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The mountainous areas of Ethiopia represent one of the most extreme

environmental challenges in Africa faced by humans and other inhabitants.

Selection for high-altitude adaptation is expected to have imprinted the

genomes of livestock living in these areas. Here we assess the genomic

signatures of positive selection for high altitude adaptation in three cattle

populations from the Ethiopian mountainous areas (Semien, Choke, and Bale

mountains) compared to three Ethiopian lowland cattle populations (Afar,

Ogaden, and Boran), using whole-genome resequencing and three genome

scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified

several candidate selection signature regions and several high-altitude

adaptation genes. These include genes such as ITPR2, MB, and ARNT

previously reported in the human population inhabiting the Ethiopian

highlands. Furthermore, we present evidence of strong selection and high

divergence between Ethiopian high- and low-altitude cattle populations at

three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked

to high-altitude adaptation in cattle. Our findings provide possible examples of

convergent selection between cattle and humans as well as unique African

cattle signature to the challenges of living in the Ethiopianmountainous regions.
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Introduction

Ethiopia is endowed with diverse agro-climatic regions and altitudes that range from

the lowest Afar depression (−160 m above sea level, masl) to the highest SemienMountain

(4,600 masl). The Ethiopian highlands are commonly found in the central part of the

country, on both sides of the Rift Valley, extending from the Semien Mountain in the

North to the Bale Mountain in the Southeast. Cold temperatures and humid weather are

characteristics of the high-altitude plateaus in Ethiopia. Mixed livestock farming and crop
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cultivation are major agricultural activities for livelihoods. These

environments are characterized by some unique agricultural

production activities and food sources, providing cash income

to the local communities (Asresie and Zemedu, 2015). Likewise,

they have contributed to the diversity of Ethiopian livestock.

Human populations started to occupy the Ethiopian high

plateau by migrating from the Rift Valley to the Bale Mountain in

the Middle Stone Age around 50–30,000 years ago (Ossendorf

et al., 2019). Overtime, people living in such environments have

become adapted to high-altitude stressors, including hypobaric

hypoxia, ultraviolet light, cold temperature, and oxidative stress

(Beall et al., 2002; San et al., 2013; Debevec et al., 2017; Yang et al.,

2017; Storz, 2021). The possible genetic basis of human

adaptation to high altitudes in Ethiopia has been previously

reported (Beall et al., 2002; Alkorta-Aranburu et al., 2012;

Scheinfeldt et al., 2012; Huerta-Sánchez et al., 2013; Edea

et al., 2019; Wiener et al., 2021). Likewise, evolutionary

adaptations of livestock exposed to high altitudes are expected

to be associated with major changes in the anatomy and

physiological functions following a long period of

acclimatization. For example, the yak Bos grunniens possesses

a larger heart and lungs as compared to cattle (Wang et al., 2016),

leading to a high amount of inhaled air to supply sufficient

oxygen to the respiratory cell system. Uteroplacental oxygen flow

at the fetal stage (Simonson, 2015), higher hemoglobin

concentration in blood (Alkorta-Aranburu et al., 2012;

Scheinfeldt et al., 2012), pulmonary vasoconstriction (Wang

et al., 2016), ability to avoid altitude sickness (Dolt et al.,

2007), calcium metabolism (Wang et al., 2015), and better

foraging ability and energy metabolism (Qiu et al., 2012; Edea

et al., 2014) may all contribute to the high-altitude adaptation in

cattle and other livestock species.

High-altitude adaptation in animals relies on their genetic

background attained through natural selection. Hypoxia induced

factors such as HIF-1a and its paralogs of HIF-2a and HIF-3a are

oxygen regulating factors in a hypobaric hypoxia environment

and are thus considered candidate genes for high-altitude

adaptation. The HIF-1a gene is over-expressed in cattle, yak,

humans, and the Tibetan gray wolf living at high altitudes

(Newman et al., 2011; Bigham and Lee, 2014; Zhang et al.,

2014; Wang et al., 2016; Verma et al., 2018; Werhahn et al.,

2018). The HIF-1a pathways include the endothelial PAS domain

1 (EPAS1), vascular endothelial growth factor-A (VEGF-A),

endothelial converting enzyme-1 (ECE1), glucose transport

members 1 (GLUT-1), hexokinase 2 (HK2), and nitric oxide

synthesis (NOS2) genes. These are all expressed in cattle adapted

to high altitudes (Verma et al., 2018), and they play an important

role in maintaining oxygen homeostasis and glucose metabolism

in mammals (Hu et al., 2006; Majmundar et al., 2010). Hypoxia-

related genes, including EPAS1, RYR2, and ANGPT1, were

identified in high-altitude Tibetan gray wolves, and they were

associated with the HIF signaling pathway, ATP binding, and

response to oxygen-containing compounds (Zhang et al., 2014).

Using the Illumina bovine low-density 50K SNP array, a study on

the Ethiopian cattle population living at an altitude of 2,400 masl

identified energy metabolism (ATP2A3, CA2, MYO18B, SIK3,

INPP4A, and IREB2) and response to hypoxia (BDNF, TFRC, and

PML) genes as candidate genes to the adaptation of cattle to the

high-altitude environments (Edea et al., 2014).

Physiological and genomic landscape studies have revealed

convergent evolution in several species to independently adapt to

high altitudes in different geographic locations across the world

(Scheinfeldt et al., 2012; Huerta-Sánchez et al., 2013; Azad et al.,

2017; Witt and Huerta-Sánchez, 2019; Friedrich and Wiener,

2020). For example, human populations in the Tibetan, Andean,

and Ethiopian highlands shared common candidates selected

regions and genes linked to high-altitude adaptation, such as

PPARA and EDNRA (Scheinfeldt et al., 2012; Simonson, 2015;

Witt and Huerta-Sánchez, 2019). However, ARNT2 and THRB

were uniquely identified in the Ethiopian population (Scheinfeldt

et al., 2012).

Only a few studies have reported the environmental

adaptations of Ethiopian cattle at the full autosomal genome

level (Kim et al., 2017; Kim et al., 2020). Though the bovine low-

density SNP array (Edea et al., 2014) was the first to investigate

Ethiopian cattle adaptation to different environments including

hypoxia. However, it did not include high altitude adaptation of

cattle population living at an altitude of >3,000 masl. Therefore,

this study aimed to identify signatures of positive selection for

high altitude adaptation in Ethiopian cattle using whole-genome

resequencing. For this purpose, we selected three cattle

populations from the highest mountainous areas

(>3,000 masl) of the country (Bale, Choke, and Semien

Mountain areas) (Table 1), and three Ethiopian cattle

populations living at low altitudes.

Materials and methods

Cattle populations and whole-genome
resequencing

The study involved a comparative analysis of indigenous

cattle distributed at high altitudes (>3,000 masl) and low

altitudes (<1,500 masl) in Ethiopia (Table 1). The high-

altitude populations included Bale (n = 10) sampled in the

Bale district (Bale Mountain, ~3,586 masl), Semien (n = 10) in

the Gondar district (Semien Mountain, ~3,732 masl), and Choke

(n = 10) in the Gojam district (Choke Mountain, ~3,410 masl).

The low-land populations included Afar (n = 11) sampled in the

Afar district (~729 masl), Ethiopian Boran (n = 10) from the

Borana district (~1,368 masl), and Ogaden (n = 9) from the

Ogaden district (~1,200 masl) (Figure 1).

Whole blood samples were collected aseptically from the

jugular veins of unrelated individuals into 10 ml vacuum tubes

containing EDTA. Genomic DNA was extracted using the
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QIAGENDNeasy Blood and Tissue Kit (https://www.qiagen.com/

us/) following themanufacturer’s protocol. The DNA integrity was

checked by a 1% agarose gel electrophoresis and observed under a

UV light-based gel viewer. The concentration and quality of DNA

for each sample were checked by using a DeNovix DS-11 FX Series

Spectrophotometer/Fluorometer (DeNovix Inc., Wilmington, DE,

United States). DNA samples (>50 μg/μl) were then shipped to

Novogene, China (https://en.novogene.com/services/research-

services/genome-sequencing/whole-genome-sequencing/animal-

plant-whole-genome-sequencing-wgs/), where whole-genome

sequencing was performed on an Illumina NovaSeq

6000 Platform (Illumina, San Diego, CA, United States) to

generate 150 bp of paired-end reads. We included Gir

(GenBank accession no. PRJNA343262), Angus

(PRJNA318087), Muturu (PRJNA386202), and Butana

(PRJNA574857) cattle for comparative analyses, following the

same sequence quality control and variant calling procedures.

Read mapping and variant calling

The quality control of raw sequencing reads was performed

using the FastQC v0.11.9 program (https://github.com/

s-andrews/FastQC/releases/tag/v0.11.9). Qualified raw reads

were processed for initial trimming and filtering of the low-

quality reads by removing adapters, short reads (sequence

length <35 bp), and reads with low sequence base quality

(quality score <20) using the Trimmomatic v0.38 tool (Bolger

et al., 2014). Clean reads were mapped to the latest taurine cattle

reference genome of ARS-UCD1.2 (Shamimuzzaman et al.,

2020) using the BWA-MEM algorithm of Burrows-Wheeler

Aligner (bwa v0.7.17) (Li and Durbin, 2010).

Mapped reads were sorted and indexed using the samtools

v1.8 (Li et al., 2009) to produce a BAM file. Alignment sorting by

coordinate and marking of potential PCR and optical duplicates

were carried out using the MarkDuplicates tool in Picard v2.18.2

package (http://picard.sourceforge.net). Base quality score

recalibration (BQSR) and haplotype caller analysis were

performed using the GATK v3.8-1-0-gf15c1c3ef according to

its best practice workflows (McKenna et al., 2010). The

known variants of ARS1.2PlusY_BQSR_v3.vcf.gz provided by

the 1,000 Bull Genomes project were used for masking known

sites for all cattle samples. The GATK PrintReads was run to

adjust the base quality scores in the data based on information

from the table and to produce a recalibrated bam file.

Then, the genomic variant call format (gVCF) file for each

sample was created using the GATK HaplotypeCaller command

TABLE 1 Sampling location and cattle population description in the high and low altitudes.

Category Breed Region (district) Location Altitude
(masl)

GPS Climate

Latitude
(degree)

Longitude
(degree)

High altitude Bale Oromia (Bale) Bale Mountain 3,586 6.77 39.75 Cold humid,
highland

Choke Amhara (East Gojam) Choke Mountain 3,410 10.60 37.84 Cold humid,
highland

Semien Amhara (North
Goder)

Semien Mountain 3,732 13.23 38.13 Cold humid,
highland

Low altitude Afar Afar Melka Were/
Asayta

729 9.34 40.17 Hot and dry lowland

Boran Oromia (Borena) Dubulk 1,368 4.55 38.10 Hot and dry lowland

Ogaden Ogaden Jigjiga 1,200 09.58 41.85 Hot and dry lowland

FIGURE 1
The elevationmap of Ethiopia and sampling locations for high
and low-altitude cattle populations.
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from the recalibrated bam file, and all samples were combined to

obtain a joint genotype file using the GATK CombineGVCFs.

Finally, the variants were processed for variant recalibration with

a 99.9 truth sensitivity filter level using the GATK to reduce false

discovery rates that minimize the noise created by low standard

variants. After all quality checking, approximately 36.6 million

biallelic autosomal SNPs were identified and used for

downstream analyses.

Population genetic structure

Principal component analysis (PCA) and admixture

modeling were performed, based on the SNP genotypes, to

determine the population genetic structure of indigenous

Ethiopian cattle living in high and low altitudes. We used

Angus, Gir, Muturu, and Butana cattle as reference breeds

(European taurine, Asian zebu, African taurine, and non-

Ethiopian zebu cattle). The dataset in the vcf file was first

converted to a plink format (map, ped, and fam) after pruning

the SNPs in linkage disequilibrium (LD) (r2 ≥ 0.5), minor allele

frequency (MAF) (< 0.05), and missing genotype (call rate >
10%) based on a step-wise procedure using 50 SNPs windows

and 10 SNPs steps. After the stringent variant quality check,

5.1 million autosomal SNPs with an average of 98.1%

genotyping rate were used for admixture modeling with the

Admixture v1.3.0 software (Alexander et al., 2009) to estimate

the ancestry proportion of individual samples. The ancestral

proportions in the hierarchical clustering of individual samples

were optimized at the K values ranging from 2 to 10 and the

admixture plot was visualized using the R package. For PCA, we

removed SNPs with MAF < 0.01, SNPs with missing

genotypes > 10%, and SNP calling rate < 90%. After this

filtering, 25.5 million SNPs were used for PCA. The

eigenvectors of each sample were calculated using PLINK 1.9

(Purcell et al., 2007) and the result was plotted with the

ggplot2 in the R package.

Integrated haplotype homozygosity
analysis

The phasing and imputation of missed genotypes were

estimated per chromosome for each population using the

Beagle v5.1 software (Browning and Browning, 2007). The

length of homozygous haplotypes along a chromosome was

used to estimate the LD decay. The extended haplotype

homozygosity (EHH) from each SNP, which is the

probability that two randomly chosen homologous

chromosomes carrying the core haplotype of interest are

identical by descent (Sabeti et al., 2002), was then calculated.

The integrated haplotype score (iHS) compares the integrated

EHH between the ancestral allele relative to the derived allele in

a population (Voight et al., 2006). It detects selective sweeps

when alleles are near fixation. The iHS analysis was done using

the REHH v2.0 R package (Gautier et al., 2017) for alleles with

MAF within a population > 0.05. A genomic window of 100 kb

and a step size of 50 kb were used to identify candidate regions

of selection signatures.

Cross-population composite likelihood
ratio (XP-CLR)

XP-CLR test was done between cattle living at high and

low altitudes using the haplotype phased data of each

chromosomal window of 100 kb and a step size of 50 kb.

The test is based on local allele frequency changes in a

genomic region between the two groups. The method is

most sensitive to recent selection and detects departures

from neutrality that could be compatible with hard or soft

selection sweeps (Chen et al., 2010).

Population branch statistic (PBS)

PBS analysis was employed to detect genomic regions under

selection with highly divergent haplotypes (Yi et al., 2010). We

run population differentiation (FST) analysis using the vcftools

v0.1.15 (Danecek et al., 2011) between the Semien population for

the highest altitude representative compared to Afar, Boran, and

Ogaden cattle for the low altitude one, and the Sudanese Butana

cattle as an outgroup. The top 0.5% of the candidate regions

detected by the iHS and XP-CLR tests were used for PBS analysis.

We estimated divergence time using a log-transformation of one

minus the FST value for each comparison and calculated the PBS

value using the method described in Huerta-Sánchez et al.

(2013).

Functional annotation and haplotype
structure of candidate genes

The candidate genomic regions were annotated using the

taurine cattle reference genome ARS-UCD1.2 (Shamimuzzaman

et al., 2020) in the Ensembl database (http://www.ensembl.org/

index.html). The Database for Annotation, Visualization, and

Integrated Discovery (DAVID, v6.8, https://david.ncifcrf.gov/

home.jsp) was used to understand the biological functions and

molecular pathways of the candidate genes (Huang et al., 2009),

according to the minimum similarity thresholds for enrichment

scores at 1.0 and p values ≤ 0.05. Further functional annotations

were done from the literature published for humans and other

vertebrates. Additional structural and functional analyses of the

genomic regions of the candidate genes were evaluated using

haplotype structure, LD, FST, nucleotide diversity, and STRING
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protein-protein interaction network database. The haplotype

structure was estimated based on pairwise LD heatmap of the

SNPs using the LDBlockShow (Dong et al., 2020). The FST and

nucleotide diversity of the candidate gene regions were estimated

using the vcftools v 0.1.15 (Danecek et al., 2011) in a 10 kb

window and 5 kb step size to determine the strength and pattern

of selection signatures between the high- and low-altitude cattle.

Protein-protein interaction analyses were done using the

STRING online platform for the cattle genome reference

database (https://string-db.org/).

Results

Population genetic structure

The PCA and admixture plots describe the population

genetic structure of the indigenous Ethiopian cattle living in

the high and low altitudes compared with European taurine

cattle (Angus), African taurine (Muturu), Asian zebu cattle

(Gir), and African zebu (Butana) (Figure 2A). The first and

second principal components (PC) represent 57.8% of the total

variation. The first PC (PC1, 41.4%) separates the zebu (Gir,

Butana, and Ethiopian cattle) from the taurine (Angus and

Muturu), while the second PC (PC2, 16.4%) differentiate the

African zebu (Ethiopian cattle Butana) and Muturu from all

non-African cattle (Gir and Angus) (Figure 2A). Next, a second

PCA was conducted, excluding the reference cattle. The PC1

(11.8%) and PC2 (10.3%) differentiate the Ethiopian high-

altitude (HA) from low-altitude (LA) cattle (Figure 2B). The

population genetic admixture plot supports the PCA result,

which separated cattle populations in the whole dataset into

four ancestry clusters (Figure 3A). At K = 4, the genetic ancestry

of the Ethiopian cattle was inferred to be 97.0% of African zebu,

1.6% Asian zebu (represented here by the Gir), 1.0% African

taurine (Muturu), and 0.4% European taurine (Angus)

(Figure 3B). A small shared European taurine component is

observed in Bale, Choke, Semien, and Boran cattle. It is,

however, higher (2.2%) in Ogaden cattle. The Afar and

Boran populations have very little African taurine ancestry

proportion. Butana cattle share a similar genetic background

to other Ethiopian cattle. To explore potential genome-wide

selection signatures for high-altitude adaptation, we analyzed

the HA and LA cattle populations separately, following the

Ethiopian cattle PCA results (Figure 2B).

Selection signatures within Ethiopian
high- and low-altitude cattle populations

We performed a genomic scan combining the three HA, as

well as combining the three LA populations, using the within-

population iHS test to identify recent and/or ongoing footprints

of natural selection (Vatsiou et al., 2016). Using the REHH v2.0 R

package, we calculated genome-wide iHS for each focal SNP from

the phased data (Gautier et al., 2017). Subsequently, we

summarized the selection statistics across a sliding 100 kb

genomic window with a 50 kb step size. From the empirical

distribution of iHS statistics, we applied a p-value threshold <
1.0E-6, equivalent to -log10 iHS ≥ 6, to select the candidate

regions under selection (Figure 4A, Supplementary Table S1).

There are 144 candidate selected regions across 29 autosomes

within the Ethiopian zebu populations living in high altitudes

(Supplementary Table S1). These regions vary in size from 150 to

750 kb. They overlap with 264 protein-coding genes based on the

Ensembl taurine cattle assembly (ARS-UCD1.2) (Supplementary

Table S1). Of these, 28 protein-coding genes were identified within

the top 10 iHS regions. Most of these genes remain uncharacterized

with the exception of ITPR2 on BTA5 (5:83.45–83.60Mb,

iHS −log10 p = 8.19), DUSP10 on BTA16 (16:25.05–25.20 Mb,

iHS −log10 p = 8.24), and GTPase IMAP family members

4–7 genes (GIMAP4–7) on BTA4 (4:112.95–113.35Mb,

iHS −log10 p = 8.60). These annotated genes are possibly involved

in high-altitude adaptation, especially the former two genes with

FIGURE 2
A plot of the first and second principal components (PC1 and
PC2) of (A) the whole population dataset and (B) Ethiopian high
altitude (brown color: Bale, Choke, and Semien) and low altitude
(black color: Afar, Boran, and Ogaden) cattle populations.
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functions linked to the response to hypoxia (ITPR2) and oxygen-

containing compounds (DUSP10), respectively. GIMAP4, GIMAP5,

and GIMAP7 functions are related to the immune response and

hematopoiesis (Chen et al., 2011; Schwefel et al., 2013). They play a

significant role in modulating immune functions by controlling cell

death and the activation of T cells (Ho and Tsai, 2017).

To contrast the selection signatures of Ethiopian cattle living in

high altitudes with the ones living at low altitudes, we performed an

additional genomic scan based on the iHS in the three LA cattle

populations at the same threshold (p-value < 1.0E-6). We identified

only 20 candidate regions under selection (Figure 4B, Supplementary

Table S2). These regions vary in size from 150 kb to 650 kb. They

overlap with 50 protein-coding genes. Twenty-three (~45%) were

common with those identified in the HA populations. The common

genes include 14 genes, mostly uncharacterized, present in the top

10 iHS regions, except for the three GIMAP family members,

GIMAP 4, 5, and 7 genes. Among the remaining nine common

genes, VEGFC and EP300 are possibly linked to the adaptation to

high altitudes due to their functions in the vascular system (Herbert

and Stainier, 2012; Huerta-Sánchez et al., 2013; Bigham and Lee,

2014; Azad et al., 2017; Zheng et al., 2017). However, due to the fewer

candidate regions identified in the LA populations, we decided to

increase the iHS threshold to p value < 1.0E-7, equivalent to

-log10 iHS ≥ 5, which added 113 protein-coding genes, of which

63 were common in both HA and LA populations (Figure 4B,

Supplementary Table S2).

Comparative genomic signatures
between Ethiopian high- and low-altitude
cattle populations

We further investigate the genomic footprints of natural

selection in indigenous Ethiopian cattle by contrasting the

allele frequency profiles between the HA and LA populations

using the XP-CLR test. The top 0.5% XP-CLR scores (XP-CLR >
10) include 216 candidate windows of 100 kb size regions, from

which 251 protein-coding genes were annotated (Supplementary

Table S3). Unlike many uncharacterized genes within the iHS

regions, the top 10 signals identified by the XP-CLR test include

seven annotated genes (MSRB3, LEMD3, and WIF1 on BTA5,

SLC26A2, HMGXB3, and CSF1R on BTA7, and RXFP2 on

BTA12) (Figure 5). These are not found within the top high

altitude iHS signals. Some have functions that may be related to

high-altitude adaptation. For instance,MSRB3 is involved in cold

tolerance in Arabidopsis and high-altitude adaptation in Tibetan

FIGURE 3
The plot of population genetic admixture analysis. (A) Cattle population in the whole dataset and (B) Ethiopian cattle ancestry proportion.
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dogs and sheep (Kwon et al., 2007; Vaysse et al., 2011; Wei et al.,

2016; Witt and Huerta-Sánchez, 2019). This gene was also

reported to protect cells from oxidative stress caused by

hypoxia (Hansel et al., 2005) as well as from cold and heat

stress (Lim et al., 2012). RXFP2 was reported to control horn

type, development, and morphology (Pan et al., 2018; Ahbara

FIGURE 4
Manhattan plots of genome-wide scans based on the iHS test. (A) HA, high-altitude and (B) LA, low-altitude Ethiopian cattle populations.

FIGURE 5
Manhattan plot of genome-wide XP-CLR scores by contrasting the high- and low-altitude cattle populations.
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et al., 2019; Liu et al., 2020) and linked to high-altitude adaptation

to hypoxia in sheep (Guo et al., 2021).

There are 14 genes in common to both XP-CLR and iHS

(HA) tests, (CLCA4, CLCA1, CLCA2, ITPR2, ABCB10, NUP133,

GDA, GALNT13, ENSBTAG00000050002, COL14A1, AXDND1,

B3GLCT, SOAT1, and ENSBTAG00000034225) (Table 2;

Figure 7). These genes could be regarded as promising

candidates subjected to natural selection for high-altitude

adaptation in Ethiopian HA cattle. On the other hand, no

shared candidate gene was found between the LA iHS cattle

and the XP-CLR test.

Functional annotation of genes under
selection in Ethiopian high-altitude cattle
populations

We conducted a functional annotation using the DAVID

visualization tools, based on the Ensembl taurine cattle

assembly (ARS-UCD1.2, to identify GO terms and KEGG

pathways for the candidate genes that we detected in the

Ethiopian HA cattle populations following iHS and XP-CLR

analyses. Genes with fold enrichment >1.2 and p-value ≤
0.05 were considered to be significant (Table 3). Several top

candidate genes related to environmental stress such as

hypobaric hypoxia, temperature, and UV radiation were

clustered into important GO terms, including response to

hypoxia (GO:0001666; p-value: 9.3E-06), response to oxygen-

containing compound (GO:1901700; p-value: 1.0E-04), ion

channel activity (GO: 0005216; p-value: 4.8E-06), glucose

homeostasis (GO:0042593; p-value: 5.1E-03), and ATPase

activity (GO:0016887; p-value: 1.3E-03), which are biological

processes potentially relevant to high altitude adaptation. These

findings are in line with previous reports on cattle and other

species adapted to high altitudes (Remillard and Yuan, 2006;

Edwards et al., 2007; Shimoda and Polak, 2011; Ge et al., 2013;

Veith et al., 2016; Moore, 2017; Hu et al., 2019; Friedrich and

Wiener, 2020).

TABLE 2 List of overlapping regions and candidate genes identified using the iHS and XPCLR selection scan methods including, gene functions in
reported species.

BAT Region
start

Region
end

XPCLR
score

iHS
value

Gene
name

Gene
function/phenotype

Species References

2 42.25 42.45 10.99 6.28 GALNT13

3 17.55 17.6 11.54 6.15 ENSBTAG0 Novel gene/uncharacterized protein — —

0000050002

3 57.5 57.6 16.01 6.75 CLCA4 Rennin secretion, ion channel
activity

Palubiski et al. (2020); Weir and
Olschewski, (2006)

CLCA1 “ “

3 57.55 57.65 12.65 6.75 CLCA2 “ “

5 83.45 83.55 16.65 8.19 ITPR2 Response to hypoxia Human Huerta-Sánchez et al. (2013);
Jurkovicova et al. (2008); Manalo et al.
(2005); Qu et al. (2015)

8 48.4 48.5 43.83 6.23 GDA

12 29.6 29.7 11.17 6.31 B3GLCT Carbohydrate metabolic process,
protein glycosylation, horn
development, environment
adaptation

Cattle, sheep Ahbara et al. (2019); Flori et al. (2019);
Pan et al. (2018)

14 81.45 81.55 13.63 6.04 COL14A1 Protein binding, angiogenesis Mice, rats,
sheep, human

Chai et al. (2004); Copple et al. (2011);
Wiener et al. (2021); Zhang et al.
(2018)

16 60.65 60.75 12.94 7.05 SOAT1 Cholesterol metabolic process Insects, mice Guan et al. (2020); Miron and Tirosh,
(2019); Zuniga-Hertz and Patel,
(2019)

AXDND1 Response to bone fracture/bone
synthesis

human Pettersson-Kymmer et al. (2013)

28 14.5 15.5 18.81 6.94 NUP133 Regulate mitochondrial function
and oxidative stress response

Mouse Sunny et al. (2020)

ABCB10 ATPase-coupled transmembrane
transporter activity; regulates heme
synthesis; Iron metabolism; reactive
oxygen species

Mouse,
zebrafish,
human cell
culture

Bayeva et al. (2013); Liesa et al. (2012);
Seguin and Ward, (2018); Valverde
et al. (2015); Yamamoto et al. (2014)

ENSBTAG0 Basal transcription, coactivators,
and promotor recognition.0000034225
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Low atmospheric oxygen concentration in the inhaled air

causes low oxygen levels in the arterial blood reducing cellular

energy production, which leads to cellular stress and then induces

several factors to increase oxygen availability to cell mitochondria

for energy homeostasis. Physiological homeostasis is established

through increasing tissue oxygen supply by mounting vascular

smooth muscle tone to withstand fast blood flow pressure by

inducing the formation of additional blood vessels

(angiogenesis), increasing the number of erythrocytes, and

improving heme-binding affinity. Supporting these adaptive

mechanisms, we identified candidate genes in the biological

processes of erythrocyte homeostasis (GO:0034101; p-value:

1.0E-03), heme-binding (GO:0020037; p-value: 2.1E-02), and

the regulation of blood pressure (GO:0008217; p-value: 2.1E-

03) enhancement. The increases in erythrocyte, hemoglobin

concentration, and heme-binding affinity enable more oxygen

transportation to tissues in hypoxia-adapted animals (Storz,

2007; Zhang et al., 2007; Storz and Moriyama, 2008; Storz

et al., 2010; Yalcin and Cabrales, 2012; Storz, 2016).

Identification of candidate genes
associated with high-altitude adaptation

We further analyzed the candidate genes clustered into

biological processes relevant to high altitude adaptation

(Table 3) using the population branch statistics (PBS). We

compared Semien cattle from the highest Ethiopian

mountain area to each of the LA cattle populations (Afar,

Boran, and Ogaden) using Butana cattle from the Sudanese

arid region as an outgroup (see Materials and methods). The

10 kb window outliers from the PBS analysis represent the

most differentiated genomic regions (PBS value ≥ 0.2). They

overlap with SLC26A2, CLCA1, CLCA2, KCNJ8, GUCY1A2,

and CBFA2T3 (Figure 6, Supplementary Table S4). These

genes have possible roles in ion channel activity, renin

secretion, response to hypoxia, response to oxygen-

containing compounds, and heme-binding (Table 3). The

genomic region within the SLC26A2 gene was the most

differentiated in the PBS scans (Figure 6). SLC26A2 is a

ubiquitously expressed SO42− transporter with high

expression levels in cartilage and several epithelia (Ohana

et al., 2012; Park et al., 2014). This gene is involved in body

size and male fertility in humans (Kujala et al., 2007; Touré,

2019), and its mutations have been implicated in dwarfism

(Yang and Liang, 2021) and dysplasia (Pineda et al., 2013;

Zheng et al., 2019; Heidari et al., 2021).

In addition, CLCA2 and two other paralogs, CLCA1 and

CLCA4, and ITPR2 were the only four candidate genes detected

by the three genomic scans (Figure 7, Supplementary Table S5).

Moreover, the variants within the CLCA2 in the HA

populations showed a higher level of linkage disequilibrium

(LD) compared to the LA populations (Figure 8). Similarly, the

nucleotide diversity and population differentiation plot show

the CLCA2 gene region with significant variation compared to

regions of the two paralog genes (Figure 9). Therefore, we

considered CLCA2, ITPR2, SCL26A2, and CBFA2T3 as strong

candidate genes putatively linked to high-altitude adaptation in

Ethiopian cattle.

Other genes of interest include GO terms linked to the

response to hypoxia (Table 3). These include MB (BTA5:

73.81–73.82 Mb), CBFA2T3 (BTA18: 14.05–14.1 Mb), and

SRF (BTA23: 16.77–16.78 Mb) from XP-CLR scans results,

ARNT (BTA3: 19.8–19.9 Mb) and VEGFC (BTA27:

8.0–8.1 Mb) from iHS scans results, and ITPR2 from both

XP-CLR and iHS scan results. ARNT is involved in the

positive regulation of vascular endothelial growth factor

(VEGF) activation. VEGFC, a VEGF homolog, is involved in

regulating endothelial cell proliferation and angiogenesis in

response to the low oxygen concentration in the arterial

TABLE 3 Gene ontology (GO) clustering and enrichment analyses of candidate genes identified by genome-wide iHS and XP-CLR scans in the high-
altitude cattle populations.

GO term Count p
value

Fold
change

Gene

GO: 0005216~ion channel activity 15 4.8E-06 4.5 ITPR2, KCNJ8, GPR89A, TRPM3, CLCA1, NOX5, GRIK3, CACNG2, SLC26A, CLCA4,
GABRB2, ABCC9, KCNQ3, CLCA2, TPC3

GO: 0001666~response to hypoxia 7 9.3E-04 6.1 ITPR2, MB, CBFA2T3, SRF, VEGFC, HMOX1, ARNT

GO: 0034101~erythrocyte homeostasis 6 1.0E-03 7.7 MAFB, MB, FOXO3, SRF, HMOX1, ARID4A

bta04924: Renin secretion 6 2.9E-04 9.9 ITPR2, CLCA1, PRKACB, CLCA4, CLCA2, GUCY1A2

GO: 1901700~response to oxygen-
containing compound

19 1.0E-04 2.8 DUSP10, ITPR2, KCNJ8, IMPACT, NDUFS4, SESN3, AVPR1A, STAT1, PDX1, PTK7,
SLC11A1, ADH5, EFNA5, SSTR2, NOX4, HRH4, CRY2, ENPP1, MZB1

GO: 0008217~regulation of blood pressure 6 2.1E-03 6.6 AVPR1A, POMC, GRIP2, ERAP1, ADH5, MYH6

GO: 0020037~heme binding 5 2.1E-02 4.7 MB, HMOX1, CYP4F2, GUCY1A2, ENSBTAG00000048257

GO: 0016887~ATPase activity 8 1.3E-02 3.1 ABCB10, ATP6V0A1, YTHDC2, MYO10, ABCC9, ATP6V1G1, MYH7, MYH6

GO: 0042593~glucose homeostasis 6 5.1E-03 5.3 SESN3, POMC, PDX1, FOXO3, CRY2, NOX4
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blood (Kumar et al., 2011; Herbert and Stainier, 2012;

Ramakrishnan et al., 2014).

ARNT also enhances endothelial cell growth in the

vascular line and it is expressed during the early phase of

the growth of new blood vessels (angiogenesis) (Scheinfeldt

et al., 2012; Geng et al., 2014; Graham and Presnell, 2017).

Protein-protein interaction network analysis shows that

ARNT interacts with hypoxia-inducible factors such as

HIF1a, EPAS1, EP300, and its paralog CREBBP

(Figure 10). CBFA2T3 is clustered in response to hypoxia

and functions as a transcription regulator of HIF1a through

interaction with EGLN1 and promoting the HIF1a prolyl

hydroxylation-dependent ubiquitination and proteasomal

degradation pathways (Kumar et al., 2015). It also

contributes to the inhibition of glycolysis and the

stimulation of mitochondrial respiration by down-

regulating the expression of glycolytic genes as direct

targets of HIF1a (Kumar et al., 2013).

Discussion

This study aimed to unravel at the autosomal genome level

the adaptation of Ethiopian indigenous cattle to the extreme

environmental conditions of its mountainous areas. We studied

specifically three cattle populations of Semien, Bale, and Choke

living in a mountainous area of more than 3,000 masl by

contrasting them with the indigenous cattle population from

the Ethiopian lowlands. Population genetic structure validated

the African zebu admixture of indicine and taurine status of all

the studied indigenous Ethiopian cattle (Figure 1), while the PCA

result shows some level of genetic differentiation between the

high-altitude Ethiopian cattle populations from those originating

from the low altitude locations (Figure 2B). We then applied the

iHS, XP-CLR, and PBS methods to detect selection signatures

within and between the Ethiopian cattle populations living at

FIGURE 6
The distribution of the population branch statistic (PBS) values in 10 kb genomic regions as a function of the number of SNPs.

FIGURE 7
Candidate genes supported by the iHS, XP-CLR, and PBS
analyse in high-altitude (HA) and low-altitude (LA) cattle
populations.
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FIGURE 8
LD block heatmap of the candidate genes of CLCA2 (A) and SLC26A2 (B) in the high-altitude (1) and low-altitude (2) cattle populations.

FIGURE 9
Plots of the nucleotide diversity within and FST values between the genomic regions of CLCA2 (A) and SCL26A2 (B) in high-altitude (HA) and
low-altitude (LA) cattle populations.
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high and low altitudes. Finally, additional comparisons of the

candidate genomic regions between the high- and low-altitude

cattle populations were carried out based on their nucleotide

diversity, population differentiation, and haplotype LD heatmap

differences for a detailed exploration of the high altitude

adaptation.

Novel candidate gene identified in this
study

We identified three novel strong candidate genes (CLCA2,

SLC26A2, and CBFA2T3) (Figure 6) for high altitude

adaptation along with the previously reported ITPR2 gene.

The functional analysis clustered the candidate genes into

ion channel activity (CLCA2, SLC26A2, and ITPR2),

response to hypoxia (ITPR2 and CBFA2T3), and renin

secretion KEGG pathway (CLCA2) (Table 3). The renin

pathway and ion channel activity regulate smooth muscle

tone and epithelial secretion in response to hypoxia (Al-

Hashem et al., 2012; Palubiski et al., 2020) by controlling

arterial blood flow pressure (Shimoda and Polak, 2011).

Hypoxia induces the expression of CLCA2 in the pulmonary

artery smooth muscle of rats and controls cell proliferation and

apoptosis in the ERK1/2-MAPK signaling pathway (Huang

et al., 2017; Zhao et al., 2017). Similarly, the renin secretion

pathways maintain the amount of plasma renin and aldosterone

concentration by modulating the normal relationship between

plasma osmolality and plasma vasopressin concentration in

humans (Bestle et al., 2002; Savoia et al., 2011). The renin-

angiotensin and vasopressin function is stimulated by increased

blood pressure caused by vesicular smooth muscle tone

(Chassagne et al., 2000) to regulate high blood flow to

balance cellular oxygen demand.

SLC26A2 showed the highest PBS value in the high-

altitude cattle populations (Figure 6). The haplotype LD

heatmap, nucleotide diversity, and population

differentiation index all supporting positive selection at

the genome region overlapping with the gene (Figures 8,

9). The function of this gene is related to ion transport, and it

plays a role in chondrocyte proliferation, differentiation, and

growth in endochondral bone formation (Park et al., 2014).

In humans, it regulates body size, and its recessive allele

contributes to the dwarfism phenotype (Yang and Liang,

2021) and dysplasia (Pineda et al., 2013; Zheng et al., 2019;

Heidari et al., 2021). A previous study reported a dominant

allele at SLC26A2 linked to higher heels and stronger claws in

dairy cattle, while mutation at the gene causes dysplasia

(Brenig et al., 2003). Considering the rugged and rocky

terrain of the Ethiopian highlands, strong claws and high

heels may prove advantageous. Further phenotypic

characterization of the Ethiopian highland cattle may

support this interpretation. The short stature and small

body size of cattle observed in the Ethiopian high-altitude

cattle confer the evidence. Though confirmatory analysis is

required to differentiate the nature of short stature and small

body size for HA adaptation in Ethiopian cattle, it could be a

possible mechanism of the cold and high-altitude adaptation

as it was reported in humans adapted to high altitude (Ma

et al., 2019).

Candidate convergent genome evolution
between cattle and humans living in the
Ethiopian highlands

The human population in Ethiopia occupied the high

altitudes thousands of years ago, expanding from the lower

Rift Valley in the early Pleistocene age (Aldenderfer, 2006).

Archaeological evidence suggests that humans inhabited Bale

Mountain approximately 50–30 thousand years ago (Ossendorf

et al., 2019). Today, the human communities occupying the

high altitude areas where the cattle samples were collected are

the Oromo (Bale Mountain) and the Amhara (Semien and

Choke mountains). The beginning of the settlement of the

Amhara to these high-altitude regions is thought to have

started around 5,000 years (Alkorta-Aranburu et al., 2012),

FIGURE 10
Protein-protein network of ARNT. The genes show several
protein interaction networks interacting with hypoxia induced
factors (HIF1a, EPAS1, CREBBP, and EP300).
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while the settlement of the Oromo people was since early 1500s

as reported by Hassen (1990) (cited in Alkorta-Aranburu et al.,

2012; Huerta-Sánchez et al., 2013). The settlers in these

territories were agrarian and had close interaction with their

animals as sources of food and means of food production. Both

humans and cattle living in the Ethiopian high altitudes share

similar environmental challenges. Humans and ruminants

living at high altitudes can be exposed to extended hypoxia

stress and develop high-altitude sicknesses that may lead to

high-altitude pulmonary hypertension (Friedrich and Wiener,

2020). For example, reports have indicated that cattle exposed

to high altitudes may develop brisket disease caused by hypoxia

(Newman et al., 2011; Wuletaw et al., 2011). Besides hypoxia,

UV light and cold temperatures have been reported as major

risk factors that challenge the survival of humans and other

species in high altitude environments. Through a long-term

evolutionary process, these risk factors may have induced

positive selection pressures for physiological and

morphological features that contribute to the evolutionary

adaptation to high altitude environments (Witt and Huerta-

Sánchez, 2019). Candidate genes detected in Ethiopian people

living at high altitudes (Huerta-Sánchez et al., 2013), including

ITPR2, ARNT, EP300, MB, and HMOX1, were also detected in

Ethiopian cattle living in similar environments, supporting a

convergent evolution between these two mammalian species.

Previous studies on the Ethiopian human population adapted

to high altitudes have reported the ITPR2 gene (Huerta-Sánchez

et al., 2013) as a candidate gene. The ITPR2 is also one of the

candidate genes detected in HA cattle populations. It regulates

vascular endothelial cells and intracellular calcium ion channel

activity (Manalo et al., 2005; Jurkovicova et al., 2008). Following

hypoxia, the cardiovascular system will increase blood flow by

increasing pressure through vasoconstriction, increased heart

rate, and myocardial contractility (Parati et al., 2015). These

adaptive physiological mechanisms will enhance the supply of

blood oxygen to tissues. ITPR2 increases intracellular calcium

concentration in vascular smooth muscle and it controls

vasoconstriction avoiding pulmonary hypertension (Remillard

and Yuan, 2006; Newman et al., 2011; Lai et al., 2015). ITPR2, as

part of the calcium gated channel activities, also enhances

endothelial cell proliferation lining and it triggers the

vasculature and remodeling of the arterial tone to control the

high blood pressure following hypoxic exposure (Makino et al.,

2011; Hübner et al., 2015).

High altitude adaptation also depends on the concentration

of hemoglobin in red blood cells and its affinity to oxygen in

tissues (Alkorta-Aranburu et al., 2012). Also, increasing the

number of erythrocytes will lead to higher hemoglobin

concentration at the tissue level (Siebenmann et al., 2015).

The candidate MB gene (Table 3) has been reported to play a

role in increasing the hemoglobin concentration in muscle

(Fraser et al., 2006; Jaspers et al., 2014) and increasing oxygen

storage and binding affinity in hypoxic conditions (Hoppeler and

Vogt, 2001; Li et al., 2018). This myoglobin gene was also

reported under selection in the Ethiopian and Tibetan human

populations living in highlands (Beall et al., 2002; Moore et al.,

2002; Alkorta-Aranburu et al., 2012; Scheinfeldt et al., 2012). The

gene is involved in erythrocyte homeostasis and regulates the

level of hemoglobin (Avivi et al., 2010) in response to high

altitude adaptation.

Selection signatures overlap between
Ethiopia cattle and other species adapted
to high altitudes

Several studies have reported candidate positive selection

signatures for high-altitude adaptation in different species. Here,

besides the overlap with human candidate selected regions, we

identified several candidate regions which aligned with genes

reported under selection in other species adapted to high altitudes.

They includeMSRB3with the highest XP-CLR score in our study and

MC1R previously reported under selection in Ethiopian highland

sheep (Edea et al., 2019). The MSRB3 gene was also reported in

Tibetan dogs and sheep (Vaysse et al., 2011;Wei et al., 2016;Witt and

Huerta-Sánchez, 2019). It has a pleiotropic effect in being involved in

the ossification and adipose tissue development in cattle (Saatchi et al.,

2014). It has also been linked to ear size in Tibetan sheep (Wei et al.,

2016), pigs (Zhang et al., 2015), and dogs (Vaysse et al., 2011). The

MSRB3 gene also protects cells from oxidative stress caused in

mammals by hypoxia (Hansel et al., 2005), while it is linked to

cold and heat tolerance in Drosophila (Lim et al., 2012) and cold

tolerance in Arabidopsis (Kwon et al., 2007). Cold temperature is one

of the environmental stressors that trigger animal cells to transduce

energy to adapt to cold temperatures.

Last but not least, among the genes present within candidate

genomic regions detected by both XP-CLR and iHS analyses, we do

have ABCB10 (Table 3). This gene was previously reported in

candidate selected regions in humans, and several other species,

including cattle (Bayeva et al., 2013; Martinez et al., 2020). Its

function is related to iron metabolism and heme biosynthesis

(Haase, 2010; Shah et al., 2013; Yamamoto et al., 2014; Seguin and

Ward, 2018).ABCB10 is also involved in the transport of heme out of

the mitochondria, before hemoglobinization of erythropoietic cells

(Liesa et al., 2012; Bayeva et al., 2013).

Conclusion

Despite the particularly challenging environmental conditions of

the high-altitude Ethiopian highlands and the relatively recent arrival

of African indicine cattle in these areas, we identified several genomic

regions with evidence of positive selection for high-altitude

environment adaptations at the autosomal level. These include

genes previously reported in other mammalian species, including

humans, living in high altitude areas in Ethiopia or other parts of the
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world, as well as in Ethiopian-specific cattle genomic regions. Our

results show that these indigenous livestock populations are locally

adapted, and they have developed a physiological mechanism to cope

with the environmental challenges of hypoxia, UV radiation, and cold

temperature. It calls for the conservation of these indigenous cattle

adaptations as well as for their utilization in breeding programs

combining the improvement of productivity with adaptability.
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