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High-dimensional mediation analysis has been developed to study whether

epigenetic phenotype in a high-dimensional data form would mediate the

causal pathway of exposure to disease. However, most existing models are

designed based on the assumption that there are no confounders between the

exposure, themediators, and the outcome. In practice, this assumptionmay not

be feasible since high-dimensional mediation analysis (HIMA) tends to be

observational where a randomized controlled trial (RCT) cannot be

conducted for some economic or ethical reasons. Thus, to deal with the

confounders in HIMA cases, we proposed three propensity score-related

approaches named PSR (propensity score regression), PSW (propensity score

weighting), and PSU (propensity score union) to adjust for the confounder bias

in HIMA, and compared them with the traditional covariate regression method.

The proceduresmainly include four parts: calculating the propensity score, sure

independence screening, MCP (minimax concave penalty) variable selection,

and joint-significance testing. Simulation results show that the PSUmodel is the

most recommended. Applying our models to the TCGA lung cancer dataset, we

find that smoking may lead to lung disease through the mediation effect of

some specific DNA-methylation sites, including site Cg24480765 in gene RP11-

347H15.2 and site Cg22051776 in gene KLF3.
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1 Introduction

Mediation analysis was proposed by Baron and Kenny (1986). It has been widely used

in sociological, psychological, and medical research (MacKinnon et al., 2007; Lockhart

et al., 2011; Wen and Ye, 2014), aiming to study how a primary exposure X indirectly

affects the outcome Y through one or more mediators M (MacKinnon et al., 2007). For

instance, epigenetic marks (M) such as DNA methylation are believed to mediate the
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causal pathway of smoking (X) to disease occurrence (Y)

(Cortessis et al., 2012; Valeri et al., 2017; Fujii et al., 2021).

Notably, due to the advancement in high throughput technology,

epigenetic data are usually generated in a high-dimensional form.

The need for mediation analysis toward high-dimensional

epigenetic data motivates mediation analysis to be developed

from low to high dimensions. Many scholars have focused on the

hypothesis testing method under high-dimension cases (Huang

and Pan, 2016; Djordjilovic et al., 2019; Gao et al., 2019); while for

the mediator selection problem, Zhang et al. first proposed a

complete high-dimensional mediation analysis (HIMA) model

based on SIS dimension reduction, MCP penalty estimation, and

joint-significance test (Zhang et al., 2016). Furthermore, HIMA

was generalized to survival outcome and non-linear assumptions

for different application scenarios (Loh et al., 2020; Luo et al.,

2020; Cui et al., 2021; Zhang et al., 2021).

Nevertheless, the premise of an unbiased inference in

mediation analysis is the no-confounding assumption: there

are no confounders between the exposure, the mediators, and

the outcome (VanderWeele, 2009). Imai et al. (2010) modified it

as a sequential ignorability assumption: 1) given the confounders,

the treatment assignment is assumed to be ignorable

(independent of outcomes and mediators); 2) given the

confounders and exposure, the mediator is ignorable. Part 1)

can be satisfied by RCT, while part 2) is often considered to be

irrefutable (Manski, 2007), which is hard to guarantee even in

RCT. Thus, in this study, we assume by default that part 2) holds

and mainly focus on the confounding problem caused by non-

randomization. In most high-dimensional mediation cases, RCT

is not feasible because of the economic cost or ethical issues. This

results in an uneven distribution of confounders between

exposure groups. For example, when exploring the

relationship among smoking X, DNA methylation M and

disease occurrence Y, the baseline factors such as age and

gender would also have an impact on smoking status and

disease occurrence (e.g., males may be more likely to smoke

and more vulnerable to lung disease than females, and we cannot

force non-smokers to be smokers). Moreover, the baseline factors

tend to be unevenly distributed in the smoking group and the

non-smoking group because of the non-randomization. Thus,

the confounding problem is almost inevitable.

To adjust for the confounders in observational studies,

regression analyses (e.g., linear and logistic regression) are the

most popular due to their simplicity (Normand et al., 2005).

Nonetheless, when there are a large number of variables,

regression may work inefficiently and another helpful tool,

propensity score (PS), would be more powerful (Lu, 2009). A

propensity score represents the probability for an individual to

have been assigned to an exposure (or treatment), conditional on

a host of potential confounders (Lanza et al., 2013). By

controlling the propensity score in a proper way like

matching, regression, or inverse probability weighting, the

confounders could be adjusted, which helps to create a

theoretical randomized controlled trial (RCT) (Rosenbaum

and Rubin, 1983; D’Agostino, 1998) and satisfy the

ignorability assumption. Compared with the regression

adjustments, propensity score concentrates all covariates into

a single “score” variable, which is more flexible and adequate to

eliminate confounding bias (Austin, 2011; Yu et al., 2021).

Previous studies have already applied PS in mediation analysis

(Coffman, 2011; Jo et al., 2011; Yu et al., 2021). However, there is

still a lack of insights into the appropriate utilization of PS for

adjusting confounders in HIMA under continuous (or binary)

outcomes.

Therefore, in this article, we proposed three propensity score-

related approaches to adjust for confounders in HIMA with

continuous outcomes. The first two methods are inspired,

respectively, by viewing PS as a covariate or using PS to

conduct weighted estimation. The third method is a hybrid of

the former two. Our results show that the hybrid model performs

the best, with the most accurate inference result.

The structure of this article is as follows. The following

section introduces the proposed high-dimensional mediation

models, adjusting for confounders based on the propensity

score. Then, we show the simulation results to illustrate the

performance of the models. Additionally, we apply our models to

the lung dataset in TCGA, identifying the true DNAmethylation

sites that mediate the causal pathway of smoking in lung disease.

Lastly, we summarize and list prospects of future research.

2 Methods

2.1 The model

In typical observational HIMA research with a sample size of

n, we define the exposure variable as X, where X � 1 represents

the treatment group and X � 0 represents the controlled group;

let Y be the continuous outcome variable, M �
(M1,M2, . . . ,Mp)T be the p−dimensional (p≫ n) potential

mediators, and Z � (Z1, Z2, . . . , Zw)T be the baseline

confounders. For individual i, i � 1, 2, 3, . . . , n, we have the

model:

Mki � ck + αkXi + ΘT
kZi + eki , k � 1, 2, . . .p

Yi � c + γXi + βTMi +ΦTZi + ξki
. (1)

Note that α � (α1, . . . , αp)T is the coefficient vector from

exposure X to mediators M � (M1, . . . ,Mp)T, while

β � (β1, . . . , βp)Tis the coefficient vector from M �
(M1, . . . ,Mp)T to outcome Y; αkβk corresponds to the

mediation effect of Mk. If αkβk ≠ 0, we consider Mk as a

significant mediator; Φ � (φ1,φ2, . . . ,φw)T is the coefficient

vector measuring the effect of Z on Y ; Θk �
(θk1, θk2, . . . , θkw)T relates to the effect of confounders Z on

mediatorMk. The relationship between variables in the model is

shown in Figure 1:
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2.2 Methodology

2.2.1 Adjusting confounders using propensity
score

Since there are baseline confounders, we integrate a

propensity score (PS) into the model. Rosenbaum and Rubin

(Rubin, 1983) defined propensity score as the probability of

treatment assignment according to the baseline

covariates Z � (Z1, . . . , Zm)T:
S � P(X � 1|Z1, . . . , Zm) .

The propensity score represents the probability of an

individual i, i � 1, 2, . . . n being allocated to the treatment

group X � 1. In practice, the application procedure can be

summarized as follows: first, estimate the propensity score and

then adopt various methods such as matching, regression,

weighting, etc., to adjust for confounding. Finally, evaluate the

adjusted causal effect. The propensity score can be evaluated by

logistic regression (Lanza et al., 2013):

logit(Si � P(Xi � 1)) � b0 + b1Z1i + . . . + bmZmi .

In consideration of the baseline confounders, the actual high-

dimensional mediation analysis model is shown in (1). Therefore,

we adopt propensity score regression (PSR) and propensity score

weighting (PSW) to reduce the bias.

The main idea of PSR is adding the PS variable into

regression. The propensity score can be regarded as the

“coarsest function” of the confounding covariates (D’Agostino,

1998). Therefore, controlling the propensity score in regression

works similar to taking all the confounders as covariates when

estimating. We can use a linear regression model, if the outcome

variable is continuous, and a logistic regression model, if the

outcome variable is binary (Austin, 2011). We estimate the effect

of the model (2):

Mki � ck + α̂kXi + k̂Si + eki , k � 1, 2, . . .p

Yi � c + γ̂Xi + β̂
T
Mi + k̂Si + ξki.

(2)

In contrast, PSW first constructs inverse probability weights

from the propensity score for individual i (Hirano and Imbens,

2001):

wi � Xi

Si
+ (1 −Xi)
(1 − Si) .

The weighted sample satisfies the condition that exposure (or

treatment) assignment is independent of the baseline covariates

(Austin and Stuart, 2015), andmeets the ignorability assumption.

Consequently, by weighted estimation, we can get an unbiased

estimation of the coefficient related to X:

Mki � ck + cz + α̂k,wXi + eki , k � 1, 2, . . .p

Yi � c + c*z + γ̂k,wXi + β̂
T
Mi + ξki.

(3)

In the above formula, α̂k,w and γ̂k,w are the coefficients by

weighted estimation according to the weight vector S.

In the preliminary Monte Carlo simulation, we found that

PSM performs better in the estimation of αk, while PSW works

more efficiently in the βkselection. Therefore, we combine the

FIGURE 1
High-dimensional mediation model with confounders.
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two approaches by using PSM in the M mediator model

component and using PSW in the Y outcome component.

The new model is named PSU, as shown below:

Mki � ck + α̂kXi + k̂Si + eki , k � 1, 2, . . .p

Yi � c + c*z + γ̂k,wXi + β̂
T
Mi + ξki

(4)

We apply these three model ideas to steps 2–4 in the

following procedure.

2.2.2 Procedure
We take the analysis procedure used by Zhang et al. (2016) as

HIMA and propose to use the propensity score to adjust for

confounders in the HIMA procedure. The detailed procedure is

as follows:

1. The propensity score and inverse probability weight were

calculated.

First, X was taken as the response and Z as the predictors to

fit the logical model, and the propensity score was calculated:

logit(Si � P(Xi � 1)) � l0 + l1Z1i + . . . + lmZmi,

Si � exp(l0 + l1Z1i + . . . + lmZmi)
1 + exp(l0 + l1Z1i + . . . + lmZmi).

Then, we calculated the weight. The weight of the group was

given as X � 1as 1/S, and that of the group X � 0 as 1/(1 − S):

wi � Xi

Si
+ (1 −Xi)
(1 − Si) .

2. The dimension was reduced by sure independence

screening (SIS).

Penalty estimation methods such as MCP and SCAD may

not perform ideally in accuracy and computational cost under an

ultra-high-dimensional variable space (Fan and Lv, 2008). Thus,

we first adopted the sure independence screening (SIS) (Fan and

Lv, 2008) method to reduce dimension p from high-dimensional

to a moderate scale d � [ 2n
log(n)]. The set ISIS was identified:

ISIS � {k: Mk is among the top dmediators with largest effect to Y }.
For PSR and PSUmethods, βk can be estimated by maximum

likelihood estimation (MLE):

z
∑Log (p1(Yi) )

zβk
� 0,

where the maximum likelihood function p1(Yi) is:

p1(Yi; c, γ, βk, k) � 1���
2π

√ exp{ − 1
2
(Yi − c − γXi − βkM − kS)2}.

For the PSW method, since the confounders indirectly affect

βk by interfering with the coefficient γ, we adopt a “two step”

weighting method. For each Mk, γ̂k,w is obtained by

weighted MLE:

z
∑wiLog (p2(Yi) )

zβk
� 0,

where the maximum likelihood function p2(Yi) is:

p2(Yi; c, γ, βk) � 1���
2π

√ exp{ − 1
2
(Yi − c − γXi − βkM)2}.

After obtaining γ̂k,w, the residual can be derived:

êk � Y − γ̂k,wX.

Then βk can be simply acquired by fitting the regression

model of ek ~ Mk without considering weight.

The purpose of SIS is to filter out most of the mediators that

are irrelevant or weakly related to the response.

3. Candidate mediators for testing through MCP-penalized

estimation were selected.

Through SIS, we obtained a set of potential mediators with

d-dimension:

MSIS � {Mk: k ∈ ISIS },

Then, we employed MCP-penalized estimation to further

select mediators. For PSR method, we minimized the sum of

squared residuals including propensity score term S:

∑n
i�1

(Yi − c − γXi −∑
j ∈ ISIS

βjMij − S)2

+∑
k∈ISIS

p(βk).
For PSW and PSU, we minimized the sum of squared

residuals:

∑n
i�1

(Yi − c − γXi −∑
j ∈ ISIS

βjMij)2

+∑
k∈ISIS

p(βk).
We selected the MCP penalty function:

p(βk) � λ[∣∣∣∣βk∣∣∣∣ −
∣∣∣∣βk∣∣∣∣2
2δλ

]I{0≤ ∣∣∣∣βk∣∣∣∣< δ} + λ2δ

2
I{∣∣∣∣β∣∣∣∣≥ δλ},

where λ is the regularization parameter, which can be

selected by AIC and BIC; δ is the tuning parameter.

According to Zhang (2010), MCP is preferred to other penalty

functions because MCP can choose the correct model with a

probability tending to 1, and the procedure can be acquired in the

R package ncvreg presented by Breheny and Huang (2011).

4. Joint-significance test.

Mk is considered a true mediator when α̂k and β̂k are

significant simultaneously. In other words, mediator Mk will

be identified if both the hypothesisH0,βk: β̂k � 0 andH0,αk: α̂k �
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0 are rejected. Let C � {k: β̂k ≠ 0} represent the results based on

the penalized estimation. Then, we performed the joint-

significance test for the Mk in set C � {k: β̂k ≠ 0}.
For H0,βk: β̂k � 0, the p-value can be obtained:

Praw,βk � 2{1 −Φ(
∣∣∣∣β̂k∣∣∣∣
σ̂βk

)},
where Φ(·) is the cumulative distribution function of the

standard normal distribution N(0, 1); σ̂k,β is the estimated

standard error of β̂k which can be calculated through the

oracle property of MCP. The obtained p-value was then

corrected by the Benjamini–Hochberg (BH) method to control

the false discovery rate (FDR). The Praw,βk was ranked

incrementally, and rβk was assumed to be the location number

of β̂k, then PBH,βk was:

PBH,βk � max(Praw,βk ·
p

rβk
, 1).

Here, we chose to control FDR instead of family-wise error

rate (FWER) because FDR gave a less conservative way than

FWER to detect mediators in HIMA. Similarly, the p-value for

H0,αk: α̂k � 0 is:

Praw, αk � 2{1 −Φ(|α̂k|
σ̂αk

)}.
The effect α̂k is estimated by the first equation in model (2)

for PSR and PSU and the first equation in model (3) for PSW.

Also Praw, αk can be corrected by the BH method:

PBH, αk � max (Praw, αk ·
p

rαk
, 1).

Finally, the joint-significance p-value forMk is defined as the

max one of PBH,αk and PBH,βk:

P
Mk

� max (PBH,αk , PBH,βk).

We set the type I error rate α as 0.05 for all the tests. The brief

structure of the whole procedures is summarized in Figure 2.

3 Simulation

In this section, we will evaluate ourmodels by simulation studies.

The simulation data are generated according to the true model (1):

Mki � ck + αkXi + ΘT
kZi + eki , k � 1, 2, . . .p

Yi � c + γXi + βTMi +ΦTZi + ξki
.

Ten confounders Z � (Z1,/, Z10)T between X, M, and Y

are considered, of which Z1 − Z5 follow independent Bernoulli

distribution B(0.3) and Z6 − Z10 follow multivariate normal

distribution with a mean vector μ � (0, 0, 0, 0, 0)T and a

covariance matrix Σ:

Σ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.3 0.3 0.3 0.3
0.3 1
0.3 0.3
0.3
0.3

0.3
0.3

0.3 0.3 0.3
1 0.3 0.3
0.3
0.3

1
0.3

0.3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

FIGURE 2
The structure of the high-dimensional mediation models with PS adjusting for confounders.
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Exposure X is generated as binomial distribution B(pz) with
pz(X � 1|Z1,/, Z10) � 1

1+e−(l0+l1Z1+·+l10Z10 ),
where l � (l1,/, l10)T � (0.1, 0.3, 0.4, 0.4, 0.6, 0.1, 0.3, 0.4, 0.4, 0.6)T;

Mediators M and outcome Y depend mainly on the settings

of Θk,Φ, and the mediation effect αβ. Let Θk � (θk1,/, θk10)T �
(0.2, 0.3, 0.3, 0.5, 0.6, 0.2, 0.3, 0.3, 0.5, 0.6)T be the effect of Z on

each Mk. For simplicity, we set all Θk the same. Let Φ �
(ϕ1,/,ϕ10)T � (0.1, 0.3, 0.4, 0.4, 0.6, 0.1, 0.3, 0.4, 0.4, 0.6)T be

the effect of Z on Y. In addition, the terms c, γ, ck, ξk, ek are

generated by the following patterns:

ck ~ U(0, 2); ek ~ N(0, 1.2); ξk ~ N(0, 1); c � 0.5, γ � 0.5.

In order to cover most scenarios in practical application, two

sample size levels (n � 300 and n � 500) and two dimension

levels (p � 1000 and p � 10000) are explored with three

mediation effect generation modes as shown below:

(1) Mode 1: Let α � 0.6t and β � 0.4t for the first eight elements,

where t � (0.50, 0.60, 0.75, 0.80, 1.00, 1.20, 1.50, 2.00); the

following four elements (α9, α10, α11, α12) � (0, 0, 1.20, 1.20),
(β9, β10, β11, β12) � (0.80, 0.80, 0, 0); the other elements are

all 0. That is:

α � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.30, 0.36, 0.45, 0.48, 0.60, 0.72, 0.90, 1.20, 0, 0, 1.20, 1.20︸                        ︷︷                        ︸
α1 ,...,α12

, 0, . . . , 0︸   ︷︷   ︸
α13 ,...,αp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

,

β �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.20, 0.24, 0.30, 0.36, 0.40, 0.48, 0.60, 0.80, 0.80, 0.80, 0, 0︸                        ︷︷                        ︸

β1 ,...,β12

, 0, . . . , 0︸   ︷︷   ︸
β13 ,...,βp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

(2) Mode 2: Let α � 0.5t and β � 0.5t for the first eight elements,

and the other settings are similar with those of mode 1:

α � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.25, 0.30, 0.375, 0.40, 0.50, 0.60, 0.75, 1.00, 0, 0, 1.00, 1.00︸                         ︷︷                         ︸
α1 ,...,α12

, 0, . . . , 0︸   ︷︷   ︸
α13 ,...,αp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

,

β �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.25, 0.30, 0.375, 0.40, 0.50, 0.60, 0.75, 1.00, 1.00, 1.00, 0, 0︸                         ︷︷                         ︸

β1 ,...,β12

, 0, . . . , 0︸   ︷︷   ︸
β13 ,...,βp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

(3) Mode 3: Let α � 0.4t and β � 0.6t for the first 8 elements, and

the other settings are similar with those of mode 1:

α � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.20, 0.24, 0.30, 0.36, 0.40, 0.48, 0.60, 0.80, 0, 0, 0.80, 0.80︸                        ︷︷                        ︸
α1 ,...,α12

, 0, . . . , 0︸   ︷︷   ︸
α13 ,...,αp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

,

β �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.30, 0.36, 0.45, 0.48, 0.60, 0.72, 0.90, 1.20, 1.20, 1.20, 0, 0︸                        ︷︷                        ︸

β1 ,...,β12

, 0, . . . , 0︸   ︷︷   ︸
β13 ,...,βp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

It should be noted that in our settings, only the first eight

mediators are non-zero, which satisfy the condition αkβk ≠ 0.

Each simulation was repeated 500 times with the seeds 1–500. In

addition to the proposed models, we conducted the regression

adjustment model that directly includes all confounders Z as

covariates into the mediation analysis procedure for comparison.

The simulation results are similar among the three modes.

Only results of mode 1 are shown in Tables 1–3 and Figure 3. The

other results are provided in Supplementary Material S1.

Tables 1 describes the mediator correct selection numbers by

MCP out of 500 repeats, and Table 2 describes the testing

performance by measuring the truth positive rate (TPR), the

false positive rate (FP), and the false discovery rate (FDR). Under

most settings, both the correct select numbers and TPR are

ranked consistently as COV > PSU > PSR > PSW, and the FP is

ranked as PSW > PSU > COV > PSR. For example, when

detecting the mediator M4 with a sample size n � 300 and

p � 10000, the TPR is 0.448 for COV, 0.388 for PSU,

0.330 for PSW, and 0.240 for PSR. As for the average FP, the

value is 0.436 for PSW, 0.256 for PSU, 0.136 for COV, and

0.088 for PSR (sample size n � 300 and p � 10000). All models

keep FP at a very low level, with an average value of less than

0.5 per test, which can be negligible. In addition, the PSU model

has the most sufficient control of FDR, of which the value is the

closest to (and does not exceed) the type I error rate of 0.05. Take

the case with a sample size n � 300 and p � 10000 as an

illustration. The FDR for PSU is 0.0447, 0.0173 for PSR,

0.0706 for PSW, and 0.0229 for COV. Notably, the PSU

model is the least conservative one among the four models.

Table 3 presents the estimate and mean square error (MSE)

for the indirect effects αkβk; Figure 1 shows the relative estimate

error histogram. The estimators approach the true value as the

indirect effect increases (M1 −M8), and all models tend to be

accurate when n gets larger and p gets smaller. Among the four

models, the PSU model shows the most stability, with the lowest

relative error in most cases. For example, when sample size n =

300 and dimension p = 1000, the max relative estimate error of

the PSU model is around 0.05, while the other three models are

all close to 0.15. As for the performance of other models, PSR is

sensitive to the conditions and works best when the data

information is sufficient (n � 500, p � 1000), while the PSW

model behaves inversely. The traditional COV model shows

the biggest bias, and results show that under insufficient

sample conditions (sample size n � 300, p � 10000), the

relative estimate error of the COV model toward M4 −M7 is

almost invariant around 0.15–0.20, indicating there is a fixed bias

when adjusting for confounders by the COV model.

Overall, although the COV model has the highest TPR, it

shows a large bias when estimating the mediation effects. The

PSU model is the most recommended, which performs best in

estimating and is only second to the COV model in testing.
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4 Data application

Smoking is a major environmental hazard promoting lung

disease development. Previous studies have demonstrated that

smoking can lead to some abnormal expression of CpG islands

(DNAmethylation sites) in lung-related genes, which may be the

immediate cause of lung disease (Toyooka et al., 2003; Harlid

et al., 2014). Generally, DNA methylation data can be obtained

by the technology Infinium HumanMethylation450, resulting in

a dataset of more than 480,000 CpG sites over the whole genome

TABLE 1 Correct selection numbers for the eight true mediators (M1–M8) (α � 0.6t, β � 0.4t )

Methods
MCP correct selection numbers

M1
(αβ = 0.0600)

M2
(αβ = 0.0864)

M3
(αβ = 0.1350)

M4
(αβ = 0.1536)

M5
(αβ = 0.2400)

M6
(αβ = 0.3456)

M7
(αβ = 0.5400)

M8
(αβ = 0.9600)

N =
300 p =
1,000

PSR 245 315 385 383 448 486 499 500

PSW 305 372 438 454 491 500 500 500

PSU 305 372 438 454 491 500 500 500

COV 298 379 457 461 493 499 500 500

N =
300 p =
10,000

PSR 75 111 173 197 328 390 474 500

PSW 104 163 257 301 431 477 499 500

PSU 104 163 257 301 431 477 499 500

COV 110 199 302 340 452 492 500 500

N =
500 p =
1,000

PSR 354 441 472 485 494 500 500 500

PSW 422 467 489 498 499 500 500 500

PSU 422 467 489 498 499 500 500 500

COV 424 467 496 496 500 500 500 500

N =
500 p =
10,000

PSR 163 234 351 391 476 497 499 500

PSW 213 319 424 455 492 499 500 500

PSU 213 319 424 455 492 499 500 500

COV 256 363 440 476 499 500 500 500

*Correct selection numbers measure the total selection number by MCP-penalized regression for each mediator (out of 500 simulation repeats).

TABLE 2 TPR, FP, and FDR for the eight true mediators (M1–M8) (α � 0.6t, β � 0.4t).

Methods
TPR FP FDR

M1
(αβ = 0.0600)

M2
(αβ = 0.0864)

M3
(αβ = 0.1350)

M4
(αβ = 0.1536)

M5
(αβ = 0.2400)

M6
(αβ = 0.3456)

M7
(αβ = 0.5400)

M8
(αβ = 0.9600)

N =

300 p =

1,000

PSR 0.086 0.252 0.442 0.476 0.772 0.928 0.992 1 0.106 0.0161

PSW 0.178 0.29 0.462 0.51 0.746 0.84 0.954 0.994 0.344 0.0515

PSU 0.16 0.3 0.514 0.588 0.862 0.962 0.996 1 0.194 0.0302

COV 0.182 0.368 0.61 0.654 0.896 0.978 1 1 0.142 0.0212

N =

300 p =

10,000

PSR 0.03 0.066 0.182 0.24 0.536 0.744 0.942 1 0.088 0.0173

PSW 0.044 0.126 0.244 0.33 0.624 0.83 0.952 0.99 0.436 0.0706

PSU 0.052 0.126 0.296 0.388 0.73 0.924 0.994 1 0.256 0.0447

COV 0.056 0.174 0.364 0.448 0.78 0.966 0.996 1 0.136 0.0229

N =

500 p =

1,000

PSR 0.362 0.608 0.828 0.892 0.976 1 1 1 0.178 0.0223

PSW 0.376 0.55 0.714 0.796 0.902 0.966 0.994 1 0.436 0.0521

PSU 0.42 0.65 0.85 0.91 0.99 1 1 1 0.248 0.0302

COV 0.488 0.706 0.912 0.926 0.994 1 1 1 0.156 0.0186

N =

500 p =

10,000

PSR 0.158 0.286 0.604 0.708 0.938 0.994 0.998 1 0.162 0.0239

PSW 0.184 0.362 0.596 0.706 0.886 0.97 0.994 0.998 0.432 0.0559

PSU 0.218 0.418 0.74 0.824 0.972 0.998 1 1 0.262 0.0354

COV 0.244 0.442 0.764 0.872 0.988 1 1 1 0.166 0.0221

*TPR measures the true positive rate towards each true mediator (M1–M8); FP is the false positive number; and FDR is the false discovery rate (= FP/TP, where TP is the total positive

numbers). All the indicators are the average over the 500 simulation repeats.
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TABLE 3 Estimation results of mediation effects (αβ)(α � 0.6t, β � 0.4t).

(α = 0.6t, β =
0.4t) (MSE)

(0.30,0.20) =
0.0600
(MSE)

(0.36,0.24) =
0.0864
(MSE)

(0.45,0.30) =
0.1350
(MSE)

(0.48,0.32) =
0.1536
(MSE)

(0.60,0.40) =
0.2400
(MSE)

(0.72,0.48) =
0.3456
(MSE)

(0.90,0.60) =
0.5400
(MSE)

(1.20,0.80) =
0.9600
(MSE)

N = 300 p =
1,000

PSR 0.0500 (0.0036) 0.0800 (0.0031) 0.1302 (0.0054) 0.1438 (0.0052) 0.2397 (0.0078) 0.3405 (0.0090) 0.5431 (0.0133) 0.9503 (0.0207)

PSW 0.0701 (0.0055) 0.0946 (0.0042) 0.1528 (0.0075) 0.1609 (0.0072) 0.2627 (0.0100) 0.3685 (0.0146) 0.5748 (0.0255) 0.9915 (0.0423)

PSU 0.0586 (0.0037) 0.0862 (0.0027) 0.1422 (0.0044) 0.1528 (0.0046) 0.2516 (0.0054) 0.3525 (0.0083) 0.5531 (0.0139) 0.9677 (0.0209)

COV 0.0508 (0.0031) 0.0787 (0.0023) 0.1299 (0.0033) 0.1402 (0.0035) 0.2313 (0.0047) 0.3247 (0.0069) 0.5128 (0.0121) 0.9092 (0.0195)

N = 300 p =
10,000

PSR 0.0331 (0.0063) 0.0420 (0.0035) 0.0821 (0.0064) 0.0928 (0.0076) 0.1854 (0.0121) 0.2928 (0.0151) 0.4858 (0.0184) 0.8777 (0.0219)

PSW 0.0635 (0.0089) 0.0642 (0.0065) 0.1040 (0.0094) 0.1313 (0.0103) 0.2322 (0.0122) 0.3454 (0.0144) 0.5326 (0.0214) 0.9356 (0.0393)

PSU 0.0483 (0.0058) 0.0590 (0.0043) 0.0998 (0.0066) 0.1255 (0.0073) 0.2289 (0.0086) 0.3409 (0.0092) 0.5214 (0.0137) 0.9044 (0.0235)

COV 0.0359 (0.0034) 0.0629 (0.0025) 0.0978 (0.0038) 0.1174 (0.0033) 0.1868 (0.0047) 0.2764 (0.0058) 0.4331 (0.0100) 0.7711 (0.0199)

(α = 0.6t, β =
0.4t) (MSE)

(0.30,0.20) =
0.0600 (MSE)

(0.36,0.24) =
0.0864< (MSE)

(0.45,0.30) =
0.1350 (MSE)

(0.48,0.32) =
0.1536 (MSE)

(0.60,0.40) =
0.2400 (MSE)

(0.72,0.48) =
0.3456 (MSE)

(0.90,0.60) =
0.5400 (MSE)

(1.20,0.80) =
0.9600 (MSE)

N = 500 p =
1,000

PSR 0.0573 (0.0021) 0.0893 (0.0016) 0.1402 (0.0023) 0.1606 (0.0022) 0.2420 (0.0032) 0.3516 (0.0043) 0.5438 (0.0079) 0.9678 (0.0107)

PSW 0.0703 (0.0020) 0.0991 (0.0023) 0.1501 (0.0040) 0.1724 (0.0037) 0.2572 (0.0054) 0.3701 (0.0077) 0.5649 (0.0122) 0.9945 (0.0207)

PSU 0.0644 (0.0012) 0.0931 (0.0014) 0.1441 (0.0023) 0.1638 (0.0022) 0.2470 (0.0031) 0.3575 (0.0044) 0.5517 (0.0077) 0.9773 (0.0122)

COV 0.0535 (0.0016) 0.0849 (0.0012) 0.1339 (0.0017) 0.1519 (0.0020) 0.2325 (0.0028) 0.3399 (0.0039) 0.5277 (0.0071) 0.9447 (0.0119)

N = 500 p =
10,000

PSR 0.0423 (0.0032) 0.0609 (0.0025) 0.1180 (0.0038) 0.1405 (0.0037) 0.2282 (0.0040) 0.3320 (0.0047) 0.5138 (0.0070) 0.9279 (0.0116)

PSW 0.0576 (0.0039) 0.0839 (0.0030) 0.1369 (0.0046) 0.1601 (0.0043) 0.2484 (0.0055) 0.3527 (0.0073) 0.5438 (0.0120) 0.9617 (0.0200)

PSU 0.0501 (0.0026) 0.0780 (0.0023) 0.1303 (0.0031) 0.1545 (0.0029) 0.2398 (0.0034) 0.3421 (0.0045) 0.5316 (0.0077) 0.9478 (0.0122)

COV 0.0492 (0.0011) 0.0733 (0.0015) 0.1183 (0.0021) 0.1375 (0.0020) 0.2130 (0.0026) 0.3071 (0.0038) 0.4770 (0.0063) 0.8622 (0.0123)

aThe estimation value of mediation effect (or MSE) for each mediator is calculated as the average (or standard error) of the corresponding mediators that are selected by MCP over the 500 simulation repeats; PSR, the propensity score regression method;

PSW, the propensity score weighting method; PSU, the hybrid method; COV, the traditional covariate regression method.
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FIGURE 3
The relative estimate error for the true mediators (α � 0.6t, β � 0.4t). *Relative estimate error � |estimate value– true value| / true value

TABLE 5 Summary of the selected CpGs by the proposed models.

Method CpG Gene Chrom α̂ β̂ %TE p-value (FDR)

PSR cg24480765 RP11-347H15.2 chr11 −0.1099 0.8225 18.0072 0.0022

cg13835688 SLC25A25 chr9 0.0207 −1.9684 8.1322 0.0103

PSW cg24480765 RP11-347H15.2 chr11 −0.1079 0.8225 16.62 0.0003

cg22051776 KLF3 chr4 0.0291 −2.0930 11.38 0.0203

cg22664428 DGCR11, DGCR2 chr22 0.0305 1.5568 −8.89 0.0041

cg08763422 WHSC1 chr4 0.0498 −0.5382 5.02 0.0125

PSU cg24480765 RP11-347H15.2 chr11 −0.1099 0.8225 16.9259 0.0013

cg22051776 KLF3 chr4 0.0328 −2.0930 12.8584 0.0203

cg22664428 DGCR11, DGCR2 chr22 0.0325 1.5568 −9.4776 0.0041

cg08763422 WHSC1 chr4 0.0497 −0.5382 5.0019 0.0456

TABLE 4 Clinical characteristics of the patients in the smoker (S) and non-smoker (NS) groups.

Variable Total (n = 373) Smoker (n = 254) Non-smoker (n = 119) p-value

Age (std) 66.32 (10.09) 64.27 (9.69) 70.69 (9.55) 6.57 × 10(−09)

Gender Male 217 156 61 0.082

Female 156 98 58

Race White 269 173 96 0.040

Others 104 81 23

DLCO(std) 70.52 (21.63) 67.62 (22.16) 76.70 (19.12) 6.53 × 10(−05)
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(Dedeurwaerder et al., 2011). Hence, we conducted high-

dimensional mediation analysis to further discover the specific

functional CpG sites that mediate the relationship between

smoking and lung disease.

Clinical andmethylation data from the cohorts of lung squamous

cell carcinoma (LUSC) and lung adenocarcinoma (LUAD)were used

for analysis. The clinical datasets included 626 and 706 samples,

respectively, and the methylation dataset included 485,577 probes.

Baseline information such as age, sex, and race were collected, and

DLCO (diffusing capacity of the lung for carbon monoxide) was

measured to characterize the lung function of every individual.

Subjects were categorized into the non-smoker group and smoker

group according to their smoking status.

After removing the subjects with “not available,” there were

254 samples in the smoker group and 119 samples in the non-

smoker group. As shown in Table 4, the baseline variables such as

age, race, gender, and the outcome variable DLCO show

marginally significant differences between the smoking groups,

indicating the necessity to adjust for confounders in the following

analysis.

Table 5 summarizes the analysis results. We focused on

methylation sites with a %TE (total effect proportion) greater

than 10. Cg24480765 in the gene RP11-347H15.2 was a

significant mediation site detected by all models, whose

mediation effect αβ is around 0.11×0.82. The results reveal

that smoking will promote the demethylation of Cg24480765,

leading to an increase in gene expression and ultimately

reducing the DLCO level. In other words, the gene RP11-

347H15.2 that Cg24480765 locates may be a proto-oncogene.

We have not found direct research on gene RP11-347H15.2.

However, the gene belongs to the LncRNA family and much

literature has stated that LncRNA can be an important

molecular marker of various cancers and is closely related

to the occurrence of cancer (Huarte, 2015; Schmitt and Chang,

2016). Thus, future insights into the gene RP11-357H15.2 will

be meaningful.

We identified another site, Cg22051776, in the KLF3 gene by

models PSU and PSW. The indirect mediation effect αβ is about

+0.03 × − 2.5, suggesting that smoking will promote the DNA

methylation of the site to repress the gene expression and finally

reduce the DLCO level. The causal chain means that the KLF3 gene

may inhibit lung disease. Similarly, existing studies have proved that

KLF3 is an important tumor suppressor gene of lung

adenocarcinoma, and KLF3 silencing promotes the EMT process

in lung cancer (Zhu et al., 2012; Sun et al., 2019). The consistency of

experimental literature and our data-driven inference verifies the

accuracy and reliability of our models to some extent.

5 Discussion

The unbiased high-dimensional mediation inference

needs to satisfy the no-confounding assumption. However,

confounding is almost inevitable in observational HIMA

cases because of the non-randomization of the baseline

covariates. To solve the problem, we adopted the HIMA

framework of SIS, MCP, and joint-significance testing, and

combined it with three propensity score utilization methods

to adjust for confounders. We compared them to the

regression adjustment method (COV model) that takes all

confounders as covariates. Simulation results show that our

proposed model PSU performs the best from the overall

perspective of estimation accuracy, TPR, FP, FDR, and

model simplicity. Finally, we applied our models to the

TCGA lung cancer dataset and found the important DNA

methylation mediators, cg24480765 and cg22051776.

Particularly, our utilization of propensity scores is not just

limited to HIMA. It gives an idea of adjusting for confounders

under other causal inference cases.

Still, there are some improvements worth discussion in

the future. First, the HIMA framework we adopted can be

developed in some aspects. For example, Gao et al. (2019)

used a de-biased lasso estimator in the variable selection part,

and developed a new model called HDMA, which can deal

with the correlation between methylation sites better. In

addition, applying other weighting methods such as the

stable weights proposed by Zubizarreta (2015) in the PSW

and PSU models might help to enhance the model robustness.

As for the significance testing part, the joint-significance

testing we used may be conservative (Dai et al., 2022) and

other testing methods such as bootstrapping would be more

powerful. MacKinnon et al. revealed that the bias-corrected

bootstrap is the best method for testing indirect effects

(MacKinnon et al., 2004); Benjamini and Yekutieli. (2005)

introduced a procedure of getting FDR-adjusted multiple

confidence intervals for selected parameters. Yet our

research did not focus much on the testing part. Moreover,

the exposure variable in our model is set to be binary.

Continuous variables or discrete variables with more than

two groups need further expansion.
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