; Biyik-Sit et al., 2021; Montrose et al.,

2021). In addition, PSAT1 was found to promote extracellular

vesicle (EV) secretion via the serine-ceramide synthesis pathway

in multiple cancer types, affecting the tumor microenvironment.

By activating osteoclasts, it could also promote bone metastasis.

EVs are a collective term for vesicular structures encased in lipid

bilayers released by various cells, including exosomes and

particles. Exo is a signaling vesicle involved in normal

homeostatic processes or pathological exchanges of nucleic

acids, proteins, and other components between cells (Kowal

et al., 2016). Exosomes not only play a role in regulating

normal physiological processes, such as immune response and

cell differentiation, but can also be involved in the

pathophysiology of diseases, such as cancer development,

progression, and metastasis (Yao et al., 2021). Tumor cells can

interact with cells in the bone microenvironment through the

secretion of exosomes and transfer tumor-specific contents, such

as miRNA, to the bone microenvironment through exosomes,

thus promoting tumor bone metastasis (Rossi et al., 2018;

Tiedemann et al., 2019). Furthermore, breast cancer cells has

been suggested to promote the development of breast cancer

bone metastases by releasing exosomes containing miRNA-19a

and IBSP (Wu et al., 2021a). However, it remains to be seen

whether exosomes can regulate PSAT1.

In this study, we analyzed the clinical and tumor

microenvironment of gastric cancer patients to investigate the

relationship between PSAT1 and prognosis. We screened the

PSAT1-targeting microRNAs with miRWalk, and then analyzed

their expression in gastric cancer. Diagnosis and treatment

strategies can be provided by screening marker proteins

associated with gastric cancer prognosis.

Methods

Downloading and processing of data

We downloaded PSAT1 pan-cancer data from the UCSC

Xena database for a total of 18 cancer types, including bladder

uroepithelial carcinoma (BLCA), breast invasive carcinoma

(BRCA), cholangiocarcinoma (CHOL), colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA),

glioblastoma multiforme (GBM), head and neck squamous

cell carcinoma (HNSC), kidney chromophobe (KICH), kidney

renal clear cell carcinoma (KIRC), kidney renal papillary cell

carcinoma (KIRP), liver hepatocellular carcinoma (LIHC),

lung adenocarcinoma (LUAD), lung squamous carcinoma

(LUSC), prostate adenocarcinoma (PRAD), rectal

adenocarcinoma (READ), stomach adenocarcinoma

(STAD), thyroid carcinoma (THCA), and uterine corpus

endometrial carcinoma (UCEC). From the Cancer Genome

Atlas (TCGA) database (https://www.cancer.gov/about-nci/

organization/ccg/research), raw RNA sequencing data and

clinical information were downloaded from gastric cancer

patients (Wang et al., 2016; Goldman et al., 2020).

Information about survival time, survival status, age, sex,

tumor grade, clinical stage, pathological stage, TNM stage,

OS, DSS, and PFI were collected from the patients.
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Clinicopathological and survival analysis
of phosphoserine aminotransferase 1 in
gastric cancer

Patients’ clinical information included age, gender, clinical

stage, and TMN stage. To investigate the relationship between

PSAT1 expression and clinical characteristics, we selected

clinical, pathological, and TNM stages as representative

outcomes with significant differences. The gastric cancer

samples were then divided into high and low expression

groups based on their median PSAT1 expression values.

Kaplan-Meier survival curves were plotted using this method.

We analyzed the relationship between PSAT1 expression and

prognostic DSS (disease-specific survival) in gastric cancer taking

into account the possibility of non-tumor death during follow-

up. The relationship between PSAT1 expression and PFI

(progression-free interval) was also examined.

Immune infiltration analysis

CIBERSORT deconvolution algorithm is a computational

method for identifying 22 types of immune cells in tissues

(Bindea et al., 2013; Hänzelmann et al., 2013; Wu et al.,

2021b). With R software, the CIBERSORT deconvolution

algorithm was used to simulate the transcriptional features

matrix of 22 immune cells, including B cells, plasma cells,

T cells, natural killer cells, monocytes, macrophages, dendritic

cells, mast cells, eosinophils, and neutrophils. Calculations were

set at 100, and data with p < 0.05 were analyzed. In order to

analyze the correlation between PSAT1 and immune cells, R

software calculated correlation coefficients between immune cells

and PSAT1. Additionally, the ESTIMATE algorithm in the R

language estimation package was used to estimate the ratio of

immune to stromal components in tumor microenvironments.

Three types of scores were presented: immune, stromal, and

ESTIMATE. Based on the correlation between PSAT1 and these

three scores, we were able to analyze the correlation between

PSAT1 and the tumor microenvironment. The relationships

between PSAT1 expression, immune cell infiltration score,

and tumor microenvironment were assessed by Spearman

correlation analysis.

Gastric cancer microRNAs associated with
upregulation of phosphoserine
aminotransferase 1 expression

All microRNAs that may target PSAT1 were predicted using

the online miRNA target gene prediction tool miRWalk2.0 as

previous researches (http://zmf.umm.uni-heidelberg.de/apps/

zmf/mirwalk2) (Dweep et al., 2014; Sticht et al., 2018; Feng

et al., 2021; Chen et al., 2022; Zhao and Jiang, 2022).

MiRWalk integrated with several different miRNA target gene

prediction tools, including miRanda, RNA22, miRDB,

Targetscan, etc., which can perform multiple databases of

miRNA co-screening and find the common target genes

among them, maximizing the prediction confidence. Then, we

conducted correlation analysis of the miRNAs that correlated

negatively with PSAT1.

MicroRNA expression and survival in
gastric cancer

The microRNAs obtained above were calculated as the

expression between gastric cancer tissues and normal tissues,

and the microRNAs with statistically significant differences in

expression were screened by the p < 0.05. Survival curves were

plotted by Kaplan-Meier method based on themedian expression

value of each microRNA as previous researches (Rich et al., 2010;

Lacny et al., 2015; Sun et al., 2022; Xuan et al., 2022).

Model construction and evaluation

Using the Akaike information criterion (AIC), the optimal

logistic nomogram model was constructed. We evaluated the

expressiveness of the model using ROC curves and calibration

curves. We also performed the Hosmer-Lemeshow goodness-of-

fit test. Decision curve analysis (DCA) was used to examine the

effect of the model on net clinical benefit rates at different

positive thresholds. Threshold probability is the horizontal

coordinate of DCA. When the nomogram model assessment

value reached a certain value, bone metastasis probability was

denoted as p.

Cell culture and transfection

Chinese Academy of Sciences, Shanghai, provided 293T and

SGC-7901 cells, which were cultured at 37 °C in a constant

humidity CO2 incubator with DMEM + 10% FBS + 1% double

antibody. Afterwards, we transfected 293T cells with 100 pmol

hsa-miR-497-5p, purchased from Bioindustries, for 48 h before

RNA extraction.

RNA extraction by qRT-PCR analysis

SGC-7901 cells were treated with Trizol (Sangon, China)

according to Trizol’s guidelines. In order to measure mRNA

expression levels, RNA was reverse-transcribed into cDNA using

Promega’s Reverse Transcription Kit (GoScriptTM Reverse

Transcription Kit), followed by qRT-PCR analysis using

Biotech’s qRT-PCR reagents (2X SG Fast qPCR Master Mix).
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TABLE 1 Gastric cancer patients’ demographic characteristics and PSAT1 expression.

Characteristic Low expression of
PSAT1 (n = 187)

High expression of
PSAT1 (n = 188)

p value

Age, n (%) 0.032

≤65 93 (25.1%) 71 (19.1%)

>65 93 (25.1%) 114 (30.7%)

Gender, n (%) 0.073

Female 58 (15.5%) 76 (20.3%)

Male 129 (34.4%) 112 (29.9%)

T stage, n (%) 0.471

T1 10 (2.7%) 9 (2.5%)

T2 38 (10.4%) 42 (11.4%)

T3 90 (24.5%) 78 (21.3%)

T4 44 (12%) 56 (15.3%)

N stage, n (%) 0.638

N0 58 (16.2%) 53 (14.8%)

N1 49 (13.7%) 48 (13.4%)

N2 35 (9.8%) 40 (11.2%)

N3 32 (9%) 42 (11.8%)

M stage, n (%) 0.219

M0 168 (47.3%) 162 (45.6%)

M1 9 (2.5%) 16 (4.5%)

Pathologic stage, n (%) 0.112

Stage I 23 (6.5%) 30 (8.5%)

Stage II 65 (18.5%) 46 (13.1%)

Stage III 69 (19.6%) 81 (23%)

Stage IV 16 (4.5%) 22 (6.2%)

Histologic grade, n (%) 0.112

G1 8 (2.2%) 2 (0.5%)

G2 64 (17.5%) 73 (19.9%)

G3 112 (30.6%) 107 (29.2%)

Primary therapy outcome, n (%) 0.769

PD 35 (11%) 30 (9.5%)

SD 9 (2.8%) 8 (2.5%)

PR 1 (0.3%) 3 (0.9%)

CR 116 (36.6%) 115 (36.3%)

Race, n (%) 0.062

Asian 47 (14.6%) 27 (8.4%)

Black or African American 4 (1.2%) 7 (2.2%)

White 118 (36.5%) 120 (37.2%)

Histological type, n (%) 0.028

Diffuse Type 40 (10.7%) 23 (6.1%)

Mucinous Type 12 (3.2%) 7 (1.9%)

Not Otherwise Specified 103 (27.5%) 104 (27.8%)

Papillary Type 2 (0.5%) 3 (0.8%)

Signet Ring Type 6 (1.6%) 5 (1.3%)

Tubular Type 24 (6.4%) 45 (12%)

Residual tumor, n (%) 0.867

R0 144 (43.8%) 154 (46.8%)

R1 8 (2.4%) 7 (2.1%)

R2 7 (2.1%) 9 (2.7%)
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FIGURE 1
A correlation between PSAT1 expression levels and cancer patient prognosis. (A). Box plot showing the level of PSAT1 mRNA expression in
different cancer tissues and normal tissues; data from UCSC database; ***p < 0.001, **p < 0.01; (B). Survival analysis demonstrating the overall
survival of gastric cancer patients with high PSAT1 expression (OS, HR = 0.61, 95% CI: 0.40–0.92, p = 0.02); (C). Survival analysis demonstrating the
relationship between PSAT1 expression levels and DSS of gastric cancer patients (DSS, HR= 0.53, 95% CI: 0.30–0.92, p = 0.024); (D). Survival
analysis demonstrating the relationship between PSAT1 expression levels and progress-free interval of gastric cancer patients (PFI, HR =0.48, 95%CI:
0.30–0.78, p = 0.003); (E). Correlation analysis of PSAT1 expression with immune cell infiltration displaying that TH2 cells and NK cells are positively
correlated with PSAT1, whereas plasmacytoid dendritic cells and mast cells are negatively correlated with PSAT1; (F). PSAT1 correlation analysis with
ImmuneScore, StromalScore, and ESTIMATEScore.
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As an internal reference, GAPDH was used and 2−ΔΔCt was used

to calculate mRNA expression levels.

Dual luciferase reporter gene system

PmirGLO-PSAT1-3’ UTR-WT and pmirGLO-PSAT1-3’

UTR-MUT vector plasmids were purchased from Shanghai

Sangon Biotech. 500 ng of vector plasmid and 100 pmol of

hsa-miR-497-5p mimics were transfected into 293T cells and

the fluorescence situation was determined 24 h after transfection

using Dual Luciferase Assay Kit (Promega).

Statistical methods

Statistical analysis was performed using the R software

package (version 3.6.3). The Spearman correlation test was

used to determine whether the two variables were correlated.

Differences with p < 0.05 were considered statistically significant.

Results

Phosphoserine aminotransferase
1 expression and general health of gastric
cancer patients

From the TCGA database, clinical information was

downloaded for 375 gastric cancer patients. PSAT1 expression

was divided into low and high groups based on median

expression. Their median ages were 65.5 and 69, respectively,

statistically significantly different (p < 0.05). In addition, there

was a statistically significant difference in pathological types

between low and high expression groups (p = 0.028)

(Table 1). PSAT1 expression was statistically significantly

different between pathological Stage IV, TNMF Stage IV, and

clinical Stage IV based on patient’s clinical data [HR = 1.70

(1.09–2.68), p = 0.021]. There was a difference in

PSAT1 expression at pathological stage IV. However, there

were no significant differences in the other clinical-

pathological symptoms.

Pan-cancer phosphoserine
aminotransferase 1 expression

UCSC database was used to analyze PSAT1 mRNA

expression levels in tumor and normal tissue samples

(Figure 1A). The results disclosed that PSAT1 was highly

expressed in ten cancer types relative to normal tissues,

including BLCA, COAD, ESCA, HNSC, LUAD, LUSC, PRAD,

READ, STAD, and UCEC. In contrast, PSAT1 expression was

low in BRCA, CHOL, KIRC, KIRP, LIHC, and THCA.

PSAT1 expression was not significant in GBM and KICH.

Survival analysis of phosphoserine
aminotransferase 1 in gastric cancer and
immune infiltration analysis

Patients with high PSAT1 expression had significantly longer

overall survival (OS, HR= 0.61, 95% CI: 0.40–0.92, p = 0.02),

disease-specific survival (DSS, HR= 0.53, 95% CI: 0.30–0.92, p =

0.024), and progression-free interval (PFI, HR= 0.48, 95% CI:

0.30–0.78, p = 0.003) (Figures 1B–D). In gastric cancer, low

expression of PSAT1 was associated with worse OS, DSS, and

PFI. Therefore, patients with gastric cancer with low expression

of PSAT1 had a poor prognosis.

The percentage of immune cell infiltration was calculated by

Cibersort software, and samples that met the requirements were

screened according to the p < 0.05 criterion. According to our

analysis, each immune cell shows a positive correlation with

PSAT1 expression, while plasmacytoid dendritic cells and mast

cells have a negative correlation with PSAT1 (Figure 1E).

Furthermore, ImmuneScore, StromalScore, and

ESTIMATEScore were calculated using the ESTIMATE

algorithm in R language estimate package. PSAT1 expression

and these three scores were negatively correlated (Figure 1F).

PSAT1 expression levels can influence the immune activity of

tumor microenvironments, according to these results.

Prognostic analysis of microRNAs
negatively associated with phosphoserine
aminotransferase 1

MiRNAs targeting and regulating PSAT1 gene expression

were identified using miRwalk database and visualized using

Cytoscope (Figure 2A). We calculated the expression of the

above 116 miRNAs in TCGA in gastric cancer. By analyzing

the correlation between their expression and

PSAT1 expression, we found that the following were

negatively correlated with PSAT1 expression: hsa-miR-1-3p

(r = −0.3, p < 0.05), hsa-miR-29c-3p (r = −0.25, p < 0.05), hsa-

miR-101 -3p (r = −0.25, p < 0.05), hsa-miR-129-5p (r = −0.34,

p < 0.05), hsa-miR-139-5p (r = −0.29, p < 0.05), hsa-miR-145-

5p (r = −0.29, p < 0.05), hsa-miR-195-5p (r = −0.34, p < 0.05),

hsa-miR-497-5p (r = −0.36, p < 0.05), and hsa-miR-218-5p

(r = −0.36, p < 0.05) (Figure 2B). Eight miRNAs were found to

have low expression and be significantly different between

tumors and normal tissue, namely: hsa-miR-1-3p, hsa-miR-

29c-3p, hsa-miR-129-5p, hsa-miR-139-5p, hsa-miR-145-5p,

hsa-miR-195-5p, hsa-miR-497-5 (Figure 2C). We calculated

the p-value for each miRNA in relation to patient survival

using KM survival curves of the eight differential miRNAs
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listed above. Six miRNAs were found to have significant

correlations with prognosis, including hsa-miR-1-3p, hsa-

miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-

218-5p (Figure 3A). Then, we constructed a regulatory

relationship map targeting PSAT1 using cytoscope software

(Figure 3B). There was a negative correlation between

these nine miRNAs (Figure 3C). Therefore, these

six miRNAs (hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-

5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p)

may be associated with (hsa-miR-1-3p, hsa-miR-139-5p, hsa-

miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-

497-5p) the expression of PSAT1 and the prognosis of

patients.

Construction of the nomogram predictive
model and clinical utility assessment

The six miRNAs (hsa-miR-1-3p, hsa-miR-139-5p, hsa-

miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-

FIGURE 2
The microRNAs associated with gastric cancer expression of PSAT1. (A). The miRwalk database and correlation analysis identified microRNAs
that could target PSAT1 in gastric cancer; (B). MicroRNAs negatively correlated with PSAT1 expression; (C). Gastric tumor tissues and normal tissue
samples showed negative correlations between miRNA levels and PSAT1 expression levels.
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miR-497-5p) were built into a nomogram model (Figure 4A).

Each miRNA’s corresponding scale was determined based on

its actual situation in the patient. By projecting upward to the

top scale points, each miRNA’s score was calculated, and the

scores were summed. The risk probability of bone metastasis

in the patient was calculated by projecting downward based on

the total score. Validating the model, we found that it had a

good AUC value (AUC = 0.746), calibration, and goodness of

fit, suggesting that it could predict the risk of bone metastasis

in gastric cancer (Figures 4B,C). DCA illustrating the benefits

of using the miRNA nomogram model (Figure 4D). Overall,

we established a predictive model for gastric cancer bone

metastasis.

Hsa-miR-497-5p targets and regulates
phosphoserine aminotransferase 1

Among the six miRNAs targeted by PSAT1, hsa-miR-1-3p,

hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-

218-5p, and hsa-miR-497-5p were most closely related to

gastric cancer prognosis. PSAT1 and hsa-miR-497-5p were

FIGURE 3
Prognostic analysis of microRNAs negatively associated with PSAT1. (A). Survival analysis of miRNAs (hsa-miR-218-5p, hsa-miR-129-5p, hsa-
miR-145-5p, hsa-miR-139-5p, hsa-miR-195-5p, hsa-miR-1-3p, hsa-miR-29c-3p, and hsa-miR-497-5p) significantly associated with tumor
prognosis; (B). PSAT1-related microRNA regulatory network; (C). Correlation analysis circle diagram between PSAT1 and its negatively associated
microRNAs.
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detected using a dual-luciferase reporter gene system and qRT-

PCR. Figure 5A shows that hsa-miR-497-5p mimics reduced the

fluorescence ratio compared to the control, demonstrating a

targeting relationship between hsa-miR-497-5p and PSAT1.

PSAT1 expression was reduced by hsa-miR-497-5p in further

qRT-PCR experiments (Figure 5B). As a result of the above

findings, hsa-miR-497-5p appears to be capable of targeting

PSAT1 expression in order to affect gastric cancer prognosis.

Discussion

The rapid development of precision medicine has improved

the survival rate of gastric cancer by combining surgery with

targeted therapy and chemotherapy, but the prognosis remains

poor (Li et al., 2022). Early symptoms of gastric cancer are

atypical, so early diagnosis is mainly based on endoscopic

biopsy, which is a limited method. Distant metastases are

often diagnosed in most patients (Dohi et al., 2017). Recently,

with the continuous improvement of imaging technology, related

studies have found that the percentage of patients with bone

metastases from gastric cancer detected by bone scan screening

can be as high as 25–45.3% (Choi et al., 1995). Several studies

have demonstrated that bone metastasis, as an independent risk

factor for gastric cancer, often indicated rapid deterioration of the

clinical course, which seriously affected the treatment outcome

and prognosis of patients (Ahn et al., 2011; Qiu et al., 2018).

Moreover, patients with bone metastases may suffer from

complications such as bone pain, pathological fracture, and

spinal cord compression, which seriously affect their quality of

life (Mikami et al., 2017). Bone metastases from gastric cancer

were found to be lower than the actual rate because there were

often no obvious clinical symptoms in the early stages, and

skeletal screening for gastric cancer patients was not routine

(Clézardin, 2017). Therefore, a predictive risk model should be

developed to help detect and diagnose gastric cancer bone

metastases early, enabling effective treatment plans to be

developed.

FIGURE 4
A predictive model for gastric cancer metastasis risk based on microRNAs associated with downregulated PSAT1 expression. (A). Nomogram
models based on six miRNAs (hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p); (B).
Calibration curve for nomogram model; (C). ROC curve of nomogram model (AUC = 0.746); (D). Clinical decision curves illustrating the benefits of
using the miRNA nomogram model.
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PSAT1 regulates serine anabolism, playing an important role

in cell proliferation, and is also essential for osteoclastogenesis

(de KONING et al., 2003; Ogawa et al., 2006). Furthermore, it

was found that high PSAT1 expression was closely associated

with bone metastasis in malignant tumors. High expression of

PSAT1 has been suggested to regulate serine anabolism,

promotes osteoclast differentiation and enhances their activity,

regulates the tumor microenvironment, and thus promotes bone

metastasis in breast cancer (Pollari et al., 2011).

PSAT1 expression was highly correlated with poor prognosis

in gastric cancer in this study based on pan-cancer analysis.

According to immune infiltration analysis, PSAT1 affects the

tumor immune microenvironment, which indicates that

PSAT1 plays a critical role in invasion and gastric cancer

prognosis. Furthermore, we identified miRNAs targeting

PSAT1 in TCGA tumor tissues and associated them with

gastric cancer. We found that multiple miRNAs regulated

PSAT1 expression (Figure 2B). The survival curve analysis

identified six microRNAs, including hsa-miR-1-3p, hsa-miR-

139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p,

and hsa-miR-497-5p (Figure 3A). Based on the above six

microRNAs, we constructed the prognostic prediction model

for gastric cancer.

MicroRNAs (miRNAs) belong to a family of non-coding

RNAs of 20–24 nucleotides in length. MiRNAs are significantly

associated with tumor development and metastasis (Liu et al.,

2019; Wang et al., 2019; Chen et al., 2021; Zhang and Liu, 2021;

Cao et al., 2022). Compared with normal tissues, miRNA

expression is down-regulated in various cancers. They are

widely involved in tumor metastasis and invasion by

suppressing target genes and have an important role in tumor

diagnosis and prognosis assessment (Daoud et al., 2019).

Previous studies found that all six microRNAs used to

construct predictive models were associated with malignant

tumorigenesis, invasion, or metastasis. Hsa-miR-139-5p

expression was low in various tumor tissues, including gastric

cancer, liver cancer, and thyroid cancer (Yang et al., 2013;

Montero-Conde et al., 2020; Chi et al., 2021). Bioinformatics

analysis revealed that hsa-miR-139-5p was closely associated

with gastric cancer prognosis (Wang et al., 2022).

Furthermore, hsa-miR-139-5p/MYB axis has been suggested

to promote the proliferation, invasion, and metastasis of

gastric cancer (Xie et al., 2021). The expression of hsa-miR-

145-5p was down-regulated in various tumor cells, including

gastric cancer, and the down-regulation of hsa-miR-145-5p

expression was associated with lymph node metastasis and

distant metastasis in gastric cancer, suggesting a poor

prognosis (Hang et al., 2018). In addition, it was found that

the exosomes secreted by ovarian cancer cells also contained hsa-

miR-145-5p, and its abnormal expression was associated with

distant metastasis of cancer cells (Hang et al., 2018). Hsa-miR-

195-5p is also a suppressor of multiple tumor types, and its

dysregulated expression is involved in the development of

multiple tumors and is associated with poor tumor prognosis

FIGURE 5
PSAT1 expression is regulated by has-miR-497-5p. (A). PSAT1 and has-miR-497-5p targeting relationship revealed by dual-luciferase reporter
gene system. (B). The expression of PSAT1 was lower in has-miR-497-5p-treated gastric cancer cell lines compared to control cells. *p < 0.05,
**p < 0.01.
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and drug resistance (Jin et al., 2018; Rezaei et al., 2019). It has

been suggested that hsa-miR-195-5p was involved in regulating

the invasion and metastasis of gastric cancer cells by binding to

PD-L1 and regulating E-calmodulin expression, which was

closely associated with poor prognosis for patients with gastric

cancer (Zou et al., 2019; Liu et al., 2020; Liu et al., 2021).

Expression of hsa-miR-218-5p is downregulated in various

malignancies, including gastric, prostate, and cervical cancers,

and is associated with tumor invasion and migration (Gao et al.,

2009). Researchers found that hsa-miR-218-5p regulated KIT

protein expression and inhibited proliferation and invasion of

gastrointestinal mesenchymal tumors (Fan et al., 2014).

Upregulation of hsa-miR-218-5p expression inhibits cancer

progression in cervical and bladder cancer, by reducing cell

migration and invasion (Chiyomaru et al., 2012; Yamamoto

et al., 2013). Hsa-miR-497-5p expression is down-regulated in

gastric, hepatocellular, and colorectal cancers, and is also

associated with tumorigenesis, invasion, and poor prognosis

(Falzone et al., 2018; Liu et al., 2021; Tian et al., 2021). In

addition, abnormal expression of hsa-miR-1-3p is associated

with poor prognosis of malignant tumors, such as breast

cancer and small cell lung cancer (Li et al., 2020; Yan et al.,

2021). Gene expression levels are closely connected to tumor

metastasis according to the prediction model obtained in this

study, which implicates genes involved in cancer development

and metastasis. Furthermore, we developed and validated a

prognostic prediction model using nine microRNAs for gastric

cancer and found that AUC value with good calibration and good

fit was 0.746 (Figures 4B,C). A good prediction of the risk of bone

metastases in patients with gastric cancer could be obtained

through this model, and it could have some application in the

assessment of gastric cancer prognoses.

Conclusion

Gastric cancers expressed high levels of PSAT1, and low

levels were associated with poor prognoses. Furthermore,

microRNAs targeting PSAT1 can predict gastric cancer

prognosis and bone metastasis risk. Based on the results of

this study, it can be concluded that the prediction model

provides good predictive value in the risk assessment of

bone metastasis in gastric cancer, in addition to showing

some clinical application in the prognosis evaluation of

gastric cancer. The study has, however, some limitations.

To validate the findings of this study, a larger sample size is

required. It is also necessary to conduct further experimental

studies in order to clarify the specific mechanisms involved in

regulation.
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