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Hepatocellular carcinoma (HCC) is a leading malignant liver tumor with high

mortality and morbidity. Patients at the same stage can be defined as different

molecular subtypes associatedwith specific genomic disorders and clinical features.

Thus, identifying subtypes is essential to realize efficient treatment and improve

survival outcomes of HCC patients. Here, we applied a regularized multiple kernel

learning with locality preserving projectionsmethod to integratemRNA, miRNA and

DNAmethylation data of HCC patients to identify subtypes. We identified two HCC

subtypes significantly correlated with the overall survival. The patient 3-years

mortality rates in the high-risk and low-risk group was 51.0% and 23.5%,

respectively. The high-risk group HCC patients were 3.37 times higher in death

risk compared to the low-risk group after adjusting for clinically relevant covariates. A

total of 196 differentially expressedmRNAs, 2,151 differentiallymethylated genes and

58 differentially expressed miRNAs were identified between the two subtypes.

Additionally, pathway activity analysis showed that the activities of six pathways

between the two subtypes were significantly different. Immune cell infiltration

analysis revealed that the abundance of nine immune cells differed significantly

between the two subtypes. We further applied the weighted gene co-expression

network analysis to identify genemodules thatmay affect patients prognosis. Among

the identifiedmodules, the keymodule genes significantly associatedwith prognosis

were found to be involved in multiple biological processes and pathways, revealing

the mechanism underlying the progression of HCC. Hub gene analysis showed that

the expression levels of CDK1, CDCA8, TACC3, and NCAPG were significantly

associated with HCC prognosis. Our findings may bring novel insights into the

subtypes of HCC and promote the realization of precision medicine.
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1 Introduction

Hepatocellular carcinoma (HCC), a primary malignant

neoplasm, accounts for approximately 90% of cases of all liver

cancers (Licata et al., 2021). It has been reported to be the fastest

growing cause of cancer-related death in the United States, and is

expected to be the third leading cause of cancer-related death by

2030, if the trends remain (Rahib et al., 2014). The current

therapy and management of HCC is based on the expected

returns of the main interventions and tumor grades following

the Barcelona Clinic Liver Cancer (BCLC) staging system

(European Association for the Study of the Liver, 2018; Llovet

et al., 2021). So far, the prognosis of HCC patients remains poor

(Forner et al., 2018). Actually, patients at the same stage can be

defined as different molecular subtypes according to major

molecular drivers and pathways involved (Villanueva, 2019).

Several works have been done to identify the HCC subtypes

using mRNA gene expression data (Boyault et al., 2007; Hoshida

et al., 2009; Goossens et al., 2015). However, any individual omics

data can only reveal the intrinsic molecular characteristics of a

tumor marginally. High throughput technology has enabled the

acquisition of multi-omics data more easily. The joint analysis of

multi-omics data types is being increasingly emphasized. Multi-

omics data integrative analysis can offer insights into the crucial

links between different types of omics data and further provide a

thorough comprehension of the potential biological processes

(Lock et al., 2013). Three HCC molecular subtypes were

identified from 183 TCGA samples by integrating five data

sources (DNA copy number, DNA methylation, mRNA

expression, miRNA expression and RPPA) (Cancer Genome

Atlas Research Network, 2017). These molecular subtypes

associated with specific genomic disorders and clinical

features, allow researchers to discover targets used as drug

design and biomarkers for predicting response. However, the

high heterogeneity and complex etiologic factors of HCC make

the prognosis prediction very challenging (Colagrande et al.,

2016). HCC still has a relatively high incidence of recurrence and

low 5-year survival rate. Therefore, identifying accurate

molecular subtypes and biomarkers is essential for developing

new effective therapies to improve the prognosis of HCC

patients.

Some multi-omics integrative clustering methods have been

proposed using multiple data types for subtyping. They can be

divided into four categories (Rappoport and Shamir, 2018): 1)

Early integration methods that input a single large dataset

obtained by merging multi-omics data for clustering; 2) Late

integration methods that apply a two-step clustering method

which first clusters each omics data and then integrates them; 3)

Methods applying statistical modeling that assume a particular

data distribution (sensitive to feature selections); and 4)

Similarity-based methods (e.g. regularized Multiple Kernel

Learning with Locality Preserving Projections, or rMKL-LPP)

(Speicher and Pfeifer, 2015) that first create similarity matrices

based on each data type, then integrate them for clustering. An

advantage of these methods is that they allow incorporating

diverse omics data types, such as categorical and ordinal data.

rMKL-LPP was extended from a multiple kernel learning based

dimensionality reduction method. Based on the input data, it

conducts dimension reduction such that similarities between

samples and their nearest neighbors are remained in a low

dimensional space. rMKL-LPP uses multiple kernel matrices

to preserve the degrees of similarity within each omics data.

Considering the differences of matrices, rMKL-LPP upweight the

matrices with high information content and assign low weights to

those with low information content. Moreover, it added a

regularization term in the optimization problem to avoid

overfitting. Rappoport et al. (Rappoport and Shamir, 2018)

provided a comprehensive comparison of different multi-

omics clustering algorithms spanning ten different cancer

types and pointed out that rMKL-LPP has superior

performance in terms of clinical enrichment.

Epigenetic dysregulation such as modifications in DNA

methylation or changes in levels of microRNAs, plays a

critical role in HCC (Rebouissou and Nault, 2020). Gene

expression analysis also revealed differentiation patterns

among HCC (Hoshida et al., 2009). In this work, we proposed

to use rMKL-LPP method to integrate DNA methylation,

miRNA and mRNA expression data to obtain subtypes of

HCC. Focusing on the subtypes of HCC, downstream analyses

were performed to explore the molecular features and pathways

with potential prognostic value to prolong patient survival time

and further promote the realization of precision diagnosis and

treatment.

2 Materials and methods

2.1 Data sources

We downloaded mRNA expression data, miRNA expression

data, DNA methylation data and clinical data from The Cancer

Genome Atlas (TCGA) for HCC using TCGAbiolinks R package

(Zhou et al., 2015). The DNA methylation data were measured

using Illumina Human Methylation 450 Beadchip.

2.2 Data preprocessing

We performed the same data preprocessing steps for the

mRNA and miRNA expression data. Features with more than

30%missing rate were removed. The rest of the missing data were

imputed applying K-nearest neighbor (KNN) method

(Troyanskaya et al., 2001), followed by log2(x + 1)
transformation. For DNA methylation, we focused on the

CpG sites in the promoter region. The promoter region is

defined as the region within 2kb of a transcription start site
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(Gusev et al., 2014). CpG sites on sex chromosomes were

excluded for further analysis. Subsequently, we removed

features with more than 30% missing rate, and imputed the

rest of missing data by applying a KNN method. Finally,

16,534 mRNA expression probes, 437 miRNAs, and

49,022 DNA methylation sites were obtained for 287 patients.

2.3 Statistical method

2.3.1 rMKL-LPP
rMKL-LPP proposed by Speicher and Pfeifer (2015), is an

extension of MKL-DR method that can perform dimensionality

reduction and data integration simultaneously. To make the

work complete, we briefly introduce the algorithm here.

2.3.1.1 Multiple kernel learning

GivenM datasets (xm
i )i�1,/,N (form � 1,/,M), all observed

on the same samples i � 1,/, N. M different kernels Km

provided different views of the datasets, each related to

different data type. Multi-kernel learning linearly combines

multiple kernel matrices {K1,/KM} into a composite kernel

matrix K, i.e.,

K � ∑M
m�1

βmKm, subject to ∑M
m�1

βm � 1, βm ≥ 0 (1)

where βm′s are the weight coefficients.

2.3.1.2 Dimensionality reduction and parameter

optimization

For a given set of input kernel matrices, we use the dimension

reduction of Locality Preserving Projections (LPP) method

(Rong et al., 2017) to maintain similarities between each

sample and its nearest neighbors in a low dimensional space.

The projection vector v is optimized according to the graph-

preserving criterion:

min
υ

∑N
i,j�1

����υTxi − υTxj

����2wij

subject to∑N

i�1
����υTxi

����2dij � const.

ωij � { 1, if i ∈ Nk(j),∨j ∈ Nk(i)
0, otherwise

dij �
⎧⎪⎪⎨⎪⎪⎩∑N

n�1
win, if i � j

0, otherwise.

(2)

where xi, xj represents sample i and j, respectively; the elements

wij constitute the similarity matrixW; the elements dij constitute

the constraint matrix D; and Nk(i) represents the k nearest

neighbors of sample i. We chose 9 as the number of nearest

neighbors for all datasets following Speicher and Pfeifer (2015).

The constrained optimization problem in (2) can be achieved

by an implicit mapping of the features to a high-dimensional

Hilbert space ϕ: xi → (xi). It can be demonstrated that the

optimal projection vector v lies in the span of xi such that v �
ΣN
i�1αiϕ(xi) (Rong et al., 2017). Based on the kernel function

K(x, x′) � 〈ϕ(xi),ϕ(x′)〉 and Eq. 1, adding the constraint on β,

the following optimization problem is given:

min
α,β

∑N
i,j�1

����αTκiβ − αTκjβ
����2wij

subject to∑N

i,j�1
����αTκiβ

����2dij � const.����β����1 � 1, βm ≥ 0, m � 1, 2 . . . ,M

κi � ⎛⎜⎜⎜⎜⎜⎜⎝ K1(1, i) / KM(1, i)
..
.

1 ..
.

K1(N, i) / KM(N, i)
⎞⎟⎟⎟⎟⎟⎟⎠ ∈ RN×M

(3)

where α � [α1 . . . αN]T ∈ RN is a projection vector, and β �
[β1 . . . βM]T ∈ RM is the kernel weight vector. A projection

matrix A � [α1/αp] can be optimized for the case of the

projection into more than one dimension. Then, A and β

were optimized simultaneously using the coordinate descent

algorithm. Specifically, the iterative optimization of A and β is

performed alternately until reaching convergence or a maximum

number of iterations. If A is optimized first, then we set the initial

values for β as equal weights for all kernel matrices. If starting

with the optimization of β, then we initialize AAT to the identity

matrix I.

After mapping the similarities between each sample and its

nearest neighbors to a low-dimensional space, k-means was used

for clustering, and the optimal subtyping number was selected

based on the silhouette coefficient (Rousseeuw et al., 1987).

2.3.2 Evaluation of the biological differences
between different HCC subtypes

We carried out survival analysis to explore whether the

subtyping results correlated with patient survival outcomes

and evaluate the clinical significance on survival rate of the

identified subgroups. The Kaplan-Meier survival curve

provides an intuitive measure of the survival risk for different

subtypes, followed by the log-rank test to examine the difference

of survival curves. Cox regression analysis was subsequently

conducted on the HCC subtypes. A prognostic model based

on the selected data was established after controlling for clinically

relevant covariates.

Differentially expressed mRNAs (DEmRNAs), miRNAs

(DEmiRNAs) and differentially methylated genes (DMGs)

between subtypes were further explored. Specifically, the

DEmRNAs satisfying the log2 fold change (FC)>1 &

Padj < 0.001 and DEmiRNAs satisfying the log2 fold change

(FC)>1 & Padj < 0.01 were further analyzed, using the

DESeq2 R package (Love et al., 2014). The target DEmiRNA

genes were then predicted using the miRTarBase (Chou et al.,

2018) database. DMGs were selected using the Limma R package

(Ritchie et al., 2015), following the criteria of Padj < 0.001 and

|t|> 2. Finally, the comprehensive analysis of DEmRNAs,
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DEmiRNAs and DMGs was performed to obtain genes

differentially expressed in different omics data. Then, to

explore the relevant biological function categories and

signaling pathways of these genes, Gene Ontology (GO)

(Ashburner et al., 2000) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa et al., 2012) enrichment

analysis were conducted through the online KOBAS tool (Xie

et al., 2011). The cutoff criterion is set to Padj < 0.05.

2.3.3 Biological pathway activity and immune
cell infiltration analysis

To explore the biological changes that lead to survival

differences between subtypes, pathway activity analysis was

performed using PROGENy (Schubert et al., 2018). Non-

parametric tests were used to identify biological pathways that

were activated differently between subtypes with the threshold set

as Padj < 0.01. We also conducted the immune cell infiltration

analysis to obtain significantly differential immune-infiltrating

cells between different subtypes. Based on the immune

infiltration data provided by Tumor Immune Estimation

Resource (TIMER2.0) (Li et al., 2016; Li et al., 2020), the

immune-infiltrating cell abundance of 287 patients with HCC

were obtained. The Microenvironment Cell Populations-counter

(MCP-counter) (Becht et al., 2016) algorithm was used to

estimate tumor cell components. Then, significantly

differential immune-infiltrating cells between subtypes were

selected using non-parametric tests with the threshold set as

Padj < 0.01.

2.3.4 Co-expression network construction and
core module identification

Gene modules that affect the prognosis of HCC patients were

identified with the weighted gene co-expression network analysis

(WGCNA). In this work, the top 5,000 genes were selected

according to the median absolute deviation to construct an

mRNA co-expression network using WGCNA R package

(Langfelder and Horvath, 2008). The brief implementation

was as follows: setting the power of β as 6 (R2 = 0.86), the

gene co-expression correlation matrix was transformed into an

adjacency matrix and then into a topological overlap matrix

(TOM). A dynamic shear tree algorithm was applied to identify

gene modules and further incorporated related modules

following a height cutoff of 0.25. Finally, by associating

module eigengene (ME) with clinical features, core modules

that are related to patient outcomes were selected for

subsequent analysis.

2.3.5 Hub gene identification and prognostic
evaluation

The candidate genes were defined as genes correlated with

the ME and clinical traits. The ME is the most important

component of a gene module and represents the gene module

expression profile. The module membership (MM) of a gene

represents the correlation of its gene expression profile with a

specific ME. Candidate genes were defined as those correlated

with the ME (cor. MM> 0.85) and clinical traits (cor. gene Trait

Significance >0.30). The Maximal Clique Centrality (MCC)

algorithm was then used to obtain highly connected genes

from candidate genes using the cytoHubba plugin in

Cytoscape software (v3.7.2) (Ceccarelli et al., 2020). The top

15 highly correlated genes were used as hub genes for further

analysis.

We evaluated the prognostic value of hub genes by dividing

patients into two groups according to the median value of hub

gene expression. Patients equal or above the median value were

categorized as the high-level group and those below the median

were categorized as the low-level group. The statistical

significance of survival outcomes in the two groups was

assessed by survival analysis, screening for genes associated

with prognosis (p-value < 0.05).

3 Results

3.1 Identification of HCC subtypes

The survival curves of HCC subtypes identified by rMKL-

LPP method were given in Figure 1A. The survival probability

between groups 1, 2, 4 and 5 was not statistically significant.

Thus, we combined patients in the four groups into one group

named as Subtype1, while named the group 3 as Subtype2.

Thirty-nine patients (13.6%) in Subtype2 had 3-years

mortality rate of 51%; while those in the Subtype1 had 3-years

mortality rate of 23.5%. The basic characteristics of the two

subtypes are shown in Table 1, and the survival curves are

presented in Figure 1B. It can be seen that the two subtypes

differed significantly in survival outcomes. Compared to

Subtype1, Subtype2 had a significantly lower survival

probability (p = 4.14E-05).

To study the prognosis of different subtypes, the Cox

regression model was constructed after controlling for age,

gender and pathologic stage. The regression results are

presented in Table 2. Patients in Subtype2 were 3.369 times

higher in risk of death than Subtype1. Therefore, Subtype 1 was

named the low-risk group and Subtype 2 was named the high-

risk group. The only significant covariate is pathologic stage (p =

0.003).

3.2 Biological differences between the
two subtypes

Focusing on the two subtypes, differential expression analysis

was conducted for each omics data type. Based on the pre-set

threshold (see Section 2.3.2), a total of 196 DEmRNAs were

selected, where 132 were upregulated and 64 were
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downregulated; 58 DEmiRNAs were selected, among which

56 were upregulated and 2 were downregulated. A total of

2,151 DMGs were also identified, where 1,254 were

hypermethylated and 897 were hypomethylated. Figure 2A

shows a heatmap of differentially expressed profiles of

different omics data between the two subtypes. The heatmap

showed that the expression profiles among the three omics data

types are different between high- and low-risk groups of HCC. A

total of 458 genes targeted by 58 DEmiRNAs were predicted.

Then we performed the comprehensive analysis of differentially

expressed genes (DEGs) in different omics data. As shown in

Figure 2B, 32 genes were observed to be differentially expressed

in mRNA, along with abnormal methylation; 22 genes were

abnormally methylated and differentially expressed in miRNA,

and 2 genes were differentially expressed in mRNA and their

corresponding miRNA.

We further merged these 56 genes into a core set for KEGG

pathway and GO enrichment analysis. KEGG analysis indicated

that these genes were enriched in 10 pathways (see Figure 3). In

addition, these genes were mainly enriched in 31 GO terms (see

Figure 4).

3.3 Pathway activity and immune cell
infiltration analysis

We performed pathway activity and immune cell

infiltration analysis to further explore the biological and

clinical meaning of the two subtypes. As shown in Figure 5,

the activities of 6 pathways between two subtypes were

significantly different. Specifically, the activities of Hypoxia,

FIGURE 1
Kaplan-Meier survival curves of HCC subtypes identified by rMKL-LPP method. (A) The survival curves drawn based on the initial subtypes in
HCC and (B) the survival curves of the regrouped Subtype 1 and Subtype 2.

TABLE 1 Clinical characteristics of HCC subtypes.

Item Subtype 1 Subtype 2

Cases, n (%) 248 (86.4) 39 (13.6)

Age, years 58.57 ± 13.00 59.15 ± 11.78

Female, n (%) 80 (32.3) 12(30.8)

Pathologic stage, n (%)

Stage I 133 (53.6) 16 (41.0)

Stage II 59 (23.8) 13 (33.3)

Stage III 52 (21.0) 10 (25.7)

Stage IV 4 (1.6) 0

Death event, n (%) 48 (19.4) 14 (35.9)

TABLE 2 Results of Cox regression analysis in 287 patients with HCC.

Item Coefficient (SE) Wald Z P HR (95% CI)

Subtypesa 1.214(0.323) 3.756 <0.001 3.369 (1.787,6.349)

Age 0.005(0.011) 0.413 0.680 1.005 (0.983,1.026)

Gender -0.191(0.282) −0.678 0.498 0.826 (0.475,1.436)

Pathologic stage

Stage II 0.010(0.348) 0.027 0.978 1.010 (0.511,1.996)

Stage III 0.285(0.312) 0.912 0.361 1.330(0.721,2.451)

Stage IVa 1.907(0.638) 2.990 0.003 6.730 (1.929,23.483)

aShows the statistical significance at the α = 0.05 level.
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MAPK, EGFR, NF-kβ, and TNFα pathways was found to be

significantly higher in the high-risk group than in the low-risk

group; while VEGF pathway activity showed higher in the

low-risk group.

Figure 6 revealed that the abundance of 9 immune cells

differed significantly between two subtypes. The abundance of

monocytic lineage, CD8+T cell, T cell, myeloid dendritic cell, and

cytotoxicity score was found to be significantly higher in the

high-risk group than in the low-risk group. Tumor-infiltrating

immune cells are closely related to clinical outcomes of patients

in many types of tumors and are likely to serve as target spots in

cancer-targeting drug delivery systems. This provides ideas for a

targeted therapeutic strategy of HCC.

3.4 Core module and hub gene
identification

In the WGCNA analysis, 11 co-expression modules were

identified (Figure 7A). Among them, the brown module that is

FIGURE 2
(A) Heatmap of DEmRNAs, DMGs and DEmiRNAs between the two subtypes. Each column corresponds to a patient and each row indicates an
individual feature. The relatively high and low expression of genes are shown in red and green color respectively. (B) Venn diagram of differentially
expressed gene analysis results in different omics data.

FIGURE 3
KEGG enrichment analysis for 56 genes selected.
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significantly related to subtype (r = 0.46, p < 0.0001) was

selected for subsequent analysis (Figure 7B). Then,

59 candidate genes were screened from the brown module

that included a total of 758 genes based on the preset criteria.

The CytoHubba plugin in Cytoscape software was employed

to measure the MCC score of candidate genes to identify hub

genes. Finally, the top 15 genes were selected as hub genes for

further analysis by sorting the MCC score. They were TPX2,

KIFC1, MYBL2, TOP2A, NUSAP1, ARHGAP11A, LMNB1,

CDK1, CDCA8, TACC3, NUF2, NCAPG, HJURP, NCAPH,

and CENPA. The interaction between hub genes and

candidate genes was visualized using Cytoscape software.

Shown in Figure 8, each candidate gene is less

connected to all other candidate genes and more connected

to hub genes.

3.5 Evaluation of prognostic value of hub
genes

We further investigated the links between hub genes and

the prognosis of patients in Subtype2 separately using the

Kaplan-Meier method. Four of the 15 hub genes (CDK1,

CDCA8, TACC3, and NCAPG) significantly correlated with

prognosis (p < 0.05). As shown in Figure 9, these genes with

high expression were accompanied by a poor prognosis in

Subtype2 patients, indicating the role of these genes in the

high-risk group.

4 Discussion

In this study, we applied rMKL-LPP method to integrate

three omics data types (mRNA expression, miRNA

expression and DNA methylation) with 287 patients for

HCC. Coupling with the survival analysis, these patients

were further classified into two subtypes which show

significant association with overall survival. The high-risk

group had a higher 3-years mortality rate of 51.0% while the

low-risk group had a 3-years mortality rate of 23.5%.

Furthermore, the death risk of HCC patients in the high-

risk group was found to be 3.37 times higher than that in the

low-risk group. Focusing on the two subtypes, potential

diagnostic biomarkers (genes or signaling pathways) were

identified through bioinformatics analysis. The present

results provided an important reference for future

precision treatment of HCC patients.

We performed the differential expression analysis and

pathway activity analysis to reveal the biological changes

that contribute to survival differences between two

subtypes. Abnormal expression of DNA methylation and

miRNA can occur at all stages of HCC development and

play a cancer-promoting or carcinostatic role through

several mechanisms (Zheng et al., 2019). When analyzing

the interactive relationship among DEmiRNAs, DEmRNAs

and DMGs, 56 DEGs were selected. Some of the DEGs may

serve as potential biomarkers of HCC. For example, CLEC4M

and CYP2C8 have been reported as potential prognostic

FIGURE 4
GO enrichment analysis for 56 genes selected.
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FIGURE 5
Boxplots showing the pathway activity for six pathways.

FIGURE 6
Boxplots showing the abundance of nine immune cells between the two subtypes.
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biomarkers in patients with HCC (Li et al., 2019; Luo et al.,

2020). Both PPOX and HMBS play key roles as tumor

suppressors in the hepatocarcinogenesis (Schneider-Yin

et al., 2015). APLN can be used as an independent

prognostic factor for HCC (Chen et al., 2019). ANXA2 and

C8orf33 have been reported as key genes to distinguish poorly

differentiated HCC and well-differentiated HCC (Shao et al.,

2017). Different pathways play different roles in multiple

biochemical and pathological mechanisms of

hepatocarcinogenesis. The activity of the six pathways:

Hypoxia, MAPK, EGFR, NF-kβ, TNFα and VEGF pathway

varied significantly across subtypes. Pathways such as the

TNFα and NF-kβ were found to have a procardiogenic

effect on the liver (Pikarsky et al., 2004; Ramakrishna et al.,

2013). Recently, (Liu et al., 2020), found that combination

therapy, involving anti-VEGF and ICBs, could potentially

benefit patients with HCC. This suggests that pathway-

blocking therapy can provide new opportunities for precise

treatment of HCC.

We also performed WGCNA analysis to identify gene

modules and genes affecting the prognosis of HCC patients.

The results demonstrated that the brown module was most

strongly associated with prognosis. This indicated that the

critical genes in the brown module may serve as potential

biomarkers affecting the progression of HCC. Further

analysis found that 4 out of 15 hub genes were closely

correlated with the prognosis of Subtype2 patients. These

4 genes have also been reported in the occurrence and

development of HCC. NCAPG plays a substantial role in

genetic factors that modulate fetal growth (Eberlein et al.,

2009) and is associated with vascular invasion in HCC (Guo

and Zhu, 2021). Some studies have reported that NCAPG

dysregulation is associated with cancers, including gliomas

and melanomas (Ryu et al., 2007). CDCA8, a key component

of the chromosome passenger complex, regulates cell

dynamic localization during mitosis (Cui et al., 2021).

High expression of CDCA8 may lead to poor prognosis in

patients with lung and gastric cancer. CDK1, a catalytic

subunit of the highly conserved protein kinase complex,

FIGURE 7
(A) Hierarchical clustering dendrogram of identified co-expression modules. (B) Heatmaps of the correlation between modules and clinical
traits. Each row represents a module and each column represents a clinical feature. Each cell consists of the correlation and p-value (in parenthesis).

FIGURE 8
Network diagram of interaction between hub genes and
candidate genes.
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may serve as a potential target for lycorine against HCC (Yin

et al., 2021). TACC3 is responsible for cell mitosis and

transcriptional functions. Its high expression is

positively associated with poor overall survival (Zhou

et al., 2015).

In summary, the present research integrated HCC multi-

omics data and effectively identified subtypes using rMKL-

LPP method, which provides novel strategies and ideas for the

subtyping study of HCC. In addition, the selected potential

pathogenic genes, pathways and tumor-infiltrating immune

cells can be used as references to control related gene

expression or interfere with their target signal transduction

pathways to provide potential opportunities for the treatment

of HCC. For future research, the limitations of the present

study must be acknowledged. More adequate experiments are

needed to confirm the role of potential biomarkers and further

validation of the HCC subtypes identified in this study is

needed.
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