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Breast cancer is a heterogeneous disease whose subtypes represent

different histological origins, prognoses, and therapeutic sensitivity. But

there remains a strong need for more specific biomarkers and broader

alternatives for personalized treatment. Our study classified breast cancer

samples from The Cancer Genome Atlas (TCGA) into three groups based on

glycosylation-associated genes and then identified differentially expressed

genes under different glycosylation patterns to construct a prognostic

model. The final prognostic model containing 23 key molecules achieved

exciting performance both in the TCGA training set and testing set

GSE42568 and GSE58812. The risk score also showed a significant

difference in predicting overall clinical survival and immune infiltration

analysis. This work helped us to understand the heterogeneity of breast

cancer from another perspective and indicated that the identification of risk

scores based on glycosylation patterns has potential clinical implications

and immune-related value for breast cancer.
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Introduction

Breast cancer has reached the highest incidence in women’s cancer types, and its

lethality has reached second place, followed by lung cancer (Sung et al., 2021). As a

heterogeneous disease, breast cancer’s multiple subtypes represent different histological

origins, prognoses, and therapeutic sensitivity (Perou et al., 2000; Cancer Genome Atlas

Network, 2012; Curtis et al., 2012; Marusyk et al., 2012). The pathological markers

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor

2 (HER2) stratified patients with various treatment selecting, such as hormonal therapy
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(e.g., Tamoxifen) and HER2-targeted therapy (e.g.,

Trastuzumab) (Goldhirsch et al., 2013). Of note, HER2 is

characterized by poor prognosis and has multiple sites of

N-glycosylation, whose presence is linked with function

(Peiris et al., 2017). Subsequently, intrinsic molecular

subtyping based on expression profile highlights the intricate

complexity of this cancer type and the importance of genomic/

transcriptomic analyses for prognostic prediction.

PAM50 utilizes a 50 genes system that classifies breast cancer

into luminal A, luminal B, HER2-enriched, and basal-like

subtype that involves not only diverse biological processes but

also has prognostic significance (Prat et al., 2012; Prat et al.,

2015). The highly heterogeneous of breast cancer requires a

strong need for more specific biomarkers and broader

alternatives for personalized treatment. Meanwhile, efforts to

classify established histological subtypes have been carried out,

which identified at least four distinct subtypes of ER-negative and

six triple-negative subtypes (Teschendorff et al., 2007; Lehmann

et al., 2011). According to recent reports, researchers are seeking

a multi-angle classification approach to identify diversified

functional clustering and signatures, such as glycolysis (Zhang

et al., 2020a; Jiang et al., 2021), autophagy (Zhang et al., 2020b;

Jiang et al., 2022), ferroptosis (Wang et al., 2021), stemness (Li

et al., 2020), and immune microenvironment (Shen et al., 2020).

All these attempts allow us to make more defined and precise

characterizations based on new parameters to drive the

heterogeneity landscape of breast cancer and put forward new

ideas in prognostic prediction and treatment in the future.

Glycosylation is defined as a biosynthetic enzymatic

process characterized by the covalent attachment of single

sugar or glycans to a wide range of target proteins (Pinho and

Reis, 2015; Eichler, 2019). As a post-translational

modification, they play an essential role in almost all

aspects of the life processes of cells, such as cell cycle,

proliferation, and aging (Mallard and Tiralongo, 2017;

Gudelj et al., 2018; Gao et al., 2021). The glycosylation

pattern is profoundly altered during tumorigenesis. Among

them, O-glycan truncation, sialylation, fucosylation, and

N-glycan branching are common types of glycosylation in

cancer (Drake et al., 2015; Kölbl et al., 2015; Kudelka et al.,

2015; Taniguchi and Kizuka, 2015), leading to the occurrence

of malignant phenotypes such as cell adhesion, metastasis,

epithelial–mesenchymal transitioning, and even the shifting

of the tumor microenvironment (Günthert et al., 1991;

Rabinovich and Toscano, 2009; Pinho et al., 2011; Paredes

et al., 2012; Pinho et al., 2013). Researchers have also

identified glycosylation-related molecules as biomarkers for

cancer diagnosis and prognostics evaluation. For instance,

prostate-specific antigen (PSA) in prostate cancer (Gilgunn

et al., 2013), carcinoma antigen 125 (CA125/MUC16) in

ovarian cancer (Zurawski et al., 1988), CA19-9 and

carcinoembryonic antigen (CEA) in colon cancer

(Goldstein and Mitchell, 2005), and aberrantly glycosylated

MUC1 (also known as CA15-3) in breast cancer

(Kumpulainen et al., 2002). More recent studies have

mapped the histopathological orientation and tissue

distribution of N-linked glycans in clinical breast cancer

tissues (Scott et al., 2019a; Scott et al., 2019b), which

deepen the understanding of the heterogeneity of breast

cancer from the perspective of glycosylation.

Our study classified breast cancer samples from The Cancer

Genome Atlas (TCGA) into three groups based on glycosylation-

associated genes and then identified differentially expressed

genes under different glycosylation patterns to construct a

prognostic model. Finally, a model containing 23 risk

signatures was built and performed favorable predicting

efficacy in training and testing cohorts, and the evaluation of

immune infiltration and immunotherapy response were analyzed

as well.

Results

Classification of BRCA based on the
glycosylation-related gene sets

Figure 1 shows the workflow of our study. The TCGA

column of Table 1. We classified TCGA-BRCA samples (n =

1,104) based on 179 glycosylation-related genes (GRGs)

performed by consensus clustering analysis. Related

clustering parameters are shown in Figures 2A–C,

Supplementary Figure S1A, and Supplementary Figure S2A.

Considering the complexity of grouping and the feasibility of

subsequent analysis, we choose the optimal grouping when k =

3. Thus, we obtain three glycosylation-based clusters. We used

t-SNE (Figure 2D) and PCA (Supplementary Figure S2B)

dimensional reduction methods to observe that the samples

had favorable overall differences under this grouping. Cluster

3 exhibited shorter overall survival (OS), indicating a poorer

prognosis compared with clusters 1 and 2. (p < 0.05)

(Figure 2E). In brief, this grouping method based on

intracellular glycosylation status has specific differences in

breast cancer samples and has substantial clinical value.

Screening of differentially expressed
genes

We classified BRCA tumor samples into three clusters based

on glycosylation patterns. Next, we screened the DEGs of these

three clusters using the “Deseq2” R package. Supplementary

Figures S2C–E show the PCA map and DEGs heatmap

between the three clusters. Figure 4 shows the differential

analysis volcano plot of group 1 to group 2 (Figure 4A),

group 2 to group 3 (Figure 4B), and group 1 to group 3

(Figure 4C). We made a Venn diagram for the three groups
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of differential genes to show their overlap (Figure 4D). The genes

contained in each unit are shown in Supplementary Table S1, and

the genes that show differences under one grouping are included

in the next analysis. Finally, 1915 DEGs (Supplementary Table

S1) were obtained and used to construct a prognostic risk-scoring

model.

Immune characteristics of glycosylation-
related groups

To explore the correlation between glycosylation patterns

and immune characteristics, we analyzed the immune correlates

of the three clusters. Figures 3B and C show significant

differences in the immune score, stomal score, and immune

cell infiltration. Cluster 3 demonstrated the lowest immune and

stomal score and the poorest immune cell infiltration. Cluster

2 had the highest immune score and modest stomal score, and

the immune cell infiltration was also the most abundant. Cluster

1 had the mediocre immune score and highest stomal score, and

the immune cell infiltration was modest.

Construction and efficacy of risk-scoring
model

To further construct a prognostic risk-scoring model without

redundant genes, we used lasso regression to narrow down the

range of candidate genes. According to mean-square error

(Figure 4E) and coefficients (Figure 4F), we opted for the

former λ as it results in a better prediction efficiency than the

latter λ. Then, we fitted a multivariate Cox proportional hazard

model to develop more valuable integrated molecules in the

training set. Patients’ age, stage, and 23 genes were included in

this model, with a concordance index of 0.87 (Log-rank P: 4.48e-

43) (Figure 5A). Figure 5B arranged the sample from low to high

according to the risk score. The proportion of deaths increased as

risk scores rose. The 23 key molecule expression is also shown at

FIGURE 1
Workflow of our study design.
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the bottom. Its area under the ROC curve (AUC) in 1, 3, and

5 years prior to death was 0.89, 0.90, and 0.89, respectively

(Figure 5C). Kaplan–Meier (KM) analysis showed a significant

difference in overall survival (p < 0.0001) (Figure 5D).

Validating of risk-scoring model
predicting efficacy

We choose two breast cancer cohorts from GEO to validate

the efficacy of this protistic model. The GSE42582 column of

Table 1. In GSE42568 cohort, AUC in 1, 3, and 5 years prior to

death was 0.73, 0.82, and 0.88, respectively (Figure 6A), and

KM analysis presents a significant difference (p < 0.0001)

(Figure 6B). The GSE58812 column of Table 1. In

GSE58812 cohort, AUC in 1, 3, and 5 years prior to death

was 0.95, 0.77, and 0.79, respectively (Figure 6C), and KM

analysis presents a significant difference (p = 6e-04)

(Figure 6D).

Risk score related immune infiltration and
immunotherapy evaluation

We calculated a risk score for each sample according to the

expression levels and regression coefficients and divided the

BRCA cohort into low- and high-risk groups by median. To

better investigate the interactions between the risk score and the

immune microenvironment, we performed the ESTIMATE

algorithm and ssGSEA to evaluate the correlation between the

prognostic model and immune infiltrating in BRCA patients.

Supplementary figure S3A shows PCA clustering of immune

FIGURE 2
Consensus clustering classification of BRCA based on glycosylation-associated genes. (A)Optimal cluster distinction by consensus matrix (k =
3). (B) Empirical cumulative distribution function (CDF) plot displayed consensus distributions for each k. (C) Delta area plot. (D) T-SNE clustering of
sample distributions based on glycosylation-related genes. (E) KM survival analysis of three glycosylation-based groups.
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signatures. The low-risk group demonstrates a higher immune

score but no difference in the stomal score (Supplementary figure

S3B). In terms of immune cell infiltration (Figures 7B, 8C), the

risk score was slightly negatively correlated with immune cell

level. The low-risk group represents a more significant fraction of

activated B cells, eosinophils, mast cells, activated CD8+ T cells,

natural killer cells, and effector memory CD8+ T cells but no

difference in neutrophils, T follicular helper T cells, type 2 T

helper cells, and type 17 T helper cells. Then, we used TIDE, an

online tool, to evaluate immune checkpoint blockade (ICB)

response for our screened signatures based on the TCGA and

PRECOG cohorts. According to Figure 9, the gene set we input

obtained almost equivalent area under the curve (AUC) as other

predicting scores, especially CD274, CD8, IFNG, and Merck 18.

23 Gene signatures investigation

We further investigated the correlation between 23 gene

signatures and immune cell infiltration. Compared with the

low-risk group, the high-risk group harbors a low level of

SPPL2C, IGKV2D-24, IGLC2, QRFPR, LINC01871, FABP7,

AP000851.2, CLIC6, ILOVL2, FYB2, CDHR4, GNG4, TBR1,

AC015910.1, and UPK1B and a high level of PXDNL.

(Figure 7A). LINC01871, IGLC2, IGKV2D-24, MLIP,

LINC01235, and AP000851.2 positively correlated with

immune cell infiltration, and GNG4, PXDNL, KCNK3,

ELOVL2, FYB2, SPPL2C, CLIC6 negatively correlated with

immune cell levels. The main types of immune cells with

different infiltrating were activated CD4+ T cells, activated

FIGURE 3
Differences in immune characteristics of glycosylation-based groups. (A) PCA clustering of sample distributions in immune signatures between
three glycosylation-based groups. (B) Stomal score and the immune score of glycosylation-based groups (ESTIMATE algorithm). (C) Differences in
24 TME infiltration cells between glycosylation-based groups (ssGSEA) (****p < 0.0001).
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CD4+ T cells, natural killer T cells, activated B cells, activated

dendritic cells, and MDSC. (Figure 8A). In addition,

LINC01871 and IGLC2 positively correlated with immune

checkpoint molecules such as PD-1, PDL1, CTLA4, TIGIT,

LAG3, and BTLA and negatively correlated with HAVCR2.

FYB2, SPPL2C, ELOVL2, CLIC6, IGKV2D-24, L1CAM, and

AP000851.2 (Figure 8B).

Materials and methods

Data collection

The Breast Cancer (BRCA) data from The Cancer Genome

Atlas Program (TCGA) was accessed viaUCSC Xena (http://xena.

ucsc.edu/). A total of 179 genes encoding glycosylation enzymes,

targets, and regulators were obtained from previous literature

(Krushkal et al., 2017) and are listed in Supplementary Table S1.

Consensus clustering analysis based on
glycosylation-related genes

BRCA samples from TCGA were grouped into three

clusters using the “ConsensusClusterPlus” (version1.60.0) R

package (Wilkerson and Hayes, 2010) based on glycosylation-

related genes (GRGs) (maxK = 4, innerLinkage = “complete”).

“Fpkm” format was used for clustering analysis and “count”

for difference analysis. Principal component analysis (PCA)

and t-SNE were applied to assess sample clustering using the

“FactoMineR” (version2.4) and Rtsne (version0.16) packages.

“DESeq2” (version1.36.0) R package was used for screen

FIGURE 4
Construction of lasso regression model. Volcano plot of differentially expressed genes between cluster 1 vs. cluster 2 (A), cluster 2 vs. cluster
3 (B), and cluster 1 vs. cluster 3 (C) in BRCA. (D). Venn diagram of differentially expressed genes between glycosylation-based groups. (E). Cross-
validation plot for the penalty term λ based on differentially expressed genes. Vertical bars represent acceptable maximum and minimum λ values
with corresponding mean-squared error and the number of covariates. (F) Plots for lasso regression coefficients over different values of the
penalty parameter λ.
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differentially expressed genes (DEGs) between different

clusters (|logFC| > 2, FDR <0.05).

The prognostic risk-scoring model
constructed through GRGs-based clusters

First, the most minor absolute shrinkage and selection operator

(LASSO) removed redundant genes achieved using the “glmnet”

(version 4.1-4) R package. Ten-fold cross-validation was used to

select the penalty term, λ. The mean-squared error was computed

for the test data to measure the fitted models’ predictive

performance. Then, 38 genes (Supplementary Table S1) were

obtained for prognostic Cox regression construction using the

“My.stepwise” (version 0.1.0) package to establish the optimal

model. Finally, the 23 retained genes were used for calculating

risk scores according to the following formula:

Risk Score � ∑
n

i�0(Coef ipxi), (1)

where Coef i is the coefficient, and xi is the z-score-transformed

relative expression value of each selected gene. The time-

dependent receiver operating characteristic (ROC) curve

evaluated each model’s sensitivity and specificity. The

“survival” (version 3.3-1) R package was used, and the

Kaplan–Meier (KM) overall survival curves between different

clusters and risks were performed using the “survival” R

package.

FIGURE 5
Construction of multivariate Cox regression. (A)Multivariate Cox proportional hazardmodel based on lasso de redundant gene set in the TCGA
training set. (B) Proportion of deaths in the training set in high- and low-risk groups as risk score values increased. Top: red, high-risk; blue, low-risk.
Middle: red, death; blue, alive. Bottom: hierarchical clustering of 14 key molecules between low- and high-risk groups. (C) COX risk score’s time-
dependent ROC curves for 1, 3, and 5 years before death in the TCGA training set. In the training set, (D) Kaplan–Meier survival analyses for COX
low- and high-risk groups. (p < 0.0001, log-rank test).
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Immune infiltrates analysis

The single-sample gene-set enrichment analysis (ssGSEA)

was used to establish the relative abundance of 24 cell infiltration,

which was analyzed using the “GSVA” (version 1.44.2) package.

The ESTIMATE algorithm calculated stomal scores and immune

scores of high- versus low-risk groups and different GRGs-based

clusters. Immune checkpoint blockade (ICB) predicting

evaluation performed by biomarker evaluation module from

TIDE (Tumor Immune Dysfunction and Exclusion:

harvard.edu)">http://tide.dfci.harvard.edu/) (harvard.edu)), a

computational method to model tumor immune evasion and

ICB response and resistance regulators.

Hub-genes analysis

Immune Infiltrates differences of prognostic hub-genes were

performed using ssGSEA, as mentioned earlier. Checkpoints

correlation was analyzed using the ‘Hmisc’ (version 4.7-0) package.

All the statistical significance sets as p < 0.05 with two-side. Data

processing and visualization were performed using R version 4.1.2.

FIGURE 6
Predicting the efficacy of constructed multivariate Cox regression in the testing set. (A) COX risk score’s time-dependent ROC curves for 1, 3,
and 5 years before death in testing cohort GSE42568. (B) Kaplan–Meier survival analyses for COX low- and high-risk groups in testing cohort
GSE42568 (p < 0.0001, log-rank test). (C)COX risk score’s time-dependent ROC curves for 1, 3, and 5 years before death in testing cohort GSE58812.
(D) Kaplan–Meier survival analyses for COX low- and high-risk groups in testing cohort GSE58812. (p < 0.0001, log-rank test).
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Discussion

The role of glycocalyx–the extracellular carbohydrate coat, has

been proposed in breast cancer occurrence and development since

the 1950s (Aub et al., 1963). Then, it was noteworthy that plant

lectin and carbohydrate motif binding proteins showed a higher

affinity for malignant cells than normal cells in the 1960s (Remmele

et al., 1986). By the 1980s, biochemists found that the enzyme-linked

lectin binding assay could be used to predict tumor differentiation

and therapeutic reactivity (Parodi et al., 1982). Shortly afterward, it

was widely accepted that glycosylation status alteration could be

used as biomarkers for breast cancer prognosis and tumor burden

(Springer, 1997; Lin et al., 2002; Duffy et al., 2010). Given the

heterogeneity of breast cancer, more recent studies havemapped the

histopathological orientation and tissue distribution of glycosylated

modifications in clinical breast cancer samples. So far, the

influentially changed landscape of glycosylation processes in

breast cancer is vividly portrayed.

We obtained a set of glycosylation-related genes containing

181 molecules from previous pieces of literature, including

glycosylation pathways, genes encoding glycosylation targets or

regulators, and members of cancer pathways affected by

glycosylation (Supplementary Table S1) (Krushkal et al., 2017).

In our study, TCGA-BRCA tumor samples were divided into three

groups.We can consider three different glycosylated states based on

these glycosylation-related genes by using consensus clustering

analysis. There were significant differences in the expression

patterns of glycosylated genes between them, and the survival

FIGURE 7
Immune characteristics in high- and low-risk groups. (A) Risk signatures expression in high- and low-risk groups. (B) Differences in 24 TME
infiltration cells between high- and low-risk groups (ssGSEA) (*p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001).
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analysis also reflected the difference in survival time under different

glycosylated states (Figures 2D and E). It is well-documented that an

altered “glycan coat” is a distinct hallmark of cancer.

Given that immune cells express a large variety of lectin (glycan-

binding receptors), they recognize glycans on the tumor cell. Those

immune cells can sense and respond to changes in the glycan

signature of their environment. This often leads to tumor immune

escape and immunomodulation. Therefore, the glycosylation-

related signatures could affect tumor-immune cells’ connections

within the tumor microenvironment (Rodríguez et al., 2018; Lopes

et al., 2021). In addition, a variety of recruited stomal

components–transformed parenchyma and the associated

stroma–are involved in tumor progression and response to

treatment (Arneth, 2019; Hanahan, 2022). We further analyzed

the immune characteristics of glycosylation-based groups.

According to our results, group 3 demonstrated the lowest

immune and stomal score and the poorest immune cell

infiltration; group 2 had the highest immune score and modest

stomal score, and the immune cell infiltration was also the most

abundant. This indicates that group 2 tends to the glycosylation

pattern of immune cells, group 1 of stromal cells, and group 3 of

malignant cells (Figures 3A–C). In combination with the survival

analysis of Figure 2E, we were surprised to find that in terms of

glycosylation pattern, the glycosylation mode of tumor cells and

FIGURE 8
Immune infiltration status of prognostic signature. (A) Risk genes level in high- and low-risk groups. (B) Correlation between risk genes and
checkpoint molecule expression. (C) Correlation between riskscore and immune infiltration.
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immune cells did not show any difference in patient survival, while

the glycosylation of stromal cells may have a significant impact on

patients’ survival. In future explorations of tumor

microenvironment glycosylation, focusing on stromal cells may

be a more effective research direction. These results prove that

the classification based on glycosylation is meaningful and effective,

FIGURE 9
Biomarker evaluation from TIDE (Tumor Immune Dysfunction and Exclusion).
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which helps us to understand the heterogeneity of breast cancer

from another perspective. However, at present, the classification

samples are limited. Increasing the sample size will help formulate a

more stable grouping method and hopefully be applied to clinical

prognosis and prediction.

The change of glycosylation pattern in tumor cells and immune

microenvironment will affect the expression of other critical genes

and make their corresponding bioprocesses abnormal, thus,

inducing the transformation of malignant phenotypes, such as

proliferation, epithelial–mesenchymal transition, and apoptosis

resistance. To identify the prognostic genes influenced by

glycosylation processes, we screened the DEGs of these three

groups and constructed a predictive risk model through lasso

and Cox regression calculation. The final prognostic model

containing 23 key molecules achieved exciting performance both

in the TCGA training set and testing set GSE42568 and GSE58812

(Figures 5C and D, Figure 6). Using the model algorithm, we

calculated a risk score and divided the sample into high- and low-

risk groups by the median. This risk score also showed a significant

difference in predicting overall clinical survival and immune

infiltration (Figures 7B, 8C). Great achievement has been

obtained in ICB-based immunotherapies (Chen et al., 2020). In

order to obtain better clinical remission and fewer immune-related

adverse events, researchers are committed to developing biomarkers

to screen an effective population accurately. The reported measures

that can be used to predict the efficacy of ICI therapy include

immune cell infiltration (Cogdill et al., 2017), protein expressions

such as PD-L1 (Teng et al., 2015), mutations and neoantigens

(Mcgranahan et al., 2016), and genetic and epigenetic characteristics

(Ascierto et al., 2012). On the TIDE prediction website, our gene set

shows a favorable performance compared with the existing

evaluation methods (Figure 9), which proves that our model has

practical proficiency and value for further exploration and

improvement in immunotherapy prediction.

Then, we move on to several single prognostic genes.

LINC01871 significantly lower expression in the high-risk group

and positively correlated with most of the immune cell infiltration

(Figure 8). This suggests that LINC01871 may play a protective role

in breast cancer. According to a recent review of the literature,

LINC01871 has been identified by several studies in breast cancer

through bioinformatic measurement involving the cellular

phenotype of autophagy (Li et al., 2021; Wu et al., 2021; Jiang

et al., 2022; Luo et al., 2022), stemness (Li et al., 2020), immune

response (Ma et al., 2020; Mathias et al., 2021), ferroptosis (Xu et al.,

2021), and lipid metabolism (Shi et al., 2022). IGLC2 has a similar

expression and functional pattern to LINC01871 in our study

(Figure 8). Chang et al. (2021) found in a study of triple-negative

breast cancer (TNBC) cohort that a high expression of IGLC2 was

related to a favorable prognosis for TNBC patients, which is

consistent with our results. In addition, IGLC2 is linked with the

proliferation, migration, and invasion of MDA-MB-231 cells.

Pathway enrichment analysis showed that IGLC2 is related to

the extracellular matrix–receptor interaction (Chang et al., 2021).

All these features make IGLC2 have the potential to be a biomarker

to predict prognosis, even for identifying breast cancer patients who

can benefit the most from immune checkpoint blockade treatment.

ELOVL2 is another prognostic signature in our results. Studies have

shown that long noncoding RNA on its antisense chain (ELOVL2-

AS1) correlates with breast cancer prognosis. The predictive efficacy

of ELOVL2 needs to be verified in a larger sample size, and its

mediated cell function also needs to be further explored.
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TABLE 1 Clinical information of TCGA, GSE42586, GSE58812.

TCGA GSE42568 PMID:
23740839

GSE58812 PMID:
25887482

Sample

Tumor 1,109 104 107

Normal 113 17 0

Survival

Dead 144 35 29

Alive 933 69 78

Age

<60 575 59 64

≥60 502 45 43

Grade

I — 11 —

II — 40 —

III — 53 —

Stage

I 179 11 —

II 609 40 —

III 246 53 —

IV 19 0 —

Unknown 24 0 —

Subtype

Luminal
A

497 — —

Luminal B 197 — —

Basal 171 — —

Her2 77 — —

Unknown 135 — —

ER expression

Positive — 67 —

Negative — 34 —

Her2, human epidermal growth factor receptor 2; ER, estrogen receptor.
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