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Massive defaunation and high extinction rates have become characteristic of

the Anthropocene. Genetic effects of population decline can lead populations

into an extinction vortex, where declining populations show lower genetic

fitness, in turn leading to lower populations still. The lower genetic fitness in a

declining population due to a shrinking gene pool is known as genetic erosion.

Three different types of genetic erosion are highlighted in this review: overall

homozygosity, genetic load and runs of homozygosity (ROH), which are

indicative of inbreeding. The ability to quantify genetic erosion could be a

very helpful tool for conservationists, as it can provide them with an objective,

quantifiable measure to use in the assessment of species at risk of extinction.

The link between conservation status and genetic erosion should becomemore

apparent. Currently, no clear correlation can be observed between the current

conservation status and genetic erosion. However, the high quantities of

genetic erosion in wild populations, especially in those species dealing with

habitat fragmentation and habitat decline, may be early signs of deteriorating

populations. Whole genome sequencing data is the way forward to quantify

genetic erosion. Extra screening steps for genetic load and hybridization can be

included, since they could potentially have great impact on population fitness.

This way, the information yielded from genetic sequence data can provide

conservationists with an objective genetic method in the assessment of species

at risk of extinction. However, the great complexity of genome erosion

quantification asks for consensus and bridging science and its applications,

which remains challenging.
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1 Alarming decline in biodiversity

The Anthropocene is seeing a tremendous amount of defaunation. In the last

500 years alone, at least 322 species of terrestrial vertebrates have gone extinct, with

remaining population sizes showing an average decline of 25%. Invertebrates show a

similar pattern, with two thirds of monitored populations showing a mean 45%

abundance decline (Dirzo et al., 2014). Recent research even suggests we are currently

in the middle of the sixth mass extinction (Barnosky et al., 2011; Ceballos et al., 2017).

Despite ongoing activities to halt biodiversity loss, we are still losing many species at an
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increasing rate (Turvey & Crees, 2019; Gumbs et al., 2020).

Population decline has many causes, such as habitat

fragmentation, introduction of non-native species, climate

change, pollution and exploitation (Barnosky et al., 2011), and

strengths of these threats heavily depend on local context and

metrics used (Bellard et al., 2022). Many threatened populations

are critically small, and protecting their habitat is not sufficient to

keep such populations viable (Baker, 2007).

1.1 The role of genetics in species
extinction

The effects of population decline are numerous. Inbreeding is

another threat to such marginalized populations (Lynch et al.,

1995), because of increased risk of genetic defects and exposure of

recessive harmful mutations (Keller & Waller, 2002). Inbreeding

is the inheritance of identical copies of genetic material from

related parents, and causes long homozygous regions in the

genome of the offspring (Runs Of Homozygosity Curik et al.,

2014). The decline in fitness observed in inbred progeny, relative

to outbred progeny is known as “inbreeding depression” (Keller &

Weller, 2002). Animals with inbreeding depression have reduced

fitness that manifests as reduced survivorship or fecundity,

influencing population survival under environmental change

in the long-term (Willi & Hoffmann, 2009; Åkesson et al.,

2016; Stoffel et al., 2021). Although the relative contribution

of genetics-related causes of population collapse is still debated,

the common consensus currently seems to be that it can

contribute to species extinction (Spielman et al., 2004;

Frankham, 2005; Brook et al., 2006; Agrawal & Whitlock,

2012; Genereux et al., 2020). The spiral of a decreasing

effective population size, leading to increased inbreeding and

a lower fitness, in turn causing a lower effective population size, is

known as the extinction vortex, Figure 1 (Frankham, 2005; Biere

et al., 2012).

This means there is a theoretical threshold value for

effective population size, after which the population enters

this extinction vortex, leading to the inevitable population

collapse. However, scientific approach and results of studies

on the relation between population size and genetic diversity

vary greatly between studies and species (Rubidge et al., 2012;

Díez-del-Molino et al., 2018; Genereux et al., 2020). Due to the

high environmental impact humans have, it is necessary for

species to adapt to new or changing environmental conditions,

or at least have the ability to do so in the (near) future. However,

because smaller populations experience lower genetic diversity,

this can lead to an inability to adapt to changing environments

(Ouborg et al., 1991; Bijlsma & Loeschcke, 2012; Scott et al.,

2020). It has been shown that populations with reduced genetic

diversity often experience reduced growth and increased

extinction rates, most likely as a result of inbreeding, causing

harmful mutations to occur in a homozygous state. A decreased

population size can increase the realized genetic load (fixation

of deleterious genes in a population), leading to an overall

decrease in a population’s fitness (Spielman et al., 2004; Díez-

del-Molino et al., 2018; Ralls et al., 2020; Bertorelle 2022).

Interestingly, not all inbred populations experience inbreeding

depression to the same degree (Garciá-Dorado 2003),

suggesting that homozygosity of specific variants cause the

negative effects during inbreeding (Charlesworth & Willis,

2009). Inbreeding depression has largely been attributed to

the accumulation of recessive harmful mutations in the

genome: inbreeding increases the probability of these

mutations to become homozygous and thus expressed (Ohta,

1973; Charlesworth &Willis, 2009; Agrawal &Whitlock, 2012).

The key concept here is that while harmful mutations generally

have a small fitness effect in heterozygous state (masked), in

homozygous state they cause heritable diseases (realized). The

potential negative impact that inbreeding will have on health

and reproduction compared to an outbred population is

referred to as “genetic load” (Dobzhansky, 1957; Kimura

et al., 1963) which is mainly caused by expression of

homozygous harmful mutations (Lynch et al., 1995; Garciá-

Dorado, 2003; Allendorf et al., 2013). Understanding and

predicting the factors causing fitness decline will aid to avoid

a high genetic load in the future (Garciá-Dorado, 2012; Kyriazis

et al., 2020; Bertorelle et al., 2022).

FIGURE 1
The extinction vortex. When population size is reduced,
related animals produce inbred offspring. Inbred animals will have
reduced fertility and survival because of harmful mutations that
appear in homozygous state in inbred individuals (inbreeding
depression). Due to the fixation of such harmful mutations in small
populations, overall viability of the population is reduced, leading
to more inbreeding, a non-viable population and eventual
extinction.
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Genetics thus plays a crucial role in fitness of small

populations, but nowadays genetic parameters are barely used

in conservation of endangered species. The genetic status of a

species is often overlooked when assessing conservation status,

an alarming development according to many population

geneticists (Laikre et al., 2020). It may therefore not be

surprising that genome erosion parameters are currently a

poor predictor of the conservation status in endangered

species (Díez-del-Molino et al., 2018). We urgently need

better predictors of populations under threat to be able to

preserve and prioritize biodiversity in decline (Nogués-Bravo

et al., 2018). Implementing genomics can play an important role

in such predictors (Breed et al., 2019; Segelbacher et al., 2021;

Willi et al., 2022).

1.2 The challenge of using genomics for
conservation

While key concepts in conservation genetics were established

decades ago, re-sequencing techniques enabled the study of

complex population structure, local genetic signatures in the

genome and the effect of specific mutations (Willi & Hoffmann,

2009). The availability of complete genomes of a range of species

has opened up a treasure-trove of information for conservation

biologists. Recent advances in genome sequencing techniques

now enable genomic analysis of non-model species (Ekblom and

Galindo 2010). Using tools originally developed for human and

model species such as laboratory animals and livestock, we can

unlock a wealth of valuable data about the population history and

current genetic status of a species (Primmer, 2009; Ouborg et al.,

2010; Segelbacher et al., 2021). Conservation genomics has huge

potential, but up to now it has not been truly adopted by the

conservation community (Shafer et al., 2015). Many questions

remain to be answered and some applications have not

sufficiently proven its value in the field (Garciá-Dorado, 2003;

Breed et al., 2019). Despite the challenging process of translating

of genomic tools into conservation, exciting opportunities are

emerging (Segelbacher et al., 2021; Willi et al., 2022). Genomics

assisted breeding for maintaining variation and reducing genetic

defects is widely adopted in domesticated animals (Windig et al.,

2004; Windig & Doekes, 2018), as well as genomics techniques to

map recessive defects (Charlier 2008) and pinpoint recessive

lethals have proven valuable in cattle (Charlier 2008, 2016) and

pigs (Derks 2019). Such approaches can be adopted for

endangered species as well (Bosse et al., 2015; Bosse et al.,

2018). Genomics can provide valuable input for further

genomics-assisted conservation efforts (Amos & Balmford,

2001; Shafer et al., 2015; Hohenlohe et al., 2020). However, a

strong fundamental scientific basis is crucial for long-term

success.

Understanding how genetic variation affects fitness

differences between individuals lies at the heart of

conservation genomic studies. This has become an achievable

objective, now that the new sequencing technology enables the

characterization of the full spectrum of variation in genomes. For

conservation purposes, it is necessary to research the exact link

between the genetic measures that can be taken and the survival

chances of a population. The three main measures to consider are

overall genetic diversity, recent inbreeding (autozygosity) and

inbreeding depression caused by accumulation of deleterious

genes. Increasing the genetic diversity of a population is essential

to maintain the ability to adapt to changing environments, since

genetic heterozygosity is essential for recombination and

evolution to occur (Fisher, 1930). Inbreeding has major

impact on the genetic fitness of a population, since it both

increases the overall homozygosity of the genome, as well as

driving rare deleterious mutations more often to the homozygous

state than expected according to expectations under Hardy-

Weinberg Equilibrium. Inbreeding depression has a large

biological impact on wild populations, but can potentially be

combatted relatively well, by crossing individuals suffering from

the fixation of harmful (recessive) alleles with individuals that do

not (Charlesworth, 1987; Lynch et al., 1995; Crnokrak & Roff,

1999). This can help remove the harmful allele variants from the

population and increase genetic fitness. The genetic load of a

population can dramatically increase when population size

decreases. The genetic load is the amount of genes that are

less than the maximal fitness genes, like deleterious recessive

genes, which can get fixated in a population. By genetic screening

and mating programs, these mutations can be bred out of a

population, increasing the overall genetic fitness (van Straalen &

Timmermans, 2002).

A population with low genetic diversity can be “genetically

rescued” by crossing it with a different population, masking the

effect of fixed harmful mutations (Keller & Waller, 2002;

Tallmon et al., 2004; Edmands, 2007). This shows the

potential of using genetic data for conservation efforts.

2 The quantitative determination of
genetic erosion

Quantifying genetic erosion can be used as an indicator for

viable population size and extinction risk. Especially when used

temporally, this could offer conservationists a quantifiable

measure to assess at risk populations (Reed & Frankham,

2003; Frankham, 2005; Díez-del-Molino et al., 2018; Leroy

et al., 2018). This can be done by using old samples, like

museum specimens, as a genetic “baseline” and comparing

current genetic fitness to this baseline (museomics), even

making use of DNA from extinct lineages (Díez-del-Molino

et al., 2018). Using this methodology, the current population

can be compared to pre-decline genetic diversity indicators,

providing insight in effective population size and extinction

risk (Gauthier et al., 2020). Such temporal comparisons are
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most effective when using genetic material from closely related

lineages, as shown in gorilla (van der Valk et al., 2021), kākāpō

(Dussex et al., 2021), and rhinoceros (Liu et al., 2021).

In order to assess the extinction risk status, a standardized

unit needs to be implemented in order to link a certain amount

of genetic erosion to risk of extinction. Genomic data holds

potential to reflect past and current effective population size,

as well as masked and realized genetic load. Clear threshold

values of effective population size and risk of extinction,

derived from genomic data, could serve as indicator for

IUCN red list assessment (Garner et al., 2020). Threshold

values can be based on minimum viable population size

(MVP) estimates, like the 50/500 rule or other, estimated

or calculated MVP values (Franklin, 1980; Jamieson et al.,

2012; Reed et al., 2003; Rosenfeld, 2014; Ryman et al., 2019;

Traill et al., 2007; Wang et al., 2019). Franklin’s 50/500 rule is

based on estimates for short term inbreeding effects, based on

the amount of inbreeding accepted by animal breeders (Ne =

50) and long term effects based on theoretical prevention of

genetic drift and massive loss of gene variance (Ne = 500). This

reasoning has proven extremely important for the

conservation community, however a genomics-informed

equivalent to these rules would be preferred in

conservation efforts, adopting quantified methods from

sequence data, to help indicate at risk species.

Providing conservationists with a quantifiable measure for

genetic erosion to assess species at risk of extinction would be

very helpful in conservation efforts. In order to use genetic

erosion measurements in the assessment of at risk species, the

link between a declining population and the presence of genetic

erosion needs to be established first.

Ideally, all of the genetic erosion measures are taken into

account to calculate an effective population size. The effective

population size can then be used to assess the extinction risk of a

species. By using a measure like the 50/500 rule, as proposed by

Franklin, tiers can be created to give a certain genetic erosion

score. This erosion score is in the form of effective population

size, which corresponds to a certain extinction risk and specific

measures that can be taken. However, in order to do this, the 50/

500 rule for MVP is in need of revising (Franklin, 1980;

Frankham et al., 2014; Rosenfeld, 2014; Steeves et al., 2017).

Although the original determination of 50/500 is simple and

effective, it is not species/clade specific and based on vastly

inferior data to what is currently available with modern

genetic techniques. Implementation of a clade or class specific

MVP size could, for instance, better deal with traits like kin

recognition and litter size and class specific gene variance and

mutation rates. Consensus on a MVP that includes genomic

factors like diversity and genetic load is required to build up this

“conservation guideline” and the effective population size needs

to be comprised of several quantitative genetic erosion markers.

Here we discuss three quantitative genetic erosion indicators that

could bring this field forward.

2.1 Overall genetic diversity

2.1.1 Concept
Overall genetic diversity is essential for the survival of a

species. Genetic diversity is recognized as one of three important

levels of biological diversity by the Concention on Biological

Diversity (CBD; O’Brien et al., 2022). Genetic diversity is the fuel

for populations to evolve and adapt to changing environments

(Frankham, 1996; Reed & Frankham, 2003; Hughes et al., 2008).

Whether the conservation focus should be on loci of adaptive

potential, or overall genomic diversity is still debated (see Des

Roches et al., 2021; DeWoody et al., 2021; Teixeira et al., 2021).

Genetic erosion of the overall genetic diversity is characterized by

reduced heterozygosity at the individual level, or reduced pi at the

population level. Loss of genetic diversity can have many

different causes, like habitat fragmentation, the founder effect

or population bottle necks (Gallardo et al., 1995; Keller & Taylor,

2008; Lowe et al., 2005; Reed & Frankham, 2003; Schlaepfer et al.,

2018). However, all these causes are directly related to effective

population size (Ne). Although the concept of effective

population size is rather intuitive, and extremely important

for conservation genomics, its exact definition is can be less

valuable from a practical point of view (Waples 2022). Therefore,

it is suggested to view Ne as the determinant factor for the rate of

random genetic drift across the entire genome in the offspring

generation, and in that capacity Ne is associated with inbreeding

and genome-wide heterozygosity.

Genome-wide patterns of heterozygosity within the genome

of one individual provide crucial information about the genetic

status of populations. Inferences of historic effective population

sizes are a popular feature in the description of population

history (Li & Durbin, 2011) and strength and duration of

population bottlenecks convey cues about potential loss of

adaptive capacity as well as the potential for purging of

harmful mutations (Bertorelle et al., 2022). However, equal

genome-wide levels of genetic diversity are not necessarily

indicative of the same conservation concern (illustrated in

Figure 2). A high background level of diversity can be

interrupted with long runs of homozygosity, indicative of

more recent inbreeding. Equally distributed genome-wide

heterozygosity points at more stable effective population size,

but smaller (Ceballos et al., 2018a). Therefore, how diversity is

distributed along the genome is an important factor to consider.

Naturally, caution should be taken when interpreting

heterozygosity levels and connecting these to effective

population size; one should be aware of underlying

assumptions of panmixia and migration, which can distort the

relationship between heterozygosity and effective

population size.

2.1.2 Methodology
Quantification of overall genetic diversity has traditionally

been done using an array of methods, including SNP analysis
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from both whole genome sequencing data and SNP-chips, but

also allelic heterozygosity determination and even pedigree data

(Hughes et al., 2008). Although SNPs may not be as directly

indicative of adaptive potential as allelic heterozygosity, both are

indicative of an organism’s ability to adapt. A lower overall

genetic heterozygosity is therefore indicative of a small past

and/or contemporary effective population size and a lesser

adaptive potential. When multiple samples per population

can be obtained, this would allow for the estimation of not

only heterozygosity on a single-SNP basis, but also haplotype

richness which is a reflection of the number of segregating

haplotypes in a population at a given locus (i.e., López-

Cortegano et al., 2019). For such estimates to be reliable,

multiple individuals need to be sampled and phasing should

be accurate, which remains challenging for many wild/

endangered populations. The Watterson estimator is a

method to describe the genetic diversity in a given

population, in which the genetic diversity is a function of

effective population size and per generation mutation rate

(Watterson, 1975). When using overall genetic diversity as a

marker for genetic erosion, the use of the Watterson estimator

does not fully suffice. By using more extensive sampling

(>4 individuals) per popoulation, better estimates can be

achieved, especially for more recent Ne by incorporating

the observed spectrum of linkage disequilibrium (Santiago

et al., 2020). For single (diploid) individuals, however,

patterns of heterozygosity form an acceptable proxy.

This can be done temporally, allowing for a comparison with,

for instance, museum specimens. If there are no specimens

available, this technique can also be used on a single sample

and non-temporally (Luikart et al., 2010; Wang et al., 2016).

Ideally, a quantification of heterozygosity would be made

using the entire genome sequence of several individuals, since

this gives the highest accuracy. However, the amount of high

quality DNA samples that can be acquired for endangered species

is often very low and whole genome sequencing is still considered

expensive. Besides the practical issues of whole genome

sequencing, one can argue that this method yields an overkill

of information for conservation purposes (Allendorf et al., 2010).

High-density SNP chips provide an accurate enough and much

cheaper alternative. A single full genome is needed to screen for

SNPs and minor allele frequency (MAF) locations for the SNP

chip design (Groenen et al., 2011; Cheng et al., 2016). After the

SNP chip is developed, individuals of the species can be checked

for overall homozygosity of the genome in a relatively cheap and

fast manner. The use of high-density SNP chips also allows for

identification of loci that are genetically eroded (Allendorf et al.,

2010). However, the development of SNP chips is only feasible if

the chip will be used regularly. Affordable alternatives have been

developed for discovering SNPs that have as an advantage their

lower costs (Du et al., 2012). These strategies include the

reduction of genome complexity by digesting the genome with

one or more restriction enzymes, after which a selection of small

fragments is taken and sequenced by high-throughput

sequencing. After this, fragments are aligned to either a

reference genome or assembled. Thus, only a small fraction of

the genome of many individuals is sampled (Nielsen et al., 2011;

Greminger et al., 2014; Perea et al., 2016). We highlight that if the

FIGURE 2
Chromosome-wide distribution of heterozygosity in individuals from two distinct populations with equal genome-wide levels of diversity.
X-axis represents the full length of a chromosome, with the two copies illustrated below. Y-axis represents the heterozygosity level derived from the
number of SNPs between both copies of the genome in an individual. The long stretches without heterozygosity due to identical copies of the same
segment in the top individual are know as Runs of Homozygosity (ROH).
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density is sufficient to disentangle homozygous and heterozygous

segments, such reduced representation sequencing strategies will

fulfill its purpose to inform conservationists about the

distribution of diversity along the genome, which is indicative

of past and recent bottlenecks.

2.2 Runs of homozygosity

2.2.1 Concept
Runs of homozygosity (ROH) are long continuous tracts of

consecutive homozygous single nucleotide polymorphisms

(SNPs) (Gibson et al., 2006). These homozygous segments of

DNA are a result of autozygosity, when parents with a common

ancestor reproduce and pass on the identical genomic segment to

their offspring. This causes shared chromosomal segments to be

passed on to their offspring, with little to no genetic diversity

(Figure 2) (Peripolli et al., 2017). ROH are conceptually similar to

Identical-by-descent (IBD) tracts between individuals, but

captured in one individual. Since most deleterious alleles in a

population are at least partially recessive, an increase in

homozygosity causes an increase in the homozygosity of a

deleterious allele, causing inbreeding depression

(Charlesworth, 1987). If this occurs in a small population and

carriers of homozygous deleterious alleles reproduce, inbreeding

depression can impact both individual as well as population

fitness. Inbreeding depression in bird and mammal populations

are shown to significantly affect birth weight, survival,

reproduction, resistance to disease, predation and

environmental stress (Keller & Waller, 2002). The level of

ROH correlates with the level of inbreeding of an individual,

thus potentially leading to inbreeding depression. Since

inbreeding depression causes fitness decline and loss of

genetic variation, this is an important measure for genetic

erosion (Hedrick et al., 2000; Bijlsma & Loeschcke, 2012).

ROH are increasingly used to measure autozygosity and

inbreeding from genomes, and indeed can be correlated with

fitness reduction (Stoffel et al., 2021). Some evidence has emerged

that long runs of homozygosity tend to contain more

homozygous harmful mutations (Szpiech et al., 2013; Bosse

et al., 2018; Bortoluzzi et al., 2020). However, the effect of the

age of the ROH and the traits affected by inbreeding depression

differ greatly in livestock (Zhang et al., 2015a; Doekes et al.,

2021), demonstrating that not all inbreeding is depressing;

especially “young” ROH tend to result in inbreeding

depression, since low-frequency recessive variants are exposed

for the first time, whereas ROH stemming from haplotypes that

have been homozygous previously are less likely to carry highly

detrimental mutations because of purging.

2.2.2 Methodology
The resulting homozygous segments can be detected using

various data types, as long as the density is sufficient to separate

heterozygous from homozygous stretches. SNP chips are a

valuable and easy source to acquire genetic data for ROH

analysis (Allendorf et al., 2010; Zhang et al., 2015b;

Rodríguez-Ramilo et al., 2015; Bosse et al., 2018; Islam et al.,

2019). The data produced can be analyzed for homozygous

regions and gives an accurate quantification of the amount of

autozygosity (McQuillan et al., 2008; Keller et al., 2011;

Ferenčaković et al., 2013). However, the use of SNP chips is

only possible for species with well-established SNP chips, and

when applying chips designed for other species, it can lead to

ascertainment bias and an overestimation of ROH coverage

(Bosse et al., 2012).

An essential requirement for the use of SNP chips is a

standardized method of SNP data collection and processing.

Peripolli and colleagues showed significant differences

between different analytical tools used to assess SNP data for

ROH frequencies (Peripolli et al., 2017). Many factors in the

analytical analyses of SNP data influence the results, therefore

guidelines need to be made about what type of tools to use and in

what settings. This is especially important for the analysis of

ROHs in SNP data, since the results are influenced greatly by

parameter settings, like how many heterozygous positions are

allowed in an ROH and in minimal ROH length (Howrigan et al.,

2011; Ku et al., 2011).

The use of ROH as a quantifiable measure of genetic erosion

poses some issues however. For instance because the levels of

ROH are not always caused by inbreeding, but could also be the

result of strong directional selection on a desired variant, likely

increasing fitness instead! Also, the fact that levels of ROH differ

according to their position on the chromosome may pose some

difficulties to implement genomic ROH coverage. However, the

main challenges with the use of ROH levels to quantify genetic

erosion lie within the derivation of ROH itself. Since there is no

consensus within the scientific community on the definition of

ROH, the quantification of ROH can differ between studies

(Meyermans et al., 2020). Besides a lack of consensus on what

is defined as ROH, like cut-offs for what size of homozygous

elements are considered ROH, the derivation of the results also

lacks consensus. Research by Ceballos et al. (2018b) concluded

(low coverage) whole genome sequence data to produce vastly

different amounts of ROH than SNP array data. SNP array data

mainly missed the shorter ROH lengths. Peripolli et al. (2017)

even found three ROH analysis algorithms to give significantly

(p < 0.001) different ROH frequencies. Across mammals, trophic

level, body mass, and latitude have significant effects on θ and

ROH burden (Brüniche-Olsen et al., 2018). These examples

indicate the necessity for consensus on all parameters in ROH

determination, at least when performing museomics or when

comparing animals within the same taxa. Definitive choices on

what length of homozygosity is considered a ROH, which

analysis tool is used, minimal SNP chip density and optimal

genotyping error is needed (Meyermans et al., 2020). A

reasonable working definition is the fROH, the proportion of
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the genome covered by the sum of homozygous segments. Some

caution may be taken when inferring inbreeding directly from

homozygous genomic segments using a cut-off approach all

together; alternative approaches use Hidden-Markov-Models

to infer the distribution of homozygous segments in genomes

(Narasimhan et al., 2016), with the advantage that

Homozygosity-by-descent (HBD) segment length is believed

to reflect inbreeding age, and therefore provides additional

information on population history (Bertrand et al., 2019;

Druet and Gautier, 2022).

2.3 Genetic load

2.3.1 Concept
The prevalence of deleterious mutations, also known as

genetic load, can decrease individual fitness, especially when

they occur in a homozygous state (Blomqvist et al., 2010;

Bertorelle et al., 2022). However, the effects of deleterious

mutations on a population level is usually low. This is, until

population size decreases, causing it to suffer from inbreeding.

This can cause the (recessive) deleterious mutations to become

homozygous, causing a decreased fitness and further leading an

already diminishing population into the extinction vortex

(Higgins & Lynch, 2001; Fagan & Holmes, 2006; Agrawal &

Whitlock, 2012).

Since the accumulation of deleterious gene variants can

contribute to the downfall of an entire population, this is an

important factor of genetic erosion to take into account. When

natural selection is unable to remove harmful mutations, the

genomes of such populations will accumulate harmful mutations,

potentially leading to extinction. In small populations, chance

plays a bigger role in the fate of a mutation and slightly

deleterious mutations may accumulate with higher probability,

causing a more rapid population fitness decline (Keller and

Waller 2002; Charlesworth and Wills 2009). This

phenomenon is most apparent in obligate asexual organisms

(Muller’s ratchet: Muller, 1964; Gabriel et al., 1993). The

quantification of the genetic load in a population is rather

difficult, since most techniques ask for phenotypic data.

However, when used temporally, genome sequence data offers

the possibility to compare old, pre-population decline, samples to

current population genetics.

2.3.2 Methodology
Understanding how genetic variation affects fitness

differences between individuals lies at the heart of

conservation genomic studies. This has become an achievable

objective, now that the new sequencing technology enables the

characterization of the full spectrum of variation in genomes of

multiple individuals: 1) unconditionally deleterious variants, and

2) structural variants that create genetic incompatibility when

outcrossed. Long-read and high throughput sequencing

technologies now open up exciting possibilities to actually

pinpoint potentially harmful mutations and structural variants

in individual genomes (Li et al., 2010; Henn et al., 2015). The

deleteriousness of a variant can be predicted bioinformatically,

based on its effect on gene functioning (protein changing, stop-

gain) and the degree of conservation of the sequence across

species (Cooper et al., 2005; Kumar et al., 2009; Wang et al.,

2010). These techniques have recently been applied to estimate

genetic load in human populations and domesticated species.

The implementation of multiple annotations, such as specific

gene function or regulatory elements have proven successful for

in-silico predictions of the effect of disease causing mutations in

human (Kircher et al., 2014). Although multiple factors

contribute to inbreeding depression, quantifying the harmful

mutations from single genomes is an important first step towards

the implementation of genetic load into conservation

programmes (Bertorelle et al., 2022).

Temporal use of genomic data offers the possibility to

monitor loss-of-function (LoF) variants and synonymous gene

variants. LoF variants, like stop-gain, splice site, stop-loss and

frame-shift mutations can be uncovered using genetic techniques

and represent part of the genetic load in an individual. Although

not all LoF have negative fitness effects, it is assumed that an

increase in suchmutations likely contribute to the lowered fitness

of an individual. The quantification of LoFmutations can serve as

a good proxy for genetic load quantification and is likely the best

method we currently have (Pagel et al., 2017). By looking at the

ratio of LoF variants to synonymous gene variants, this gives an

indication of the increase of genetic load within a population over

time (Lynch et al., 1995; Díez-del-Molino et al., 2018).

Knowledge on the temporal increase in genetic load is

indicative of the overall genetic erosion in a population. The

theoretical increase in genetic load in a diminishing population

has also been empirically tested and found to uphold this

hypothesis (e.g., Lohr & Haag, 2015; Liu et al., 2020). It is

therefore found to be a good indicator of genetic erosion, but,

to the knowledge of the author, it is not yet possible to directly

link this to an effective population size. It does, however, indicate

genetic erosion and is indicative of how at-risk a population is.

Lynch et al. (1995) reported on the vulnerability to extinction of a

population with effective population sizes lower than

100 individuals, due to the genetic load. Both the

beforementioned vulnerability and the known increase in

effects of genetic load when inbreeding increases make it an

important factor to take in account when assessing genetic

erosion and at risk populations.

A very apparent example of genetic load is hybrid load.

Hybrid load is the effect of hybridization of closely related

species, with offspring with lower fitness than both parents.

Either the combination of species-specific genes can lead to a

deleterious phenotype, or the resulting mixed phenotype is of a

lower fitness than either parent species. The effect of natural and

anthropogenic hybridization has been shown in several fish, but
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overall effects of hybridization events vary from increased fitness

to non-viable offspring (Muhlfeld et al., 2009; Chafin et al., 2019).

A decreased fitness due to hybridization can also be considered

genetic erosion. Besides a decreased fitness, hybridization also

greatly impacts the authenticity of a species or population.

3 Practical examples and
recommendations

3.1 Genetic erosion in wild populations

Genetic erosion has so far been concluded for species in

several classes of animals: mammals, fish, amphibians, insects

and birds (e.g., Hutchinson et al., 2003; Noël et al., 2010; Turlure

et al., 2014; Quintinilla et al., 2015; Potvin et al., 2017; Mathur

et al., 2019; Thompson et al., 2019; Gauthier et al., 2020; Van der

Valk et al., 2021). It seems, that the techniques currently available

to assess and quantify genetic erosion are welcomed by the

community. However, current literature suffers from two

major shortcomings: A reluctance to conclude genetic erosion,

and a major sampling bias.

Although genetic erosion has been concluded for several

different classes of animals, the same goes for a lack of genetic

erosion (Martinez-Cruz et al., 2007; Ugelvig et al., 2011; Reiniers

et al., 2014; Dussex et al., 2019; Van der Valk et al., 2021).

However, the question is whether there is truly a lack of genetic

erosion or a reluctancy to conclude genetic erosion. Would the

same conclusion be drawn, were different evaluation techniques

used, or different standards taken as to what is considered genetic

erosion, and what is not? Many papers describe features of

genetic erosion, but conclude genetic erosion to be “low” or

“inconclusive.” This highlights the demand for clear (quantitive)

guidelines to what is considered genetic erosion. Since no

consensus exists on the minimum quality of genetic data,

assessment techniques and threshold values used in the

evaluation of genetic erosion, concluding genetic erosion is

arbitrary and authors are reluctant to do so.

The relationship between population decline or habitat

fragmentation as reflected in genome erosion, and IUCN

conservation status is far from clear (Brüniche-Olsen et al.,

2018; Díez-del-Molino et al., 2018; Garner et al., 2020). This

can partly be assigned to sampling bias in conservation genetics

studies. Firstly, research into endangered species is given priority

over non-endangered species or populations. This skews the data,

as hardly any data exists on healthy populations and non-

threatened species. Besides that, most papers that look for

genetic erosion find it (see Supplementary Table S1). This

might be due to the fact that most researched populations are

those that are threatened by population decline or habitat

fragmentation, or because threshold values are arbitrary and

not based on empirical evidence, based on baseline overall

heterogeneity, ROH and genetic load of non-threatened

populations. However, some trends suggest that indeed

endangered species have more eroded genomes, especially

when related taxa are considered (Zoonomia Consortium 2020).

3.2 Quantified genetic erosion data

The complexity of genetic erosion and the factors influencing

it ask for a robust standardized method, that can be confidently

used for conservation purposes. All three different quantification

methods, discussed before, each with their own benefits and

limitations should be included, to deal with the complexity of

genetic erosion. For example, a population that has been small for

a long time has high potential to become extinct due to a lack of

overall heterozygosity and therefore a lack of adaptive potential.

However, this population might not show a lot of inbreeding or

high levels of deleterious mutations, due to high selection

pressure, purging strongly deleterious recessive alleles (García-

Dorado, 2012; Robinson et al., 2018; van der Valk et al., 2021).

Another example of the complex nature of genetic erosion is the

purging of deleterious mutations due to heavy inbreeding or

severe bottlenecks (Glémin, 2003; Grossen et al., 2020).

Ideally, generalized methods should include the effective

population size, calculated from both the ROH and the overall

heterozygosity. This allows the inference of the past as well as

current population size. Since genetic load can not be linked to

effective population size, it is currently hard to incorporate this in

the quantification of genetic erosion and at risk populations in

the same manner as overall heterozygosity and inbreeding.

However, it is a strong indicator of genetic erosion and

should not be left out, especially since the effects of

inbreeding depression are increased by higher genetic load.

For now, it can therefore be used as an additional indicator of

genetic erosion. However, with our knowledge about evolution

and trajectories of harmful mutations in populations, we obtain

increasing understanding of the fate of such alleles in

populations, given their demographic history (Bertorelle et al.,

2022). So even though genetic load cannot be measured directly,

by simulating genetic load based on sequence-derived

information about past demographic events, we can estimate

the level of masked and realized load in populations.

The difficulty of incorporating genetic load is the

determination of recessive deleterious alleles, which is

currently hampered by technological limitations. In pioneer

studies the method to determine whether deleterious

mutations are accumulating in a population is by collecting

phenotypic data and linking it to specific alleles. This labor

intensive process is not realistic for every population. A more

realistic method is to establish a system of model species with

well-established traits and their genetic markers. Model species

can be used to validate the prediction of genetic load from the

genome sequence. Once this purely sequence-based method is

validated, it could be used for non-model species. Although this is
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a system that is not yet established, it would be an important

indicator for at risk species. It allows the incorporation of genetic

load in the risk assessment of species, without the need to collect

phenotypic data for each species individually.

The importance of incorporating genetic load is most

apparent in the prevention of deleterious gene variant

accumulation, since these are the driving force behind

inbreeding depression. However, despite the low

abundance of lethal recessive alleles or hybridization

events, their importance should not be underestimated.

Deleterious mutations with high fitness impact, like

recessive lethal mutations can cause the extension of a

population bottleneck, or even the extinction of a species

(Campbell, 2016). Therefore, a screening for lethal recessive

alleles should be incorporated in the risk assessment of every

species. A similar assessment of possible hybridization would

have to be incorporated in the risk assessment of every

species, since hybridization can greatly impact offspring

fitness or even lead to the extinction of species (Allendorf

et al., 2001; Muhlfeld et al., 2009). This screening is important

for conservation, since it is fairly easy to purge these high

impact lethal recessive genes from the gene pool in the short

term, using breeding programs to decrease the allele’s

frequency in the population. In future risk assessment,

outbreeding depression, the effect of mixing two long-time

separated populations of a single species leading to lower

genetic fitness, can also be incorporated.

3.3 Genetic rescue and hybridization

A possible solution to counteract the effects of inbreeding

depression is to introduce genetic material from another

population. Introduced genetic variation can neutralize

inbreeding depression effects by making loci with recessive

harmful mutations heterozygous (Hedrick & García-Dorado,

2016; Fitzpatrick et al., 2020). The resulting increase in fitness

is referred to as “genetic rescue,” and it effectively transforms

the realized load into a masked load (Whiteley et al., 2015;

Bertorelle et al., 2022). Some well-known success stories of

genetic rescue entail the Florida panther, and the American

bison (Hedrick, 2009; Johnson et al., 2010; Hostetler et al.,

2012). Typically, large mammalian species are not a

genetically homogeneous group, and may consist of

different subspecies, populations and sub-populations.

Unfortunately, (sub)species are lost without even been

properly described. These groups can be on different

evolutionary (and potentially adaptive) trajectories and

mixing may lead to outbreeding depression (Hedrick &

García-Dorado, 2016). Introgression and hybridization can

also lead to genomic incompatibility, with as a special case the

mito-nuclear incompatibility in the so called “mothers curse.”

Purely maternal inheritance of mitochondrial DNA disables

selection against harmful mutations in the males (Gemmell

et al., 2004), resulting in mtDNA contributing to male fitness

reduction, for example reduction in male lifespan in human

(Milot et al., 2017). Concerns about outbreeding depression

hinder the potential of human-mediated gene flow (Frankham

et al., 2011). Genetic rescue poses three possible “genomic

problems”: 1) if the introduced DNA contains unconditionally

harmful mutations, the total genetic load may actually

increase concurrently with genetic variation (Edmands,

2007; Frankham et al., 2011) (exemplified in Figure 3). The

first generation of hybrids could still express increased fitness,

as the load is masked in heterozygote genotypes. However,

once the immigrant DNA becomes homozygous in future

generations, the advantage may be lost, and novel genetic

defects may arise (Hedrick & García-Dorado, 2016). 2)

Introduction of variants that are harmful to the recipient

population (e.g., maladapted variants) and structural

variants that cause genetic incompatibilities. Outbreeding

depression because of genomic incompatibilities caused by

large structural variants or maladaptation may occur, but its

role of structural variation in inbreeding and outbreeding

FIGURE 3
Genomic consequences of inbreeding and outbreeding. (A). Offspring inherit identical DNA twice when parents are related, which means that
harmful recessive mutations become homozygous and expressed. This is the primary mechanism causing inbreeding depression. (B). Outbreeding
(genetic rescue) introduces DNA from another source into a population, increasing genetic variation. However, this can also increase the number of
harmful mutations as a masked load. Thesemutations could become expressed in homozygotes in future generations, as inbreeding continues
to convert themasked load into a realized load. Also, large structural differences between the donor and source will result in hybrid incompatibilities.
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depression has been largely overlooked (Hoffmann et al.,

2020). Structural variants can have pronounced phenotypic

impact–they can lead to genomic incompatibilities in the first

generation of hybrids or disrupting gene functioning and

regulation of modifying gene dosage in further generations.

Multiple studies have highlighted their role in functional

changes across populations and species (Mahmoud et al.,

2019). 3) The benefits are transient as the total genetic load

is not necessarily reduced by genetic rescue. On the other

hand, if the groups are too small without migration between

the groups this may lead to high inbreeding rates within the

groups and associated loss of fitness. Genomics can provide

important cues on whether different Evolutionary Significant

Units (ESUs) exist that warrant independent conservation

management. General predictions about the success of genetic

rescue have proven difficult so far (Verhoeven et al., 2010;

Frankham et al., 2011; Hedrick et al., 2014; Frankham 2015).

Experimental crosses between inbred lines have demonstrated

the potential benefits as well as risks of genetic rescue in

Drosophila, but these studies did not quantify harmful

mutations in their experimental populations (Bijlsma et al.,

2010). Knowledge about harmful mutations in the donor

population is therefore crucial for predicting the success of

genetic rescue (Frankham et al., 2011; Whiteley et al., 2015;

Kyriazis et al., 2020). However, pinpointing which mutations

contribute to genetic load continues to be challenging in non-

model organisms (Bertorelle et al., 2022).

The distribution of segments with particularly high- or low

levels of heterozygosity provide further insights into more recent

demographic events.

A clear consequence after hybridization is outbreeding

depression. Outbreeding depression is the consequence arising

from mixing two separate populations in an attempt to increase

genetic variation. However, since the two populations have

become too different over time, they have poorly compatible

genome sequences leading to lower fitness offspring. The

resulting offspring can experience lower fitness through

different mechanisms: intrinsic and extrinsic outbreeding

depression. Intrinsic outbreeding depression can occur from

genic or chromosomal incompatibilities, whereas extrinsic

outbreeding depression can occur from reduced adaptation to

local environmental conditions. Intrinsic outbreeding depression

causes a decrease in fitness when the resulting offspring suffers

from a disruption in intrinsic interactions between genes.

Extrinsic outbreeding depression causes the offspring to be

adapted to neither of the local environmental conditions

(Edmands, 2007; Allendorf et al., 2010). A third mechanism

behind outbreeding depression is an increase of genetic load.

Increase in genetic load can be a primary determinant of

extinction risk in future generations after introduction,

therefore development of methodology to determine such

load-causing mutations is essential (Kyriazis et al., 2020; Willi

et al., 2022). For isolated populations, first should be evaluated

whether inbreeding depression is likely, quantifying the masked

FIGURE 4
Diversity and genetic load after hybridization. Representation of chromosome-wide heterozygosity in an individual, sampled from the Donor
population (top, purple); Recipient population (bottom, orange); and the first generation hybrid offspring (right panel). First generation hybrid (F1; top
panel) and second generation hybrid (F2, bottom panel) are depicted. Genetic variants are indicated as grey (neutral) and red (harmful).
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load (cf. Inbreeding load) in populations. If the masked load is

low, care should be taken to not inadvertently increase this via

genetic rescue, even though long-term adaptability is increased

with higher levels of genetic variation (Figure 4).

The incorporation of outbreeding depression in the genomic

estimation of a species genetic fitness is an important

incorporation for two reasons. First of all, it allows

conservationists to identify populations already suffering from

outbreeding depression and take this into account when

assessing at risk populations. This could be useful for

populations with decreasing habitat, due to anthropogenic

influence or climate change, causing populations that have

been separated for a long time to mix. The second reason is

to prevent anthropogenically induced outbreeding. For

conservation purposes it might seem to make sense to

introduce new genes into the gene pool, but by monitoring

what genes are introduced and assessing their compatibility,

outbreeding depression can be prevented.

4 Future prospects

4.1 Early warning system based on genetic
load

Overall, there does seem to be a strong indication that

genetic erosion occurs in declining populations. It is, however,

only observed when the decline is not extremely fast, since it

would lead to extinction even before the first genetic effects

establish in the genome. When a species has not experienced a

very small, but stable, overall population for a very long time,

it can also lack the genetic indicators for erosion, since these

could be purged from the population (Bertorelle et al., 2022).

These are, however, important factors to take into account

when using these genetic factors in conservation. The use of

genetic erosion markers in conservation could serve a great

purpose in declining populations, as a signature of the current

state of a population, its adaptive potential and a warning

system for future population decline. By using accurate

measures from sequence data to predict the masked load,

we will be able to measure the genetic load within their

populations before genetic defects become apparent.

Managers of wild and captive populations can measure

genetic load without having to capture and breed animals

to evaluate the effect of inbreeding and bad mutations on

fitness, thereby providing them with an early warning system.

Furthermore, by integrating information on current genetic

load into breeding programs, negative effects of these

mutations may be directly reduced by breeding for “lower

genetic load” next to managing the inbreeding rate in breeding

programs.

4.2 The promise of related genomics fields
for conservation genomics

Thus far, the role of structural variation in inbreeding and

outbreeding depression has been largely overlooked (Hoffmann

et al., 2020). The fast developing field of pan-genomics could fill

this gap and lead to the implementation of structural variation in

conservation genomics. Pan-genomes represent the genomic

diversity of a species and includes core genes, found in all

individuals, as well as variable genes, which are absent in

some individuals (Golicz et al., 2020). Pangenomics are

particularly useful to identify presence/absence variations

(PAVs), copy number variations (CNVs), and other,

miscellaneous variations (mostly large structural variants). The

pangenomics concept has become widely adopted in plant

breeding, and it is emerging in animal breeding (Bayer et al.,

2020; Crysnanto & Pausch, 2020). By translating these concepts

to endangered species, we can obtain the full breadth of diversity

across subspecies, and obtain higher understanding of the

evolution of gene families, gene losses and gains, and the

structural variations within this species (Figure 3B). While an

increasing number of whole genome sequence data has

accumulated, and a huge number of single nucleotide variants

(SNVs) has been identified, current approaches are still suffering

two major shortcomings: 1) the use of a reference genome

derived from a single (hybrid) haplotype and 2) the use of

short read sequence technologies in genetic analyses. As a

result, on average only 85%–90% of the genome of an

individual is targeted and large structural variants are difficult

or impossible to identify (Audano et al., 2019; Chaisson et al.,

2019). Typically, these sequences are among the most variable in

the genome and strongly contribute to genomic incompatibilities

between populations and form reproductive barriers.

Perturbation by structural variation of genic sequence as well

as noncoding DNA regulatory elements and structural

chromatin features, plays a major role in speciation and

adaptation (Fudenberg & Pollard, 2019). More insight in

structural differences that can now be obtained using long-

read sequencing will lead to an expansion of Frankham’s

reintroduction framework by including SVs instead of only

karyotypic differences (Frankham et al., 2011; Frankham,

2015), by predicting genomic incompatibilities and associated

fitness loss and potential reproductive barriers. Finally, the

potential of the “sister field” of quantitative genetics has huge

potential to better understand genomic architecture and genetic

variation underlying complex quantitative traits that are

important for evolutionary change (Gienap et al., 2017; Ørsted

et al., 2019; Capblancq et al., 2020; Teixeira et al., 2021; Willi

et al., 2022). Further adoption of quantitative genetics methods,

such as genomic prediction, could bring the field forward

(Bonnet et al., 2022).
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4.3 The need for consensus

An important issue pointed out by this review in the

incorporation of genetic erosion in conservation is the shear

complexity of genetic erosion, but the demand for simple

measures by conservationists. One example of its complex

nature is kin recognition. When inbreeding is used as a

marker for genetic erosion and adaptive potential and a

species avoids reproducing with kin, the amount of inbreeding

is kept to a minimum and it might not be indicated as genetically

endangered to conservationists. This has, for instance, been

suggested in urban populations of red-backed salamanders

(Plethodon cinereus) (Noël et al., 2010). The authors found no

signs of inbreeding, even in populations in habitats as small as

0.5 ha. Genetic erosion could really help conservationists by

providing another marker for a species’ performance, but the

effectiveness may be class or species specific. Before the

implementation of genetic erosion can be realized, the main

necessity is gaining consensus, funding and bridging the gap

between scientific research and the implementation in

conservation. Scientists need to get to a consensus on which

techniques need to be used, what threshold values need to be

implemented and what new knowledge is required to realize this.

All this is needed in order to provide conservationists with the

information they need. To do this, funding needs to be allocated

to the real world applications of recent technological

advancements and communication between conservationists,

geneticists and policy creators need to be improved (van

Oosterhout, 2020). Recent efforts have made important

contributions to bridge the gap between the vast scientific

progress in the field and applicability (Hoban et al., 2020;

O’Brien et al., 2022), leading to the much-needed

incorporation of genetic data in the assessment of at risk species.
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