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Background: Hepatocellular carcinoma (HCC) is notorious for its high mortality

and incidence. Accumulating evidence confirms that chromatin regulators (CRs)

have a significant impact on cancer. Therefore, exploring the mode of action and

prognostic value of CRs is imminent for the treatment of hepatocellular carcinoma.

Method: Transcriptome and clinical data for this study have been downloaded

from TCGA (https://portal.gdc.cancer.gov/) and ICGC (https://dcc.icgc.org/).

Univariate analysis was used to screen CRs with prognostic value, and our

prognostic risk score signature was developed using least absolute shrinkage

along with selection operator (lasso) Cox regression analysis. The CRs-based

prognostic model was constructed in the TCGA dataset, and low-risk HCC

patients had a better prognosis, which was finally validated in the ICGC dataset.

We used the receiver operating characteristic curve to identify the accuracy of the

predictionmodel and establish a line chart to prove the clinical effectiveness of the

model. We also discussed the differences in drug sensitivity viaCellMiner database,

tumor immune microenvironment via ssGSEA algorithm, and clinical

characteristics among different risk groups.

Results: A prognostic model consisting of seven CRs was constructed and

verified in HCC patients. Furthermore, we found that this risk score prognostic

signature could independently predict the prognosis of HCC patients.

Functional enrichment analysis revealed that CRs are mainly associated with

cancer-related signaling pathways and metabolic pathways. In addition,

immune cell abundance correlates with risk score levels

Conclusion: In brief, we systematically explored the mode of action of CRs in

HCC patients and established a reliable prognostic prediction model.
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Introduction

Liver cancer is one of the highest incidences of cancer as

well as the main cause of cancer-related death (Villanueva,

2019). Hepatocellular carcinoma is the main component of

primary liver cancer, and its burden is increasing as a highly

heterogeneous disease (Hoshida, Nijman et al., 2009; El-Serag,

2011; Nault and Villanueva, 2015). Despite advances in

treatment strategies in recent years, overall survival in

hepatocellular carcinoma remains disappointing (Njei,

Rotman et al., 2015). Therefore, this study aimed to build a

chromatin regulators model to predict overall survival in HCC

samples to improve diagnostic accuracy and treatment

efficacy.

Epigenetic alterations occur in through various forms,

including methylation and histone modifications (Zhang,

Lu et al., 2020). For example, CG14906 mediates M6A

methylation of snRNA in Drosophila melanogaster (Gu,

Wang et al., 2020). Epigenetic changes are associated with

various diseases. Carbon 5 methylation of cytosine bases in the

context of CpG dinucleotides involved in the onset (Wang, Gu

et al., 2013) and progression of human diseases and enhanced

commuting targeting c-Jun N-terminal kinase 2 (JNK2)

epigenetic dysregulation of children is associated with

impaired lung function in early childhood (Bauer, Trump

et al., 2016). Among them, STAG2 regulates interferon

signaling in melanoma through enhancer loop

reprogramming (Chu et al., 2022), while BAZ2A is

involved in epigenetic alterations in prostate cancer, and its

overexpression predicts disease recurrence (Gu, Frommel

et al., 2015). In addition, chromatin state also affects

epigenetic changes (Blanco, Sykes et al., 2021). In recent

years, advances in computer science techniques have

brought new opportunities for cancer research, allowing us

to sense molecular differences in disease using bioinformatics

methods such as machine learning (Gu, Guo et al., 2020).

Chromatin regulators link the scale of chromatin

organization from nucleosome assembly to the establishment

of functional chromatin domains. For example, centromeres

have a unique histone variant, CenH3, that marks the site of

motor body assembly and microtubule attachment required for

proper chromosome segregation (Cleveland, Mao et al., 2003).

Epigenetic change also is one of the most important factors in

tumor, and CRs are an indispensable regulatory element to drive

this process (Lu, Xu et al., 2018). CRs are mainly divided into

three categories: DNA methylates, histone modifiers, and

chromatin remodelers, and these CRs are inseparable and

function together in biological processes (Plass, Pfister et al.,

2013). Previous studies have shown that mutant chromatin

regulatory factors are the driving factor of cancer (Gonzalez-

Perez, Jene-Sanz et al., 2013; Koschmann, Nunez et al., 2017),

which suggests that dysregulation of chromatin regulators is

closely related to cancer (Marazzi, Greenbaum et al., 2018). In

addition, mutations in chromatin regulators, such as ARID1A,

ARID1B, ARID2, MLL, and MLL3, can also cause liver cancer

(Fujimoto, Totoki et al., 2012). ASCL2, a chromatin regulator, is

upregulated in colorectal cancer cells, and its downregulation

enhances autophagy to promote apoptosis in colorectal cancer

cells (Marazzi, Greenbaum et al., 2018). As a member of

chromatin regulators, FTO can increase the response to

chemotherapy drugs through demethylation of colorectal

cancer cells (Relier, Ripoll et al., 2021). WHSC1 regulates

BCL2 expression and apoptosis in HCC, elucidating a novel

epigenetic regulation mechanism (Wang, Zhu et al., 2021).

However, few studies have systematically and comprehensively

investigated the role of CRs in HCC.

In this study, we systematically studied the expression

profile of CRs in HCC and its prognostic value. We

successfully developed and demonstrated that the

prognostic signature derived from seven CRs could be used

to predict the prognosis of patients with HCC. In addition, we

also proved that the prognostic signature can accurately

predict the immune microenvironment of tumors, which

may provide a foundation for future immunotherapy

strategies.

Materials and methods

Data acquisition and differential
expression analysis

Transcriptomic data for 50 normal liver tissues and 374 HCC

samples and clinical data for 377 HCC samples were downloaded

from the TCGA database. Gene expression profiles were

normalized, and differentially expressed genes (DEGs) were

also analyzed using the “limma” R package according to |fold-

change| >1 and p < 0.05. Transcriptomic data and clinical data

for 273 HCC samples were downloaded from the ICGC database

(https://dcc.icgc.org/projects/LIRI-JP). Data from both the

TCGA database and ICGC database were publicly available,

and this study was exempt from local ethics committee approval.

A total of 870 chromatin regulators (CRs) were downloaded

from the previous literature; the specific information is in

Supplementary Table S1.

Functional enrichment analysis

The biological function of CRs was explored using Gene

Ontology (GO) analysis and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway. p < 0.05 were set as

significant thresholds, which were obtained using the

“clusterprofiler” R package. The visualization of the

enrichment results was then performed using the

“enrichplot” and “ggplot2” R packages.
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Developing and validating the model

In this study, the TCGA data set was used as a training

group, and the ICGC data set was used as a testing

group. Univariate Cox regression analysis was used to

screen CRs related to prognosis in the TCGA set. The

“GLMNET” R package was used to analyze the prognosis-

related CRs by LASSOCox regression to create a prognostic

risk score model (Tibshirani 1997). The risk score was

calculated in the following way:

Riskscore � ∑(Expi p coefi)

Based on the median risk score, the TCGA set and the ICGC set

were divided into two groups: low-risk and high-risk; afterward, the

survival analysis, the receiver operating characteristic (ROC) curve

using the “survivalROC” R package (Blanche, Dartigues et al., 2013),

and the principal component analysis (PCA) were conducted to

understand the difference in transcriptional profiles between the

low-risk and high-risk scoring groups. The “Rtsne” R package was

used to perform t-distributed Stochastic Neighbor Embedding

(t-SNE) analysis. The visualization of result was performed using

the “ggplot2” R package.

Correlation between risk signature and
clinical characteristics

In the TCGA queue, the “CMScaller” R package was used to

classify all samples as CMS. Each sample was combined with the

clinical features from the TCGA cohort. Using the “limma” R

package, we explored the relationship between risk score, gender,

grade stage, age, pathological stage, TNM stage, and immune

checkpoint in the TCGA cohort. The relationship between risk

score and gender, age, and pathological stage was explored in the

ICGC cohort.

GSVA

Gene set enrichment analysis (GSVA) is a method that can

evaluate biological processes by expressing matrix samples

(Hänzelmann, Castelo et al., 2013). We used the dataset

“C2.cp.kegg.v7.4” from MSIGDB (https://www.gsea-msigdb.

org/gsea/msigdb) as a reference. The difference in biological

processes between high and low-risk groups was explored

using GSVA. FDR<0.05 showed that the biological pathway

has statistical significance.

Tumor immune correlation analysis

The ssGSEA method was used to explore the correlation

between chromatin regulators and immune infiltration

(Charoentong, Finotello et al., 2017). Immune cell abundance

and immune-related functions were assessed for each sample in

the TCGA database and ICGC database, and the differential

analysis of immune score and immunophenotype was performed

using the “Limma” R package. Spearman-related tests were then

used to identify the relationship between risk score and immune

checkpoint expression, stem cell index. Finally, we analyzed the

immune score and matrix score of HCC samples and used the

“estimate” R package and “Limma” R package to derive the

scatter plot.

Nomogram construction

Outcome-related nomograms were established using clinical

variables and CRs-based risk scores to assess OS in patients with

HCC using the “rms” R package. For the purpose of evaluating

the prediction effect of a nomogram, consistency index (C index)

and calibration curve were used. Then, a multivariate Cox

regression analysis was carried out to explore whether risk

score and clinical features have independent predictive value.

AUC was calculated using the ROC curve to show the prognostic

effect of the nomogram.

Drug sensitivity analysis

Drug sensitivity data were collected from the CellMiner

database to explore the drug sensitivity. Then, the relationship

between the genes that make up the model and drug sensitivity

was determined using the Pearson correlation test.

Statistical analysis

The Wilcoxon rank sum test was used to compare the

differences between the two groups. Kruskal–Wallis (KW) test

for comparing three or more groups. All statistical analyses were

performed in version R 4.1.2(p < 0.05).

Results

Enrichment analysis

Comparing the expression levels of chromatin regulatory

factors in normal liver tissues and HCC tissues, 427 differentially

expressed CRs were found in the TCGA cohort. p < 0.05 and |

fold-change| >1 were set as the significance standard. In tumor

tissues, the expression levels of 421 genes increased and 6 genes

decreased. Supplementary Figure S1A shows the expression of

differentially expressed CRs in normal and cancer tissues, which

can be clearly distinguished. Then, GO and KEGG enrichment
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analysis was carried out on the differentially expressed CRs,

respectively. Histone modification, chromatin organization, and

peptidyl–lysine modification processes are highly enriched GO

terms (Supplementary Figure S1B). Cell cycle, lysine degradation,

and hepatocellular carcinoma are highly enriched KEGG terms

(Supplementary Figure S1C), which indicates that chromatin

regulators are indispensable in the development of hepatocellular

carcinoma.

Development of prognostic risk scoring
signature in the training set

The construction of the prognostic model was performed in

the TCGA set. The CRs associated with the prognosis of

hepatocellular carcinoma was screened using univariate COX

regression analysis. Then, the differential expression of CRs and

prognosis-related CRs were intersected, and a total of 321 CRs

were identified (Figure 1A). Then, we built the signature using

lasso regression analysis. The final prognostic risk score model

consists of seven genes (genes CBX2, PBX, PPM1G, RAD54B,

RUVBL1, SAP30, and TTK) (Figures 1B and C). The risk score

signature is constructed as follows: risk score = (expression of

CBX2*0.149956574108953) + (expression of PBK*0.000160217

695501227) + (expression of PPM1G*0.118132434310044) +

(expression of RAD54B*0.175317229614019) + (expression of

RUVBL1*0.0794852407313874) + (expression of SAP30*0.02236

60675255999) + (expression of TTK*0.039488102659109). The

correlations between the genes that make up the risk scoring

model are shown in Figure 1D. PCA and t-SNE analysis show

identifiable dimensions between the low-risk score group and

high-risk score group (Figures 1E–H).

Clinical correlation analysis of risk scoring
signature in TCGA database

The samples in the training set were divided into low (183)

and high (182) risk score groups according to the mean risk

score. The relationship between clinical characteristics (age,

gender, grade, pathological stage, and TMN stage) and risk

score in the TCGA group was further analyzed. Risk score

distribution was not statistically different between the TCGA

groups with respect to age, gender, M stage (distant

metastasis), and N stage (lymphatic metastasis) (Figures

2A–D). Higher risk scores were associated with higher

grade stage (p = 7.4e-09; Figure 2E), higher T (tumor

infiltration) stage (p = 0.00084; Figure 2F), advanced

pathological stage (p = 0.00083; Figure 2G), poor overall

survival (p = 5.46e-07; Figure 2H), and poor progression-

free survival (PFS) (p = 5.46e-07; Figure 2I) in the training set.

Figure 2H shows that the high-risk group had a significantly

higher mortality rate than the low-risk group (p = 5.46e-07),

indicating that the risk score was inversely associated with

FIGURE 1
Development of the CR-based prognostic risk score model in the training set. (A) Venn diagram for tumor and normal tissue adjacent to
carcinoma of differentially expressed genes related to theOS. (B) LASSO coefficients of sevenCRs. (C) Identification of CRs for developing prognostic
risk scoring models. (D) Correlation network of the CRs that makes up the model. Red lines indicate a positive correlation. (E–H) PCA and t-SNE
assays based on chromatin regulator risk score to distinguish tumors from normal samples in the TCGA cohort and ICGC cohort. The low-risk
patients are marked with green groups, and the high-risk patients are marked with red groups.
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prognosis. Transient receiver operating characteristics (ROC)

for 1-, 3-, 5- year in the training set, the area under the curve

(AUC) was 0.782 for 1 year, 0.698 for 2 years, and 0.698 for

3 years (Figure 2J), indicating that the signature we

established has relatively good predictive performance. In

univariate and multivariate analyses, risk score and

pathological stage were correlated with OS and were

independent predictors of OS (Figures 2K and L). The

survival status of each sample and the corresponding risk

score are plotted in the training group (Supplementary Figures

S2A and B). The expression analysis of the seven genes that

make up the prognostic model was carried out in the training

group (Supplementary Figure S2C). The results showed that,

consistent with the previous conclusion, the genes that make

up the model are all high-risk genes were highly expressed in

the high-risk group. In addition, further stratified analyses

were analyzed to investigate the prognostic significance of

features. Our study shows that CR-based signature has better

predictive performance in age >65, age ≤ 65, male, grade stage,

T stage, pathological stage, M0 stage, and N0 stage (Figure 3).

However, due to the lack of patient samples in M and N stages

other than M0 and N0 stages, statistical analysis could not be

performed. p < 0.05 is considered as the standard of

significance.

Clinical correlation analysis and validation
of risk score signatures in the ICGC
database

The ICGC cohort samples were divided into high-risk groups

(n = 87) and low-risk groups (n = 145) according to the risk score

characteristics generated by the TCGA cohort. Furthermore,

analysis of the relationship between clinical characteristics

(age, gender, and pathological stage) and risk score in the

ICGC set. Risk score distribution was not statistically different

FIGURE 2
Predictive value of CRs scoring model for the survival status of HCC patients in TCGA queue. (A–G) The relationship between risk score and
clinicopathological factors, including age (A), gender (B), distant infiltration (C), lymphoid metastasis (D), grade stage (E), tumor infiltration (F), and
pathological stage (G). (H and I) Comparison of total survival time (OS) and progression-free survival (PFS) in low-risk and high-risk groups. (J)
Sensitivity and specificity of risk scores measured by ROC curves for predicting 1-, 3-, and 5-year overall survival. (K and L) Forest diagram of
univariate and multivariate Cox regression analyses.
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between risk scores with age and sex of the samples in the ICGC

dataset (Figures 4A and B). Higher risk scores were associated

with advanced pathological stage (p = 0.00022; Figure 4C) and

poor overall survival (p = 1.155e-04; Figure 4D) in the training

set. Figure 4D shows that the high-risk group had a significantly

higher mortality rate than the low-risk group (p = 1.155e-04),

suggesting that the risk score was inversely associated with

prognosis, which is consistent with previous conclusions.

Transient receiver operating characteristics (ROC) for 1-, 3-,

and 5- year in the TCGA set, the area under the curve (AUC) was

0.741 for 1 year, 0.725 for 2 years, and 0.744 for 3 years

(Figure 4E), indicating that the signature we established has

relatively good predictive performance. In univariate and

multivariate analyses, consistent with the previous conclusion

in the TCGA set, risk score and pathological stage were

independent predictors of OS (Figures 4F and G). The

survival status of each sample and the corresponding risk

score are plotted in the testing group (Supplementary Figures

S2D and E). Expression analysis of the seven genes that make up

the prognostic model was carried out in the testing group

(Supplementary Figure S2F). The results showed that,

consistent with the previous conclusion, the high-risk CRs

were highly expressed in the high-risk group.

Development of a nomogram

For additional prediction of survival in HCC patients, we

developed a line map composed of various clinical features,

including risk score, pathological stage, grade stage, age, and

gender, which effectively predicted the prognosis of HCC patients

for 1-, 3-, and 5-years (Figure 5A). Calibration curves demonstrate

that nomograms are effective in predicting patient outcomes at 1-, 3-,

and 5-years (Figure 5B). Univariate analysis showed that among the

factors associated with OS, including pathological stage and

nomogram (Figure 5C), multiple regression analysis shows that

the survival rate of HCC nomogram is an independent factor for

the prognosis of HCC (Figure 5D). The area under ROC curve shows

that compared with age, sex, TMN stage, and prognostic risk scoring

model, nomogram (AUC = 0.717) has a better prognostic value

(Figure 5E). The C-index of signature is higher than other indexes,

which proves the favorable forecasting ability of signature (Figure 5F).

FIGURE 3
Kaplan–Meier curves of OS differences stratified by sex, age, grade, pathological stage, N stage, M stage, and T stage between high-risk and
low-risk groups. (A,B) Age >65 and Age<=65. (C,D) Female and male. (E,F) Grade stage 1–2 and Grade stage 3–4. (G,H)M0 stage and N0 stage. (I,J)
pathological stage I–II and pathological stage III–IV. (K,L) T stage 1–2 and T stage 3–4.
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Gene set variation analysis

The “c2.cp.kegg.v7.4″ gene set downloaded from the database

(MSIGDB) was used for GSVA enrichment to explore the biological

behavior. Interestingly, many carcinogenic signaling pathways show

high-risk scores, such as the P53 signaling pathway and MTOR

signaling pathway, which are closely related to the development of

HCC. Most metabolic pathways such as fatty acid metabolism,

nitrogen metabolism, and arginine and proline metabolism are

enriched with low-risk scores (Figure 6).

FIGURE 4
Predictive value of CRs scoring model for the survival status of HCC patients in ICGC queue. (A–C) The relationship between risk score and
clinicopathological factors, including age (A), gender(B), and pathological stage(C). (D) Comparison of total survival time (OS) in low-risk and high-
risk groups. (E) Sensitivity and specificity of risk scores measured by ROC curves for predicting 1-, 3-, and 5-year overall survival. (F and G) Forest
diagram of univariate and multivariate Cox regression analyses.
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FIGURE 5
Development of a nomogram. (A) Nomogram for predicting 1-,3-, or 5-year OS. (B) Calibration plots for predicting1-, 3-, and 5-year OS. (C)
Univariate Cox regression analysis of the nomogram. (D) Multivariate Cox regression analysis of the nomogram. (E) ROC curves for CRs score and
clinical pathological characteristics. (F) C-index of the signature.
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Immune-related features of the CRs-
based signature

To examine the relationship between risk scores and immune

status, we used ssGSEA to assess cumulative scores for different

immune cell subsets, associated functions, or signaling pathways.

We found that the scores of aDCs, B cells, macrophages,

neutrophils, and NK cells were significantly different in the

high- and low-risk groups of the TCGA cohort. Among them,

aDCs and macrophages have higher scores, while others have

lower scores (Figure 7A). Furthermore, the high-risk group

activated the type Ⅱ IFN response function and MHC class Ⅰ,
and other functions were not activated, indicating that

immunosuppressed high-risk groups respond to

immunotherapy (Figure 7B). Comparisons in the ICGC cohort

confirmed differences in B cells, neutrophils, NK cells, and type II

IFN responses between the two risk groups (Figures 7C and D).

Furthermore, immune checkpoints play an important role in

therapy, and we investigated the correlation between risk scores

and key immune checkpoints. We found that almost all immune

checkpoints were activated in the high-risk group (Figure 7E),

indicating that high-risk groups had immunosuppressive and

fatigue phenotypes. High-risk groups exhibited higher stromal

scores; however, immune scores did not differ significantly

between high-risk and low-risk groups (Figures 7F and G).

Furthermore, patients with the CMS1 phenotype had a higher

risk score (Figure 7H), suggesting that the CRs-based signature is a

novel biomarker for assessing immunotherapy and clinical

prognosis. In addition, we assessed the potential correlation

between risk score and CSC score, and the results showed that

risk score was positively correlated with CSC score, indicating that

HCC cells with higher scores had more prominent stem cell

characteristics and lower levels of cellular differentiation

(Figure 7I). These results suggest that immunotherapy may be

more beneficial in high-risk groups.

Drug sensitivity analysis

We obtained the top 16 drugs with the largest statistical

differences by performing individual sensitivity analyses on

the CR that constituted the prognostic model. As the most

important part of the results, we found that CBX2 expression

was positively correlated with sensitivity to acrichine,

nelarabine, ifosfamide, ixabepilone, tfdu, tamoxifen,

fluorouracil, and dexrazoxane; however, the expression of

CBX2 was negatively correlated with the sensitivity of

dasatinib (Figure 8).

FIGURE 6
Heatmap of GSVA enrichment between low-risk and high-risk score groups.
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FIGURE 7
Relationship between CRs model and immunity. (A and B) Score of 16 immune cells in the TCGA group and ICGC group. (C and D) Score of
13 immune-related functions in the TCGA group and ICGC group. (E) Expression of immune checkpoints in high- and low-risk groups in TCGA
queue. (F and G) Correlation between CRs score and immune and stroma scores. (H) Risk score difference in CMS subtypes.
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Discussion

Growing research suggests that chromatin regulators play an

important role in tumor development. The lack of chromatin

regulators ASXL1 activates RAS signaling pathways, accelerating

the progress of myeloid malignancies (Zhang, Jiang et al., 2019).

CheRNA is a rich blend of RNA regulators in the function of tumors

associatedwithCSC proliferation and drymaintenance (Zhang,Ding

et al., 2021). PRC2mediates the trimethylation of lysine 27 to histone

H3, a key factor regulating epigenetic plasticity in gliomas (Natsume,

Ito et al., 2013). Previous studies have demonstrated that CRs-based

signatures have predictive power for the prognosis of BLCA patients

(Zhu, Liu et al., 2022). However, few studies have systematically

analyzed the clinical importance of CRs in HCC, and exploring the

role of CRs in HCC can guide effective treatment strategies.

This study first examined differentially expressed CRs

between normal and tumor tissues and then constructed a

prognostic risk score model consisting of seven CRs in the

TCGA cohort by univariate Cox regression analysis and

LassoCox regression analysis. In the TCGA set and the

ICGC set, the overall survival rates of different risk groups

were significantly different, suggesting that the prognostic risk

assessment model can be used to screen rats with poor

survival. In addition, the risk assessment nomogram

incorporates some clinicopathological features, further

enhancing the clinical utility of this prognostic risk scoring

model.

GSVA analysis shows that CR-based characteristics are

mainly related to cancer- and metabolism-related pathways,

such as the P53 signaling pathway and mTOR signaling

pathway. Therefore, the signature based on CRs has the

ability to predict the prognosis of HCC patients and may

play an important role in HCC biology. P53 haploid

insufficiency is helpful for the mTOR signal to pass

through PTEN/PI3K/Akt axis and promote HCC

tumorigenesis (Luo, Fang et al., 2021). The mutation of

p53 in liver cancer may provide a new opportunity for

treatment (Muller and Vousden 2014).

Higher risk scores in HCC patients were associated with

lower progression-free survival, suggesting that prognostic

FIGURE 8
Drug sensitivity analysis based on CellMiner database, screening the first 16 drugs with high correlation with gene expression in CRs prognostic
model.
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risk assessment models for chromatin regulators could be used

to personalize treatment. Immune checkpoints are effective in

high-risk patients who require immunotherapy. Therefore, it

is very important to establish an appropriate model to

distinguish which patients are suitable for immunotherapy.

Research on immune checkpoint inhibitors is booming

(Zongyi and Xiaowu 2020). Patients with high-risk scores

were more common in aDCs and macrophages. Studies have

shown that the increase in tumor-associated macrophages is

due to their role in immune invasion, leading to poor

prognosis in HCC patients (Zhou, Zhou et al., 2016).

Patients with high-risk scores were more common in aDCs

and macrophages. Studies have shown that the increase in

tumor-associated macrophages is due to their role in immune

invasion, leading to poor prognosis in HCC patients.

In conclusion, we created a prognostic marker model

consisting of 7 CRs. The TCGC and ICGC databases showed

that the model was OS-independent and strongly correlated with

the immune microenvironment, tumor microenvironment, and

drug sensitivity. It provides new ideas andmethods for predicting

liver cancer, immunotherapy, and evaluating drug sensitivity.

However, there were no pivotal trials or large clinical trials in this

study to confirm this result.
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