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Synthetic lethality (SL) refers to a genetic interaction in which the simultaneous

perturbation of two genes leads to cell or organism death, whereas viability is

maintainedwhen only one of the pair is altered. The experimental exploration of

these pairs and predictive modeling in computational biology contribute to our

understanding of cancer biology and the development of cancer therapies. We

extensively reviewed experimental technologies, public data sources, and

predictive models in the study of synthetic lethal gene pairs and herein

detail biological assumptions, experimental data, statistical models, and

computational schemes of various predictive models, speculate regarding

their influence on individual sample- and population-based synthetic lethal

interactions, discuss the pros and cons of existing SL data and models, and

highlight potential research directions in SL discovery.
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1 Introduction

1.1 The concept of synthetic lethality

Synthetic lethality refers to genetic interactions in which the simultaneous

perturbation of two genes results in cell or organism death, whereas viability is

maintained when only one of the pair loses function. The SL concept was initially

developed in model organisms, including fruit flies (Dobzhansky, 1946; Lucchesi, 1968)

and yeast (Kaiser and Schekman, 1990; Bender and Pringle, 1991). When crossing fruit

flies, early researchers observed that flies harboring concurrent mutations in both the

non-allelic Bar and glass genes died in early stages of development, whereas the presence

of mutation in only one of the genes did not affect viability (Sturtevant, 1956; Lucchesi,

1968). Now we know that these two genes encode transcription factors that direct cell

processes and that the simultaneous disruption of this encoding function in both genes

results in neural defects and death. Early investigators also noted the lethal effect for

embryogenesis caused by the simultaneous disruption of homeobox (HOX) genes (Lewis,

2000), which were initially discovered in Drosophila melanogaster and later found as a
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family of transcription factors that regulate embryogenesis and

morphogenesis. Moreover, Hartwell’s group (Hartwell et al.,

1997) proposed extrapolating the synthetic lethal interactions

observed in yeast to explore SL-based anticancer therapeutic

targets in humans, and in so doing, McManus et al. (2009)

demonstrated similar synthetic lethal killing effects in yeast as

well as cancer cell lines from the mutation of homologous genes

of RAD54 and RAD27.
Eventually, this concept of synthetic lethality was proposed

as a basis for the investigation of drug therapies for human

diseases. As a form of context-dependent essentiality, the

investigation of synthetic lethal genetic interaction has

emerged as a powerful approach to the study of cancer-

related vulnerabilities. A genetic alteration, such as a defect

in a specific tumor suppressor gene (the context), can cause a

second gene to become essential for the proliferation of those

tumor cells. Thus, in principle, selectively targeting this second

SL gene in the presence of the first genetic alteration would be

lethal to the tumor cells alone. This SL paradigm has been

extensively studied in biomarker discovery, cancer therapeutics,

and clinical translation (Sturtevant, 1956; Kaiser and

Schekman, 1990; Bender and Pringle, 1991; Lewis, 2000).

One salient example is the identification of the synthetic

lethal gene pair, BRCA and PARP, which led to the

development of PARP inhibitor therapies, e.g., niraparib, for

patients with ovarian or breast cancers with BRCA mutations

(Hartwell et al., 1997).

1.2 Is synthetic lethality conserved during
clonal evolution or a sample-specific
property?

The complex nature of human genes has led to the adoption

of simplified model organisms in various studies. The high

conservation of many genetic features and pathways between

organisms throughout evolution allows the use of less biologically

complex model organisms than cell lines, animal models, and

humans. Studies of HOX genes in fruit flies, as an example of an

evolutionarily highly conserved family, have contributed to the

understanding of the role of these genes in tumorigenesis and

their potential use as therapeutic targets in human cancer (Feltes,

2019; Feng et al., 2021). In particular, the interplay demonstrated

betweenHOX genes and DNA repair pathways (Feltes, 2019) has

shown the prospect of translation into evolutional studies to

identify synthetic lethal gene partners and novel combination

treatments for cancer. Boone et al. (2007) has recently generated

a global yeast synthetic lethal network that involves 90% of the

yeast genome and can possibly be translated across a wide range

of cancer cell types.

Advances in new technologies, including RNA inference

(RNAi) and clustered regularly interspaced short palindromic

repeats (CRISPR), have led to the broader application of SL

concepts and subsequent screening efforts in in vitro and in vivo

systems and the acquisition of data revealing new insights

regarding the mechanisms of SL. Importantly, studies

facilitated by these new techniques suggested that SL was

more heterogeneous than homogeneous in cancer. In one

instance, using a combinatorial CRISPR technique,

Horlbeck’s (Horlbeck et al., 2018) screening of 222,784 gene

pairs in K562 and Jurkat leukemia cell lines revealed the SL of

1678 pairs in K562 and 454 pairs among Jurkat lines; the two

cell lines shared only 128 (0.057%) of these gene pairs. In a

different study facilitated by combinatorial CRISPR, Shen et al.

(2017) targeted three cell lines, A549, HELA, and 293T, and

found no overlapping synthetic lethal gene pairs among

2628 gene pairs. Although these SL screening studies did not

explore the entire genome, they generated new data suggesting

that most synthetic lethal gene pairs were cancer cell-specific.

This type of specificity can be evident, considering that cell

states diverge in the process of clonal evolution during

tumorigenesis, and that an evolutionarily conserved SL

mechanism can be rare in cancer. Thus, context

dependencies might be more evident for regimens based on

the general principle of synthetic lethality than those that target

single genes (Nijman and Friend, 2013). SL studies based on

specific samples or cancer cells are therefore merited for

exploring genetic interactions and identifying novel drug

combinations to improve cancer treatment.

1.3 Limitations of current reviews on
synthetic lethality

The general understanding of genetic interaction networks

gained from model organisms has wider importance in cancer

biology and therapeutics. The identification of evolutionarily

conserved genes in yeast, as an illustration, has led to the

discovery and characterization of crucial biological

phenomena and thereby contributed to the understanding of

molecular mechanisms underlying cancer development. Several

groups have also reviewed technological advances in the

exploration of genetic interactions based on model

organisms, especially yeast (Dixon et al., 2009; Adames et al.,

2019; Ferreira et al., 2019).

SL research in cancer biology and clinical science has received

a great deal of attention. Kaelin (2005) reviewed the SL concept

and proposed several chemical and genetic tools (short

interfering RNAs, short hairpin RNAs or other interfering

RNAs) for perturbing gene functions in cells. Ten years later,

O’Neil et al. (2017) further promoted SL screening using

genome-editing technologies such as RNAi and CRISPR, and

in 2020, Huang’s laboratory reviewed the use of new genome-

editing technologies, including combinatorial CRISPR, for the

detection of synthetic lethal genes and their application in cancer

target discovery (Huang et al., 2020). Though not focused on the
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prediction of synthetic lethality, in computational biology

research, Deng et al. (2019) reviewed the concepts of mutually

exclusive genes and genetic interactions and their corresponding

computational methods, and Wang et al. (2022a) more recently

conducted amuchmore comprehensive review of SL-related data

resources and computational methods.

Still, none of these reviews adequately covered both SL

experiments and prediction models, especially with respect to

connections between the two investigative methods. Nor did they

clarify whether current SL predictive models were based on

individual samples or on a population, or whether they

provided sufficient detail for the development of predictive SL

models. As indicated in Section 1.2, SL is more likely to be

sample-specific than population-based or an evolutionary

property; so ideally, a predictive SL model should be

developed from individual samples or cell lines.

2 Experimental approaches

2.1 Synthetic lethality experiments

Experimentally, synthetic lethality is determined primarily

by identifying gene pairs whose simultaneous disruption causes

organism death. Before the discovery of RNAi, SL screens

primarily employed chemical compounds or model organisms,

such as yeast. RNAi-based gene targeting provided the first

opportunity to scale up the screening capacity and

systematically identify SL interactions in human cells. More

recently, the adaptation of CRISPR and the CRISPR-

associated nuclease Cas9 (CRISPR/Cas9) system and the

concept of gene essentiality has further facilitated SL screens

with higher specificity, efficiency, and flexibility. Figure 1

presents an overview of synthetic lethality experiments.

FIGURE 1
Overview of synthetic lethality experiments: (A) Yeast system with double mutant introduced by either transformation or mating; (B) Screening
with single-gene perturbation introduced by mutation, chemical inhibitor, RNAi or CRISPR; (C) Combinatorial CRISPR screening system: dual-gRNA
library construction and optimization.
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2.1.1 Synthetic lethality screening using a yeast
system

The yeast, Saccharomyces cerevisiae, with its stable haploid

state, well-annotated genome, and short generation times, has

served for over 50 years as a powerful tool in the investigation of

gene functions and interactions. In yeast, SL was traditionally

discovered by the randommutagenesis of loss-of-function (LoF),

gain-of-function (GoF), or overexpression (OE) of mutant query

strains followed by a selection regimen, such as drug treatment

(Albertini and Zimmermann, 1991; Stevenson et al., 2001).

However, yeast-based SL screens are now routinely conducted

using systematic screening of arrayed yeast strain collections or

arrayed plasmid collections following either of two common

methods (Figure 1A). The first approach involves transforming a

collection of OE/LoF/GoF mutant strains into a collection of

yeast with mutant strains to produce double mutants (Boone

et al., 2007); the second involves crossing two sets of mutant yeast

strains to obtain haploid double mutants (Segrè et al., 2005;

Boone et al., 2007). The crossed mutant strain collections were

subjected to synthetic genetic array analysis (SGA) (Tong et al.,

2001; Kuzmin et al., 2016), diploid-based synthetic lethality

analysis on microarrays (dSLAM) (Pan et al., 2004), and the

‘green monster’ (Suzuki et al., 2011). Recently, Charles Boone led

researchers in generating a global SL network with more than

23 million double mutants that crossed 90% of the yeast genome,

thereby identifying thousands of SL gene pairs and providing a

diagram of the cell’s functional wiring (Costanzo et al., 2016).

Based on SGA methodology, they developed trigenic-SGA (τ-
SGA) to systematically screen and quantify trigenic interactions

in yeast (Kuzmin et al., 2021a; Kuzmin et al., 2021b). The

relatively recent introduction of CRISPR to study the yeast

system has limited its usage, but Peccoud’s team has described

more potential applications for its use in yeast (Adames et al.,

2019).

In the yeast system, colony size is typically phenotyped to

measure the effects of a single or double mutation on yeast

growth/fitness (Baryshnikova et al., 2010), and other

measurements, including microarray (Pan et al., 2004) and

fluorescence (Suzuki et al., 2011), are also commonly used.

Studies of SL in yeast have provided invaluable information

regarding fundamental molecular processes that can be used

for subsequent screens in higher-level organisms; Nielsen’s

research team has summarized the advantages of yeast-based

technologies in cancer biology (Ferreira et al., 2019).

2.1.2 Synthetic lethality screening in human cells
RNAi- and CRISPR-based genome-editing technologies have

greatly influenced SL screening capabilities. RNAi is a biological

process in which an RNA molecule contributes to sequence-

specific gene silencing via translational or transcriptional

regression, and use of this process provided the first

opportunity to knock down (KD) the expression of individual

genes and allowed for high-throughput screening in human cells

(Laufer et al., 2013). The recent discovery and adaptation of the

CRISPR/Cas9 system also brings more flexibility to genetic

perturbation. RNAi functions at the post-transcriptional level,

but CRISPR/Cas9 has been engineered to introduce functional

knock-out (KO) at the gene level. Easily programmable and highly

effective, CRISPR-based gene editing has outperformed RNAi.

Several research groups have compared RNAi- and CRISPR-based

screening technologies (Haussecker, 2016; Housden and

Perrimon, 2016; Morgens et al., 2016; Smith et al., 2017).

Conventionally, the SL screens in human cells were

categorized based on the techniques employed. For example,

Brough’s group (Brough et al., 2011) summarized three methods

for identifying SL: 1) applying RNAi screens on cell lines with or

without a mutated targeted gene, 2) using RNAi library screens in

combination with chemical inhibitors, and 3) chemical library

screens. Here, we group the SL screens—chemical inhibitor,

RNAi, or CRISPR—based on the level of gene perturbation

introduced during the screening. This categorization also lays

the foundation for SL calculation (Section 2.2).

SL screenings involving single-gene perturbation compared

to cell-line outcomes with or without perturbation of a targeted

gene to identify SL partners of that gene. Both population- and

individual sample-based screenings apply single-gene

perturbation techniques (Figure 1B), but the two approaches

differ in the number of cell lines used in the screening. Individual

sample-based screenings examine a single cell line, whereas

population-based screens utilize multiple cell lines with varied

cancer backgrounds. In contrast, SL screenings facilitated by

combinatorial gene perturbations involve simultaneous

disruptions of two genes within a specified cell line. The SL

gene pairs are then identified by determining significant

differences between the observed and expected phenotypes.

This type of screening is typically based on individual samples.

2.1.2.1 Synthetic lethality screening with the introduction

of single-gene perturbation

Within the Cancer Dependency Map portal (DepMap) of the

Broad Institute, Project Achilles (depmap portal, 2021) provides

a single dataset for population-based SL screening that comprises

genome-editing screenings of over one thousand human cell

lines, and the projects, DRIVE (Novartis) (McDonald et al., 2017)

and SCORE (Sanger Institute) (Behan et al., 2019), provide other

genome-editing screening datasets. Using the population-based

approach, cell lines for a targeted gene are categorized into those

lines either with or without (wild-type, WT) the mutated targeted

gene. The SL genes paired with specified target genes are then

identified as the genes that are essential among the cell lines with

the mutated target gene but not essential among theWT cell lines

without the mutation. For example, the synergistic effects

between KRAS and STK33 were identified by short hairpin

RNA (shRNA) screening between KRAS-mutant cell lines

(NOMA-1, MDA-MB-231, . . .) and KRAS-WT cell lines

(THP-1, MDA-MB-453, . . .) (Scholl et al., 2009).
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In screening individual cell lines, a library of single gene-level

perturbations (either RNAi or CRISPR) is introduced into the

same cell lines with or without the presence of specified

perturbations. Genotype-selective SL can then be identified

from the pre-existing perturbation of mutations, and drug-

specific SL can be identified by pre-existing perturbations

from chemical inhibitors. Compared to the population cell

line approach, individual cell line screening allows WT and

perturbed cells to share the same genomic background. The

genes, EGFR (Astsaturov et al., 2010; Pathak et al., 2015), BRCA

(Lord et al., 2008; Turner et al., 2008), RAS/KRAS (Luo et al.,

2009; Scholl et al., 2009; Steckel et al., 2012), and MYC

(Toyoshima et al., 2012) have predominantly been

investigated in various screens to identify corresponding

genotype-selective synthetic lethal partners. Drug-specific SL

can best be illustrated by the discovery of SL between BRCA2

and PARP1 inhibitors and their successful application in the

clinic (Bryant et al., 2005; Farmer et al., 2005). The CRISPR

system makes screening for synthetic lethal drug targets in

human cancers feasible at the genome-wide scale, and

Surrallés’ research team has summarized the most up-to-date

CRISPR screenings to identify genetic interactions (Castells-Roca

et al., 2021).

2.1.2.2 Synthetic lethality screening by the introduction

of combinatorial gene perturbations

Intuitively, the strategy of utilizing a combinatorial chemical

inhibitor or RNA inhibitor (coRNAi) against multiple targets

should have been applied to identify SL. Grimm and Kay

summarized the development of the coRNAi strategy and its

potential application in a clinical setting (Grimm and Kay, 2007),

but few studies have employed this highly labor-intensive

methodology. Furthermore, the limited number of inhibitors

available for various targets challenges the scaling up of SL

identification using only combinatorial chemical inhibitors

even more. The recent development of CRISPR, specifically

combinatorial CRISPR screening, allows for the systematic

detection of SL genetic interactions by massive parallel

pairwise gene disturbance. The simultaneous incorporation of

dual guide RNA (gRNA) pairs into the expression vector permits

double perturbation in the screen and has become the basic lead

for the combinatorial CRISPR technique (Figure 1C).

Vidigal and Ventura (2015) first established a one-step

method of cloning specific gRNA-pairs into any CRISPR-

expression vector starting from pools of short

oligonucleotides, and the construction of a double-KO gRNA

library has undergone continuous modification and

optimization. Wong’s laboratory developed combinatorial

genetics en masse (CombiGEM) for the extensible assembly of

barcoded high-order combinatorial screens (Wong et al., 2016;

Han et al., 2017; Zhou et al., 2020); Najm et al. (2018) developed

Big Papi, a dual-Cas9 system to diminish competition for

Cas9 protein between two gRNAs; and Boettcher et al. (2018)

combined two orthogonal Cas9 proteins allowing for

quantification of LoF and GoF phenotypes in the same screen.

Among currently published combinatorial CRISPR screens,

extensive effort has been exerted to reveal the SL between

paralogues, such as FAM50A/FAM50B (Thompson et al.,

2021), DUSP4/DUSP6 (Ito et al., 2021), and CDK4/CDK6

(Parrish et al., 2021). However, though the ability to screen

gene combinations has grown, library size and cell culture still

constrain the capacity for combinatorial CRISPR screening. For

example, screening a library of 5000 gRNA pairs with standard

conditions of 100 coverages and multiplicity of infection (MOI)

of 0.3, the initiation of screening for each replicate sample will

require at least 1.6 million cells. The largest study comprised

1,044,484 gRNA pairs targeting 111,392 gene pairs in K562 and

Jurkat cells (Horlbeck et al., 2018), and more recently, Diehl et al.

(2021) implemented a multiplexing method they termed 3Cs to

generate combinatorial CRISPR libraries with low distribution

skews, allowing the lowering of cell coverage and total cell

numbers in one screen.

2.2 Experimental approaches to the
calculation of synthetic lethality

SL is determined under different experimental settings by

identifying gene pairs whose simultaneous disruption causes

organism death, and its calculation varies depending on the

experimental design. The consideration of gene essentiality, a

founding and dynamic concept of genetics, has recently brought

new perspectives to SL identification. A gene is judged essential if

it is required for the reproductive success of an organism under

specific conditions. As mentioned in section 2.1, essentialities can

be variously quantified by measuring yeast colony size, cell

viability, or gRNA abundance in surviving populations. SL

between two genes occurs when neither gene is essential, but

perturbation of both genes compromises proliferation or fitness.

In RNAi-based screening, changes in cell viability are

primarily phenotyped. The most common cell assays include

CellTiter, AlarmBlue, MTT, and Luminescent ATP (Stoddart,

2011; Adan et al., 2016). Microarrays are also used in RNAi-

based screens to measure the representation of shRNA/small

interfering RNA (siRNA), especially for a relatively large library.

Sequencing of CRISPR screens is typically required to quantify

the inserted gRNA read counts.

2.2.1 Calculation of synthetic lethality in single-
gene-perturbation screening

The SL partners of a targeted gene (gene of interest) are

identified by comparing gene essentialities between two groups of

cell lines, either with or without perturbation of second-query

genes (query strains in yeast). In population-based screening,

these two groups are cells with target gene mutations and wild-

type cells without the mutations. In cell-specific screening, the
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two groups are wild-type cells and cells with a mutated target

gene or under certain perturbations using chemical inhibitors,

RNAi, or CRISPR. SL calculation involves comparison of a gene’s

essentiality between two groups, mainly by difference (Bommi-

Reddy et al., 2008), fold-change or abundance ratio (Lord et al.,

2008; Boettcher et al., 2014), Z-score (Turner et al., 2008; Martin

et al., 2009; Steckel et al., 2012; Toyoshima et al., 2012; Shen et al.,

2015), or t-test (Luo et al., 2009) of gRNA counts. Scoring by

methods such as RNAi gene enrichment ranking (RIGER) (Luo

et al., 2008), gene activity ranking profile (GARP) (Marcotte

et al., 2012a), and observation of redundant siRNA activity

(RSA) (König et al., 2007) is also commonly used for SL

calculation.

2.2.2 Calculation of synthetic lethality in double-
perturbation experiments

The methods for calculating SL from data generated by

double-perturbation experiments, such as double-mutant

yeast, combinatorial RNAi, or CRISPR screening, can be

placed into two categories. The first approach introduces

growth phenotype and calculates the deviation of the

observed growth phenotype from the expected growth

phenotype for a specified gRNA-gRNA pair. The growth

phenotype is measured by the change in frequency of the

initial and surviving populations for single-gRNA (gRNA-safe

gRNA pair) or gRNA-gRNA (Wong et al., 2016; Han et al.,

2017; Horlbeck et al., 2018; Najm et al., 2018; Parrish et al.,

2021), and the expected growth phenotype is then calculated

by summation (Han et al., 2017; Parrish et al., 2021;

Thompson et al., 2021) or quadratic fitting (Horlbeck et al.,

2018) of the growth phenotypes of two single-gRNAs. These

two sgRNAs will be identified as synthetic lethal partners if the

observed phenotype of the paired gRNAs is significantly lower

than the expected value, suggesting a notable shift in gene

essentiality with the presence of the two gRNAs. The

gene–gene interaction can be calculated from the average

(Horlbeck et al., 2018; Parrish et al., 2021) or ranking (Han

et al., 2017; Thompson et al., 2021) for corresponding sgRNA

pairs.

A different approach models the combination effect of

double perturbation as a two-way analysis of variance

(ANOVA) with interaction. Two perturbations are

considered synthetic lethal if they lead to significant decline

in individual fitness compared with their combined additive

effect (Shen et al., 2017; Zhao et al., 2018). Individual fitness

can be measured either as cell viability, the change in

frequency of inserted gRNA fragment in the surviving cells

over time (Shen et al., 2017; Zhao et al., 2018), or, as discussed

in 2.1, by colony size in yeast experiments (Baryshnikova et al.,

2010; Costanzo et al., 2016). A variational Bayesian approach

(Ito et al., 2021) or Dunnett’s test (Zhou et al., 2020) can

also be used to calculate SL in combinatorial CRISPR

screening.

3 Synthetic lethality data

Table 1 categorizes SL data into four groups: 1) curated

databases that utilize information from multiple sources; 2)

library-based repositories of data from genomic screening and

multi-omics profiling; 3) collections of data from SL screenings

with the introduction of single perturbation (discussed in Section

2.1.2.1), and 4) based on combinatorial perturbation (discussed

in Section 2.1.2.2).

When SL scores from different studies are combined in either

a curated database approach, such as that using SynLethDB (Guo

et al., 2016) or 2.0 (Wang et al., 2022b), or a collection of

generated big data, such as that employing a synthetic

lethality knowledge graph (SLKG) (Zhang et al., 2021), each

SL pair receives a new computed score from 0 to 1 that reflects the

strength of their interaction, with higher scores indicating

stronger interactions. In general, because the new SL

computation is dependent on data-driven approaches rather

than the depiction of SL interactions from the original studies,

the new scoring schemes vary greatly across different approaches,

deviating notably from original sources, and making the SL

scores less comparable.

4 Predictive models of synthetic
lethality

Predictive models are categorized into two general types

based on whether the input data are population-based or

individual sample-based. Population-based models identify SL

gene pairs from a population of samples, whereas individual

sample-based methods predict SL pairs by considering features of

the sample of interest. All rule-based statistical inference models

and network models are population-based, and machine-

learning models can be either population- or individual

sample-based. Multi-omics features, covering gene expression,

somatic mutation, somatic copy number alteration (SCNA), and

protein–protein interactions (PPI) are frequently adopted to

improve modeling performance.

In this section, the review of each SL predictive model focuses

on the input data, modeling process, and validation. Figure 2

summarizes approaches to the design of SL predictive models.

4.1 Population-based models

4.1.1 Rule-based statistical inference models
Largely built on the assumptions derived from the SL

concept, rule-based inferences use statistical tests to infer

synthetic lethal gene pairs at the population level from single-

gene-based genome-editing screenings and multi-omics profiling

data. Table 2 presents the biological assumptions, sources of

input data, and statistical tests.
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TABLE 1 Curated databases and library-based screening data.

Data sources Data description

Curated databases

DepMap depmap portal (2021) Dependency Map: loss-of-function (LoF) screens by Project Achilles of the Broad Institute, cell-line multi-omics by the
Cancer Cell Line Encyclopedia (CCLE), and drug-sensitivity profiles by PriSM. https://depmap.org/portal/

DRIVE McDonald et al. (2017) Large-scale short hairpin RNA (shRNA) screens on 7837 genes across 398 cell lines with CCLE features. https://
oncologynibr.shinyapps.io/drive/

SGD Skrzypek and Nash (2015) Saccharomyces genome database: yeast genome sequences, functional annotations, expression profiles, gene–gene
interactions; includes over 10,000 synthetic lethal interactions for more than 6600 genes. https://www.yeastgenome.org/

SynLethDB 2.0 Wang et al. (2022b) Synthetic lethal pairs and non-synthetic lethal pairs for human, fly, worm, mouse, and yeast, including the gene
identification numbers of the National Center for Biotechnology Information (NCBI), PubMed ID of the study, the source
that classified the gene-pair interaction, and the statistical score between 0 (low) to 1 (high). Recently updated from
version 1.0, the databases now house a total of 50,868 interactions for 13,707 genes. http://synlethdb.sist.shanghaitech.edu.
cn/v2/

SLKG Zhang et al. (2021) Synthetic lethality knowledge graph: 19,987 synthetic lethal pairs and 3039 synthetic dosage lethal (SDL) pairs with SL
score between 0 (low) and 1 (high) calculated from 11 external databases (DRIVE, DepMap and SynLethDB,. . .). https://
www.slkg.net/

Library-based genomic screenings and multi-omics profiling data

TCGA Tomczak et al. (2015) The Cancer Genome Atlas pan-cancer database: 85,415 patient samples (33 major cancer types) with microarrays, DNA
sequencing, tissue imaging, methylation (Micheel et al., 2018) (137). https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga

CCLE Barretina et al. (2012); Broad Institute
(2005)

Cancer cell line encyclopedia: gene expression (1389 cell lines), mutation (1755 cell lines), and copy number (1750 cell
lines). https://sites.broadinstitute.org/ccle/

GTEx Lonsdale (2013) Genotype-tissue expression project: gene expression for different tissue types (17,382 samples over 948 donors in 54 non-
diseased tissues) using both bulk-cell and single-cell gene profiles. https://gtexportal.org/home/

Specialized datasets Curated microarray database (CuMiDa) (Feltes et al., 2019): 78 human microarray datasets curated from the Gene
Expression Omnibus (GEO) https://sbcb.inf.ufrgs.br/cumidaBARRA:CuRDa (Feltes et al., 2021): 17 human RNA-seq
datasets curated from the GEO https://sbcb.inf.ufrgs.br/barracurdaCancerSCEM (Zeng et al., 2022): 208 single-cell RNA-
sequencing samples from 28 studies, covering 20 human cancer types https://ngdc.cncb.ac.cn/cancerscem/

Data Sources: synthetic lethality screening based on single-gene perturbation

Data sources Library size Target Technology Cell line/s

Astsaturov et al.
(2010)

Targeting 638 genes with two siRNAs for
each gene

EGFR siRNA screen with
chemical inhibitors

A431

Bommi-Reddy
et al. (2008)

100 shRNAs targeting 88 kinases Von Hippel-Lindau (VHL) shRNA screen 786-O (WT), RCC4 (VHL−/−)

Lord et al. (2008) Human DNA repair siRNA set V1.0 (siRNA
library containing 230 DNA repair genes).

PARP and DNA repair
genes

siRNA screen with PARPi CAL51

Turner et al. (2008) siRNA library targeting 779 human protein
kinase and kinase-related genes.

Human protein kinase and
kinase-related genes

siRNA screen with PARPi CAL51

Luo et al. (2009) 74,905 retroviral shRNAs targeting 32,293
unique human transcripts.

KRAS GW shRNA screen DLD-1 Ras WT, DLD-1 Ras Mut

Martin et al. (2009) 1200 drugs and drug-like molecules MSH2 Gene mutation with
chemical inhibitor
screening

Hec59 (MSH2 deficient), Hec59 + chr2
(MSH2 proficient, WT)

Marcotte et al.
(2012a)

78,432 shRNAs targeting 16,056 Ref-seq
genes (O’Leary et al., 2016).

Ref-seq genes shRNA screen 29 breast, 28 pancreatic, 15 ovarian cancer
cell lines

Steckel et al. (2012) 7000 siRNA pools targeting the druggable
human genome (~7400 genes).

KRAS shRNA screen HCT116 (KRAS mut), HKE-3 (WT)

Toyoshima et al.
(2012)

siRNAs targeting 3300 druggable genes and
200 microRNAs.

MYC siRNA screen HFF-MYC (overexpression), HFF-PBabe
(control)

Vizeacoumar et al.
(2013)

78,432 unique shRNAs targeting 16,056
human genes.

PTTG1, BLM, MUS81,
PTEN, KRAS

siRNA screen HCT116 with derived phenotypes of
PTTG1−/−, BLM−/−, MUS81−/−,
PTEN−/−, KRAS+/−

(Continued on following page)
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The data-mining synthetic-lethality-identification pipeline

(DAISY) algorithm (Jerby-Arnon et al., 2014) is the first rule-

based statistical-inference approach to identify and evaluate SL

gene pairs from The Cancer Genome Atlas (TCGA) of the

National Cancer Institute (NCI) and the National Human

Genome Research Institute (NHGRI), the Cancer Cell Line

Encyclopedia (CCLE), and DepMap. The first rule is called

the genomic survival of fitness. Specifically, for a SL gene pair,

A and B, it is assumed that if A is inactive (based on SCNA, gene

expression, and somatic mutation), B will not be deleted or have a

high copy number. The Wilcoxon rank test is used to compare

the Gene B copy number between clinical samples with the active

or inactive Gene A. The Wilcoxon rank test is also used with the

second rule, to test whether cancer cells with inactive Gene A

(based on SCNA and gene expression) are more likely than those

with active A to have essential Gene B (based on shRNA

screenings). For the third rule, a positive Spearman’s

correlation coefficient is applied to investigate the co-

expression of synthetic gene pairs A and B. Several published

RNAi experiments in human cell lines have demonstrated the

utility of DAISY.

Srihari et al. (2015) proposed a statistical method based on

the concept of mutual exclusivity that assumed the likelihood

that combinations of genes that exhibit mutual exclusivity in

genetic events are synthetic lethal. They considered six key DNA-

damage response (DDR) genes that are frequently altered across

four cancer types (breast, prostate, ovarian, and uterine). The

assessment of SCNA and gene expression of TCGA-identified

genes that were altered in a mutually exclusive manner was based

on a hypergeometric test with these six DDR genes as synthetic

lethal partners. This model was validated against GARP

essentiality scores from in vitro studies (Marcotte et al.,

2012b; Vizeacoumar et al., 2013).

The identification of clinically relevant synthetic lethality

(ISLE) (Lee et al., 2018) utilizes three criteria, employing a large

initial pool of laboratory-identified candidate SL pairs

determined either by double-knockout screens or guilt-by-

association using large-scale single gene knock-out

TABLE 1 (Continued) Curated databases and library-based screening data.

Data Sources: synthetic lethality screening based on single-gene perturbation

Data sources Library size Target Technology Cell line/s

Boettcher et al.
(2014)

Pooled shRNAs targeting 10,000 genes,
together with siRNAs targeting fumarate
hydratase (FH).

Fumarate hydratase shRNA and siRNA screen HEK293T, UOK262

Shen et al. (2015) Targeting 112 known tumor-suppressor
genes.

CHEK1/2 siRNA screen with
chemical inhibitor
AZD7762

HeLA (treated with siRNAs together with
AZD7762 versus DMSO)

Pathak et al. (2015) 1276 siRNAs targeting 638 genes A network centered on
EGFR, HER2, BCAR1,
NEDD9, and EFS

siRNA screen with
chemical inhibitor
dasatinib

A1847

Synthetic lethality screening based on combinatorial perturbations

Combinatorial perturbation
studies

Library size Synthetic lethality biology Cell lines (disease versus
normal)

Laufer et al. (2013) 51,680 siRNA combinations that come from
323 epigenetic regulator genes

Epigenetic regulation genes HCT116

Wang et al. (2014) 6032 siRNA pairs of 1508 gene pairs Genes with frequent alterations in
breast cancer

MCF10A

Wong et al. (2016) 50 genes, 23,409 gRNA pairs Epigenetics regulation OVCAR8

Han et al. (2017) 207 genes, 21,321 gRNA pairs Non-essential drug targets K562

Shen et al. (2017) 73 genes, 141,912 gRNA pairs Drug targets HeLa, 293T, A549

Horlbeck et al. (2018) 472 genes, 111,392 gene pairs Non-essential genes K562, Jurkat

Zhao et al. (2018) 51 genes,11,475 gRNA pairs Metabolic network HeLa, A549

Ito et al. (2021) 3284 genes, 5065 paralog pairs Paralog families 11 cancer cell lines

Parrish et al. (2021) 2060 gene pairs Paralog families PC9, HeLa

Diehl et al. (2021) 160 genes, 12,736 gene pairs Autophagy pathway HEK293T, RPE1

Thompson et al. (2021) 1191 gene pairs Paralog families A375, MeWo, RPE1
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experiments as inputs. First, gene expression and SCNA data

were used to identify candidate gene pairs whose co-inactivation

was less frequent than expected as calculated using a

hypergeometric test of their individual inactivation

frequencies. Second, a gene pair was selected if its co-

inactivation led to better predicted patient survival in TCGA

samples according to the Cox proportional hazards model. In the

last step, ISLE considered the tendency of functionally interacting

genes to co-evolve and calculated phylogenetic similarity across

86 species in a tree of life structure using non-negative matrix

factorization to select SL pairs comprising genes with strong

phylogenetic similarity. Initial candidate gene pairs satisfying all

three conditions were validated on other datasets (Barretina et al.,

2012; Costello et al., 2014; Gao et al., 2015; Menden et al., 2019),

and prediction performance was tested by phenotypic drug

response screens in vivo.

Analysis of synthetic lethality by comparisonwith tissue-specific

disease-free genomic and transcriptomic data (ASTER) (Liany et al.,

2020a) predicted SL gene pairs for both cancerous tissues using

SCNA from TCGA and disease-free tissues using gene expression

data from the genotype-tissue expression project, GTEx, of the

NHGRI. The main consideration of ASTER is whether cancer

samples are tissue-specific when the gene-pair, A-B, exhibits a

pattern of mutual exclusivity. Using disease-free tissues from

GTEx as reference, in Test 1, ASTER selected disease samples

with a high copy number in Gene A, and then compared the

expression of Gene A in these samples to that in the reference GTEx

samples. In Test 2, a subset of disease samples with a low copy

number for Gene A and high copy number for Gene B was selected,

and the expression of Gene B in this sample subset was then

compared to that of the reference GTEx samples. Test 3, the

final test, assessed whether the expression levels of Gene A were

significantly higher than those of Gene B between two diseases. The

Wilcoxon rank sum test was performed for each of the three tests

and followed by Fisher’s method to combine the p-values. ASTER

utilizes fewer datasets and has a simpler framework for hypothesis

testing than DAISY and ISLE and outperformed those methods.

Synthetic lethal identification in R (SLIdR) (Srivatsa et al.,

2019) is a statistical framework for identifying SL pairs from

large-scale perturbation screens, including essentiality profiles

from Project DRIVE with corresponding mutation and SCNA

from CCLE. RSA was used to compute the gene-level essentiality

score of each cell line (König et al., 2007) with a cutoff value of

→3 in more than 50% of the cell lines. Driver genes for each

FIGURE 2
Overview of synthetic lethality predictive model design: (A) Main sources used to engineer gene features for SL identification; (B) Three main
model architectures for creating SL prediction model; (C) General pipeline of SL predictive modeling.
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TABLE 2 Biological assumptions, sources of input data, and network statistics for predictive models.

Synthetic lethal
interactions,
biological
assumptions.

Input data sources Statistical tests

Gene
expression

SCNA Somatic
mutation

Phylogenetics Clinical
patient
data

Short
hairpin
RNA

Statistical
inference

DAISY
Jerby-Arnon
et al. (2014)

Gene pairs that
overlap across all
assumptions.

☑ ☑ ☑ ☑ Wilcoxon rank sum, followed by
Bonferroni correction for multiple
hypothesis testing; gene co-
expressions were calculated using
Spearman correlation

1. Survival of the fittest
(SoF): Synthetic lethal
pairs are co-inactivated for
cell death.

2. Death upon single gene
knockdown when another
gene is inactive is synthetic
lethality.

3. Synthetic lethal pairs are
co-expressed.

Srihari et al.
Mutual
Exclusivity
Model (Srihari
et al., 2015)

Gene pairs that are
frequently altered in a
mutually exclusive
manner are defined as
synthetic lethal.

☑ ☑ The statistical significance value
was obtained by subtracting SL
score obtained by
hypergeometric test from 1:
pval � 1 − SLhypergeometric

ISLE Lee et al.
(2018)

Gene pairs that exhibit the
following characteristics:

☑ ☑ ☑ ☑ ☑ Statistical significance tests used
for the respective assumptions:

1. Gene pairs are rarely co-
inactivated compared to
their individual
inactivation frequencies.

1. Hypergeometric test

2. Gene pairs yield better
patient survival through
their co-inactivation,
reducing tumor fitness
when co-inactive.

2. Likelihood ratio test

3. Gene pairs tend to co-
evolve and thus have high
phylogenetic similarity.

3. No statistical test at this step

Afterward, Wilcoxon rank sum
was used to compare identified
SL pairs with drug target
response

ASTER Liany
et al. (2020a)

Gene pair (Genes A and B)
that passes the following
tests:

☑ ☑ ☑ ☑ Wilcoxon rank sum, followed by
Fisher’s method for combining
significance p-values. False
discovery rates were determined
using the Benjamini–Hochberg
method

1. For tissue-specific
samples with high Gene A
copy number, the
expression level of Gene A
is significantly higher than
that of non-cancerous
samples of the same tissue
type.

2. For tissue-specific samples
with high Gene A copy
number, but low Gene B
copy number, expression
level of Gene B is
significantly lower than that
of non-cancerous samples of
the same tissue type.

3. Expression levels of
Gene A in Test 1 is
significantly higher than
those of Gene B in Test 2.

☑

SLIdR Srivatsa
et al. (2019)

Synthetic lethal pairs
consist of a significantly
mutated gene and its
interacting genes that yield
cell death upon co-
occurrence of their
aberrations.

☑ ☑ ☑ Custom, rank-based statistical
test was used where the p-value
was obtained from the lower-tail
probability

(Continued on following page)
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cancer type were defined using the Broad Institute’s mutation

significance file (MutSig MAF) from TCGA (Lawrence et al.,

2014), focusing on genes demonstrating significant mutations in

cancer samples; cell lines were sorted into mutated orWT groups

based on the mutation status of the driver genes. SLIdR aims to

identify synthetic lethal interactions between a driver gene and

another perturbed gene based on a statistical test ranking

essentiality scores across all perturbed genes for each mutated

versus WT cell line. SLIdR identifies synthetic lethal gene pairs

based on the assumption that a mutation in the driver gene in

combination with knockdown of the perturbed gene yields lower

essentiality scores compared to scores in the WT group. A one-

sided statistical test based on the Irwin-Hall distribution is used

to determine statistical significance. Of the potential synthetic

lethal pairs identified by SLIdR, only one of the top synthetic

lethal pairs, AXIN1 andURI1, was validated in vitro in this paper.

The algorithm for mining synthetic lethals (MiSL) (Sinha

et al., 2017) extracts human pan-cancer data for 12 specific types

of cancer from the TCGA dataset to identify mutation-specific

synthetic lethal partners. Its underlying assumption is that a

mutated gene’s synthetic lethal partners will be amplified more

frequently or deleted less frequently in samples that harbor the

mutation and concordant changes in expression across multiple

cancers. MiSL aims to identify partners of gene B that have more

copies in the presence of mutated Gene A based on Boolean

implications of either preferred amplification in the presence of

the mutation or deletion only in the absence of the mutation as

determined using Fisher’s exact test and maximum likelihood

estimation. Two filtering steps are applied afterward to increase

accuracy. First, candidate genes serving merely as passengers are

excluded. An example of a passenger is a deletion in Gene A that

is not differentially down-regulated in samples with deletions in

A compared to the rest of samples. Second, only genes that are

differentially overexpressed in the presence of the mutation

versus the WT based on a t-test are retained to form the final

candidate SL partners. MiSL’s successful identification of SL

interaction between mutation in IDH1 and ACACA in

leukemia was validated by gene targeting and patient-derived

xenografts.

4.1.2 Network models
Network models select single genes or gene combinations as

potential drug targets based on the network’s topology. Though

the criteria for selecting gene combinations are technically

irrelevant to the concept of synthetic lethality, many gene

pairs selected from network models are potentially SLs.

Table 2 shows biological assumptions, input data sources, and

network statistics for network models.

Virtual inference of protein activity by enriched regulon

analysis (VIPER) (Alvarez et al., 2016) evaluates the

TABLE 2 (Continued) Biological assumptions, sources of input data, and network statistics for predictive models.

Synthetic lethal
interactions,
biological
assumptions.

Input data sources Statistical tests

Gene
expression

SCNA Somatic
mutation

Phylogenetics Clinical
patient
data

Short
hairpin
RNA

MiSL Sinha
et al. (2017)

The mutations of synthetic
lethal pairs are amplified
more frequently and are
deleted less frequently
while in concordance with
their gene expression
profiles.

☑ ☑ ☑ Fisher’s exact test for evaluating
gene-pair behavior dependence,
followed by two-tailed unpaired
Student’s t-test

Network-
based
models

VIPER Alvarez
et al. (2016)

A probabilistic framework
where tissue-specific gene-
expression data are used to
identify regulator-target
interactions following the
activation or repression of
a regulator.

☑ Analytic rank-based enrichment
analysis (aREA) statistical
analysis is used to discern
differential gene activity

OptiCon (Hu
et al., 2019)

Using gene expression
profiles in a regulatory
network, optimal control
nodes (OCNs) are
identified such that they
exert maximal control
over deregulated
pathways, but minimal
control over unaffected
pathways for a given
disease. For SL tasks,
OCNs point to potential
synthetic lethal pairs

☑ ☑ Wilcoxon rank test and one-
sided Kolmogorov-Smirnov test
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functional relevance of genetic interactions in regulatory proteins

based on gene-expression data from TCGA. VIPER requires

accurate cellular networks that are highly dependent on tumor

context (Margolin et al., 2006). Based on a probabilistic

framework that includes target status (activated or repressed,

with or without overlapping) and statistical confidence, VIPER

applies an optimized rank-based analysis to compute the

enrichment of a protein’s regulon in differentially expressed

genes. VIPER is frequently used to infer aberrant protein

activity from gene expression, and the correlation between

regulator and target genes generated from the probabilistic

framework in VIPER provides valuable information for

context-specific gene–gene interactions and has potential use

in SL prediction.

The optimal control node (OptiCon) algorithm (Hu et al.,

2019) is a network controllability-based method to identify

synergistic key regulators as candidate targets for combination

therapy. OptiCon constructs a gene regulatory network from

three pathway databases−the reactome pathway knowledge

base (Jassal et al., 2020), the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000), and the NCI-

nature pathway interaction database (Krupa et al., 2007)−and

obtains gene-expression data of tumor tissues with matched

normal tissues from TCGA for calculating gene deregulation

scores. OptiCon first assesses a disease-perturbed gene

regulatory network (DRN) to identify a set of optimal

control nodes (OCNs) in a specified disease that controls

the transition of the network between any two conditions.

The identification of OCNs is formulated as a combinatorial

optimization problem and is solved through a ‘greedy search’

algorithm. OptiCon then identifies synergistic OCN pairs by

defining a synergy score that captures both enrichment of

recurrently mutated genes (mutation score) and density of

crosstalk between pathways (crosstalk score) controlled by a

pair of OCNs. The synergistic pairs of OCNs predicted by

OptiCon are supported by synthetic lethal interactions from

the SynLethDB and the study by Shen’s group (Shen et al.,

2017). The top predictions were validated experimentally by

CRISPR screening (Han et al., 2017).

4.1.3 Supervised machine-learning models
Supervised machine-learning models learn associations

between input features and known SL data to predict novel SL

gene pairs using multi-omics data. Table 3 shows how population

features and omics features were generated for these machine-

learning models.

The Mashup algorithm (Cho et al., 2016) involves the

topological integration of multiple network types through

graphic representation. For SL prediction, Mashup uses the

STRING network for protein interactions (Szklarczyk et al.,

2021), the Cancer Genome Project for drug-response profiles

in cancer cell lines (Garnett et al., 2012), and the gene

ontology (GO) (Ashburner et al., 2000) and Munich

Information Center for Protein Sequences (MIPS) (Mewes

et al., 2002) databases for functional annotation. A random

walk with restart is employed to calculate the diffusion and

connectivity of each data node within an individual network

(Tong et al., 2006). During their integration, calculated gene

features are minimized across networks to represent the

topology of all networks. Afterward, the generated features

along with graphic representation of the data networks are

used in machine learning to predict the synthetic lethal

interactions specified by Jerby-Arnon et al. (2014). The

interactions are defined by the mean and absolute

difference between the calculated feature representations

across gene pairs and fitted by a support vector machine

(SVM) using a programming library (LIBSVM) (Chang and

Lin, 2011). The model’s prediction efficacy was validated by

data on fifty cancer drugs with single-gene targets in over

639 cell lines obtained from the Cancer Genome

Project (CGP).

Collective matrix factorization (CMF) (Liany et al., 2020b)

is an unsupervised method that utilizes low rank factorization

on design matrix inputs. The datasets used in CMF are

represented in the matrix and include protein complex co-

memberships from the comprehensive resource of

mammalian protein complexes (CORUM) (Giurgiu et al.,

2019), human PPI from the human integrated

protein–protein interaction reference (Hippie) (Alanis-

Lobato et al., 2017), co-expression profiles from the search

tool for the retrieval of interacting genes/proteins database

(StringDB) (Szklarczyk et al., 2021), and pathway co-

membership scores calculated from Broad Institute’s

molecular signatures database (MSigDB) (Subramanian

et al., 2005). These datasets were factorized together to

target the SL interactions data from the research groups of

Laufer et al. (2013), Vizeacoumar et al. (2013), Shen et al.

(2017), and Zhao et al. (2018), and from the SynLethDB

database. Each input was integrated through similarly

annotated rows and columns, and the CMF methods were

implemented in three ways: by CMF (low-rank), gCMF

(group-sparse CMF using group-sparse prior on columns),

and dCMF (deep-learning CMF utilizing multiple auto-

encoders for dimensionality reduction). The gCMF method

performed the best for tasks inferring synthetic lethal

interaction using principal component analysis and graphic

features from DAISY. CMF was not validated further; the only

reported validation was on the held-out datasets from five

datasets used for training.

Synthetic lethality to logistic matrix factorization

(SL2MF) (Liu et al., 2020) uses logistic matrix factorization

to obtain latent protein factors for the prediction of SL pairs.

The model’s design adopts a similarity-based drug-target

interaction model named BLM-NII (-neighbor-based

interaction-profile inferring) (Mei et al., 2013). SL2MF uses

GO semantic similarity (Ashburner et al., 2000) and PPI data
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from the human protein reference database (HPRD)

(Keshava Prasad et al., 2009) to bolster the model’s

predictions in the networks’ topologies. The representative

latent gene factors were used in a logistic function to predict

SL pairs. The SL data were obtained from SynLethDB and

used in 5-fold cross-validation. The SL pairs used as positive

training samples exclude the pairs predicted from DAISY and

high-scoring SynLethDB pairs. The model’s performance

achieved an AUC of 0.85 and an AUPRC of 0.24. The

model was validated in silico and by comparison with

DAISY in overlapping SL predictions within the SynLethDB.

The graph-regularized self-representative matrix

factorization (GRSMF) (Huang et al., 2019) model represents

a matrix by a linear combination of its rows and columns using

SL interactions as the input matrix. In the process, the model is

bolstered by graph regularization with GO semantic similarity

(Ashburner et al., 2000) and uses a majorization-minimization

objective function (Yang and Oja, 2011) in its training Themodel

is applied to SL data from SynLethDB with 5-fold cross-

validation and its performance is compared with BLM-NII

(Mei et al., 2013), SL2MF (Liu et al., 2020), and SMF (GRSMF

without graph regularization support). AUC scores

demonstrated that GRSMF (0.92) and SMF (0.89)

outperformed both SL2MF (0.85) and BLM-NII (0.74). The

model was validated in silico.

The ensemble-based machine-learning model (ESML) (Lu

et al., 2015) uses multiple classifiers and multi-omics datasets,

including RNA sequencing data generated by the Broad

Institute’s firehose suite of tools and pipelines (Tomczak et al.,

2015) and SCNA data from the cBioPortal for cancer genomics

(Gao et al., 2013), to define gene-pair interaction features, namely

homozygous co-loss, heterozygous co-loss, mixed co-loss, co-

underexpression, and expression up-down signals. The co-loss

signals are derived from gene deletion profiles in SCNA data,

whereas co-expression profiles are computed from the RNA-seq

data. The model consists of seven different classifiers: the

adaptive boosting (AdaBoost) algorithm (Freund and

Schapire, 1997), the J48 algorithm (Salzberg, 1993), JRip, a

Java-based implementation of the RIPPER algorithm (Cohen,

1995), the Logit function (Lu et al., 2015), the LogitBoost

boosting algorithm (Friedman et al., 2000), partial decision

trees (PART) (Frank and Witten, 1998), and the random

forest algorithm (Breiman, 2001). The same gene-pair

interactions were fed into each of the classifiers, and the

outcomes showing greatest agreement across classifiers were

chosen. The framework is then applied to the synthetic lethal

TABLE 3 Population and omics features for machine-learning predictive models.

Population features Omics features

PPI Functional
annotation

Knowledge
graph

Expression SCNA Essentiality Mutual
exclusivity

Synthetic
lethality
network

Population-based Mashup Cho et al.
(2016)

☑

CMF Liany et al.
(2020b)

☑ ☑ ☑ ☑ ☑ ☑ ☑

SL2MF Liu et al.
(2020)

☑ ☑

GRSMF Huang et al.
(2019)

☑ ☑

ESML Lu et al. (2015) ☑ ☑

DDGCN Cai et al.
(2020)

☑

GCATSL Long et al.
(2021)

☑ ☑ ☑

KG4SL Wang et al.
(2021)

☑

Individual sample-
based

MNDT Wong et al.
(2004)

☑ ☑

MNMC Pandey et al.
(2010)

☑ ☑ ☑

DiscoverSL Das et al.
(2019)

☑ ☑ ☑

EXP2SL Wan et al.
(2020)

☑
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pairs from Laufer’s (Laufer et al., 2013) and Vizeacoumar’s

groups (Vizeacoumar et al., 2013) to generate population-

based and genome-wide-scale SL interactions. Under a

probability threshold of at least 0.81, the model achieved a

precision score of 0.67 and recall score of 0.10.

The dual-dropout graph convolutional network (DDGCN)

(Cai et al., 2020) is the first graph neural network (GNN) model

to predict SL gene pairs. DDGCN proposes a novel dual-dropout

mechanism to solve the problem of overfitting associated with

the sparsity of SL. Known SL gene pairs are used to construct a

synthetic lethal interaction network in which each gene is a node

and SL interactions form edges, which allows the prediction of

novel SL to be cast as a link prediction task to complete missing

edges in the interaction network. The dual-dropout consists of a

coarse-grained node dropout that randomly drops some gene

nodes during each training iteration, and a fine-grained edge

dropout that randomly removes some edges for further fine-

tuning. DDGCN has been theoretically justified and validated

utilizing the SynLethDB database, with a predicted AUC of

0.85 and AUCR of 0.90.

The graph contextualized attention network to synthetic

lethality (GCATSL) (Long et al., 2021) is another GNN-based

model that incorporates various biological data sources utilizing

graph attention network (GAT) architecture. Compared to a

basic GNN model, GAT can effectively distinguish and preserve

differences among neighbors by assigning different weights. In

GCATSL, three feature graphs were constructed using as input

features, biological processes (BPs) and cellular components

(CCs) from GO as well as the PPI network from the

biological general repository for interaction datasets

(BioGRID) (Stark et al., 2006), and a dual-attention

mechanism (node- and feature-level attention) that is

designed to learn node representations from multiple feature

graphs. Specifically, node-level attention was used with GAT to

learn preliminary representations for each input feature graph,

and feature-level attention was then implemented to integrate

these three feature graphs and generate the final representation

for each gene node. Prediction performance was validated on the

SynLethDB database, with prediction AUC of 0.94 and AUCR

of 0.95.

The knowledge graph for synthetic lethality (KG4SL) (Wang

et al., 2021) is a GNN-based method that incorporates a

knowledge graph (KG) into the prediction of SL. The authors

highlighted that existing methods often regarded each SL pair as

an independent sample and failed to consider the underlying

biological mechanisms; whereas some shared biological factors

might latently imply dependency among SL pairs. In contrast,

KG4SL considers knowledge graphs involving biological

processes, diseases, and compounds. Given the heterogeneous

input graph, KG4SL utilizes an attention mechanism to handle

the passing of messages of different types of nodes and edges. The

inner product between the representations of the gene pair is

regarded as the probability of being SL. KG4SL has shown

excellent performance in the SynLethDB database, yielding an

AUC of 0.95 and AUCR of 0.96.

4.2 Individual sample-based models
These individual sample-based models are all supervised

approaches. Table 3 shows how their input features are defined.

The multiple network decision tree (MNDT) model (Wong

et al., 2004) utilizes a decision tree classifier to predict SL

interactions. Prior to training on the decision trees, the gene

pairs are given manually curated features to depict their genetic

interaction networks. Data for the networks were obtained from

various sources, including MIPS (Mewes et al., 2002) for

functional relations and Goldberg and Roth’s physical

interaction network (Goldberg and Roth, 2003). A total of

123 gene-pair characteristics, comprising common upstream

regulators, gene co-occurrence, and chromosomal distances

between genes, were compiled in the genetic network.

Interactions of these gene-pairs were then extended to a third

gene, designated 2hop that interacts with the other two. For

instance, if gene C has a physical interaction with Gene A in one

network and synthetically lethal interaction with Gene B in

another, then the A-B gene pair is assigned a 2hop-physical-

SL characteristic. According to the curated features, the gene

pairs were fed into the decision tree to decide which leaf node the

input should land on and the location of the node containing the

SL classification prediction. Then, the features were trained on

SGA-analyzed data from Tong et al. (Tong et al., 2001) and fitted

to SL data obtained from an early version of Tong et al. (2004) for

validation.

The multi-network and multi-classifier (MNMC) (Pandey

et al., 2010) model was extended from the MNDT (Wong et al.,

2004) model utilizing multiple classification techniques,

including k-nearest neighbors, neural network, random

forest, and SVM in addition to decision trees. Individual-

network and overlaid-network features, including gene

expression, protein–protein interaction, transcription factor

binding, and functional annotation profiles from GO and

KEGG, were generated from the yeast dataset to predict

synthetic lethal interactions. A total of 152 individual

network features were identified, 62 of which hinted at

stronger connections, such as physically interacting genes

within the PPI network. Additionally, 90 overlaid features

were generated via 2hop interactions across the networks as

described in MNDT. This allowed the model to capture

repeated and similar interactions across different network

types and to create an integrated representation input

dataset. The Kolmogorov-Smirnov test was applied to

determine the top features against distinguishing synthetic

lethal and non-synthetic-lethal gene pairs, and the model

was then trained using synthetic lethal interactions from the

Saccharomyces genome database (Cherry et al., 1997), as

described by Wong et al. (2004). MNMC was validated in

silico within the training datasets.
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The DiscoverSL (Das et al., 2019) model uses clinical and

multi-omics data from TCGA (Tomczak et al., 2015) and data

from the MSigDB pathway annotation database (Subramanian

et al., 2005) to predict synthetic lethal interactions in the

SynLethDB. Feature sets of differentially expressed genes,

expression correlations, mutual exclusivity, and pathway

information were calculated, and a random-forest classifier

created with these four features was trained on SL

interactions. After the model was trained on SynLethDB, the

derived patient-specific SL interactions were validated in silico by

visualizing shRNA essentiality screens, SCNA targetability, cell-

line drug sensitivity data, and Kaplan-Meier survival curves

against different gene expression profiles. This model was

further validated in silico on cell lines from the genomics of

drug sensitivity in cancer (GDSC) database (Yang et al., 2013).

Other studies, such as that of Origanti and associates regarding

CHEK1 and p21 (Origanti et al., 2013), confirmed some of the

predicted SL interactions.

Expression to synthetic lethality prediction, EXP2SL (Wan

et al., 2020), is a machine-learning network based on a semi-

supervised neural network. EXP2SL was used to extract gene-

expression profiles from the L1000 project of the library of

integrated network-based cellular signatures (LINCS) of the

National Institutes of Health’s Common Fund (Subramanian

et al., 2017), apply a multi-layer fully connected neural network

to individually encode the profiles for each input gene pair, and

then concatenate the encoded representations to make the final

prediction. Because synthetic lethal labels for an individual

sample are limited, EXP2SL designs a semi-supervised

Bayesian personalized ranking (BPR) loss into the objective

function to incorporate a large amount of unlabeled data.

Testing of the model on the combinatorial CRISPR SL

datasets in three different cell lines (Shen et al., 2017; Najm

et al., 2018; Zhao et al., 2018) demonstrated its competitive

prediction ability.

5 Discussion

5.1 Synthetic lethal predictive models are
not comparable

Each SL predictive model has its own unique pros and cons,

and the models are not comparable. Rule-based statistical-

inference approaches predict SL gene pairs based on

assumptions derived from the definition of SL and do not

require training under experimentally validated SL data. They

are therefore routinely applied to multi-omics data collected

from clinical samples to allow evaluation of the clinical

significance of SL gene pairs through analysis of their

association with clinical outcomes. Network-based approaches

also do not require training on SL data. They have been applied

primarily for the discovery of combinational targets. Population-

based supervised machine-learning SL predictions are not

specific to individual samples, and sample-specific SL

prediction models are only trained and designed for

individual samples. The unique assumptions, training data,

and purposes of each of these four types of model preclude

comparisons between their performances. Variation among

published methods and results, input population features, and

sample omics features for each model suggest that direct

comparisons even within a model are not necessarily feasible.

The real challenge to comparing performance among predictive

models is that the various published studies do not sufficiently

report implementation details, including both programming

codes and model tuning parameters, thereby limiting or

preventing reproducibility and comparison. We expect that

future SL research studies will focus on comparisons within

each model type, assessing common input features, training,

and validation datasets.

5.2 The intrinsic limitation of population-
based synthetic lethal models developed
from machine-learning algorithms

Most population-based SL predictive models were developed

from machine-learning algorithms using SynlethDB 1.0, a biased

and outdated database of SL gene pairs. In fact, neither the

SynLethDB 1.0 or 2.0 database includes eight of the ten SL

screening studies, and the two SL screening studies (Han

et al., 2017; Shen et al., 2017) they do include incorporate

only 1075 of 20,990 (Shen et al., 2017) and 152 of 2630 (Han

et al., 2017) original SL gene pairs. Why and how remaining data

points were excluded is unclear.

Furthermore, even if the SynlethDB integrated all published

SL datasets, questions remain regarding the methods of training

and constructing the population-based SL models and how SL

predictions were predicted. A gene pair that is positive in any

screening experiment is labeled positive. However, as discussed

in section 1.2, overlapping synthetic lethal gene pairs are rare

across cell lines or different screenings. In addition, population-

based models typically average population features and omics

features from a sample set that does not necessarily correspond to

any individual sample. So, a predicted SL gene pair is interpreted

as SL in one or multiple cells and can be interpreted to reflect

neither common SL among all cells nor sample-specific SL. This

significantly limits our understanding of why SL occurs in some

cells but not others. Moreover, it is unclear whether a gene pair

labeled as negative SL is truly negative or if it has simply not been

examined. Each new study’s generation of new data will

significantly alter both positive and negative labeling of data

and a model’s predictions of synthetic lethality.

We suggest that it would be preferable if SL predictive models

were built for individual samples and that they were sample-

specific. Successfully developed, these models could predict
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sample-specific SL gene pairs, and common pairs among

multiple samples could be identified thereafter.

5.3 Disconnection between synthetic
lethal experiments and predictive models

Synthetic lethal experiments and predictive models are

complementary technologies, but they have not been

implemented together. Experiments typically preselect

gene-pair inputs based on the study’s objectives. The

experiment data yield a confidence score for gene

interaction and a cutoff for either statistically or

biologically significant SL, whereas predictive models

predict SL for any gene pair with confidence reflected in a

probability score of 0-1. The combined use of SL experiments

and predictive models would be ideal, with each facilitating

the outcomes of the other. We wonder, for example, if

predictive models might aid the choice of a set of genes or

gene pairs for designing experiments that will improve the

chances of discovering SL gene pairs, and how we could

choose the most appropriate predictive model, a statistical-

inference or machine-learning model, for example, that will

aid experimental design. These are interesting, important, and

currently unanswered questions.

5.4 Which synthetic lethal experiment
deserves more attention in the
development of SL predictive models?

Our review of synthetic lethal experiments focused on

two major schemes, one relying on single gene-perturbed

screening between two sets of cell lines (perturbation of

specific versus wild-type genes) and the second relying on

double-perturbation screening. The first scheme scans all

combinations between the target and other genes and

requires no computational model to predict SL. However,

the second combinatorial screen is seriously limited by the

number of genes because the number of their combinations

increases exponentially. Therefore, the development of an SL

predictive model for double-perturbation

experiments would be highly valuable in the selection of

gene pairs.

5.5What are the opportunities in synthetic
lethality predictions?

Many uncharted territories remain for the prediction of synthetic

lethality. SL data are usually very limited in or absent from a cancer cell

line when we begin its exploration for combination target discoveries,

and even when we know a set of synthetic lethal genes in our targeted

cell line, the gene set is usually limited. We can utilize rule-based

statistics and network- and population-based approaches to aid our

selection of the first candidate gene–gene pairs as inputs for synthetic

lethal experiments, but research is still needed to determine the best

strategy for selecting that initial gene set. It will be interesting to

determine which of those methods can help improve the development

and performance of individual cell-specific SL predictive models.

Finally, traditional experiments usually focus on validating true

synthetic lethal gene pairs, but if our goal is to build up a more

powerful predictive model, informative training samples from

experiments should include both true and negative synthetic lethal

gene pairs. To the best of our knowledge, this aspect has not been

studied.
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