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Brace roots are the main organ to support the above-ground part of maize

plant. It involves in plant growth and development by water absorption and

lodging resistance. The bracing root angle (BRA) and diameter (BRD) are

important components of brace root traits. Illuminating the genetic basis of

BRA and BRD will contribute the improvement for mechanized harvest and

increasing production. A GWAS of BRA and BRD was conducted using an

associated panel composed of 508 inbred lines of maize. The broad-sense

heritability of BRA and BRD was estimated to be respectively 71% ± 0.19 and

52% ± 0.14. The phenotypic variation of BRA and BRD in the non-stiff stalk

subgroup (NSS) and the stiff stalk subgroup (SS) subgroups are significantly

higher than that in the tropical/subtropical subgroup (TST) subgroups. In

addition, BRA and BRD are significantly positive with plant height (PH), ear

length (EL), and kernel number per row (KNPR). GWAS revealed 27 candidate

genes within the threshold of p < 1.84 × 10−6 by both MLM and BLINK models.

Among them, three genes, GRMZM2G174736, GRMZM2G445169 and

GRMZM2G479243 were involved in cell wall function, and

GRMZM2G038073 encoded the NAC transcription factor family proteins.

These results provide theoretical support for clarifying the genetic basis of

brace roots traits.
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Introduction

Plant growth and development need root system to take up

water and nutrients necessary to live (Su et al., 2020). In addition,

the root system of maize (Zea mays L.) protects the plant from

the wind and resist the lodging. The root system is composed of

embryogenic and postembryonic roots in maize. Embryogenic

roots include primary root and seminal roots, and post-

embryonic roots include lateral roots and shoot-borne roots.

Shoot-borne roots that form below the ground are called crown

roots while those above the ground are called brace roots

(Hochholdinger, 2009; Guo et al., 2018; Hochholdinger et al.,

2018). Through morphological, anatomical and physiological

approaches, considerable progress of the brace-root-related

traits had been made, including lodging-resistance (Liu et al.,

2012; Erndwein et al., 2020; Reneau et al., 2020) and nutrient and

water acquisition (Wang et al., 2006; Van Deynze et al., 2018).

From a genetic perspective, maize brace root is a complex

trait, which is governed by multiple quantitative trait loci (QTL).

Over the last 30 years, QTL mapping has become a classic

method for highlighting the genetic basis of continuous

variation in a variety of systems. The QTLs for total brace

root tier number (TBRTN) and effective brace root tier

number (EBRTN) have been identified using recombinant

inbred lines (RILs) and immortalized F2 (IF2) populations

(Ku et al., 2012). Later, six brace root traits were detected in a

F2 population (Gu et al., 2017). In addition, eight QTLs were

identified for tier number (TN), root number (RN), and radius of

the brace root (RBR) (Zhang et al., 2018a). Recently, twenty-one

QTLs were identified in backcross population for 7 brace-root-

related traits in maize (Sun et al., 2020).

Although genetic linkage analysis for QTL mapping is an

effective tool, constructing segregating populations is necessary

(Yu and Buckler, 2006). With the reducing cost and increasing

throughput, next-generation sequencing (NGS) technologies

have provided us with new opportunities to construct high-

density genetic maps from genome-wide single nucleotide

polymorphism (SNP) markers (Wang et al., 2019a; Benjamin

et al., 2019; Song et al., 2020).

Genome-wide association analysis (GWAS) employed

genotype and phenotype data of natural populations with

extensive natural variation to find correlations between SNPs

and a phenotype (Fong et al., 2010). It is an effective method to

revealing the genetic basis of complex quantitative traits (Cui

et al., 2016, 2018; Tao et al., 2020; Zhang et al., 2022; Zhao et al.,

2022). At present, a total of 34 QTLs have been detected for

13 morphology traits of maize root, and single QTL explained

5.7%–15.9% of the phenotypic variance (Wang et al., 2019b). In

addition, seven seedling root architectural traits were examined

by integrating GWAS and QTL mapping (Moussa et al., 2021).

QTLs involving the number node number of brace root, brace

root number, and brace root dry weight were defined as relative

phenotypic values of seedling traits under waterlogging

conditions and were used to evaluate waterlogging tolerance

in tropical maize (Guo et al., 2021). Liu et al. (2022) revealed

a total of 9 SNPs that were significantly associated with

metaxylem vessels in maize brace roots. The brace root angle

(BRA) and brace root diameter (BRD) are also important traits of

maize root and regulate by multiple genes, but the genetic basis is

not yet clear. In this study, a GWAS analysis of 508 maize inbred

lines with 543,641 SNPs genotypes was performed in three

environments to analyze the phenotypic diversity and genetic

basis of the brace root traits. The study also identified a range of

candidate genes associated with BRA and BRD, providing a

useful resource for further functional studies.

Materials and methods

Panel for association mapping

The GWAS association panel was comprised of 508 different

maize inbred lines, including 60 from the United States’

Germplasm Enhancement of Maize, 223 from Mexico’s

International Center for Maize Improvement (CIMMYT), and

225 from China’s germplasm resources. All resources were

preserved by College of Biological Science and Technology of

Shenyang Agricultural University. The majority of CIMMYT’s

inbred lines came from tropical or subtropical regions, whereas

most lines from the US and China came from temperate

locations. Previous studies of the kinship of 508 maize inbred

lines were based on K (model-based subgroups), and the maize

panel was clustered into three clear subpopulations with 27 the

stiff stalk (SS) inbred lines; 70 the non-stiff stalk (NSS) inbred

lines; 196 the tropical-subtropical (TST) inbred lines, and the

remaining 215 were classified into an admixed (MIXED) line. A

previous study gave detailed information on the 508 inbred lines,

including linkage disequilibrium, genetic diversity, and

population structure (Yang et al., 2011; Jiang et al., 2020).

Field experiments and phenotypic data
collection

The association panel’s 508 inbred lines were planted in three

locations in China: Shenyang City, Liaoning Province (LN)

(123°25E, 41°48N) in 2016 and 2017, and Sniping, Jilin

Province (JL) (123°17E, 42°31N) in Northeast China in 2016.

All of the lines were planted using a randomized complete block

design with two replicates. Each row is planted in rows 2-m long

and 0.6-m wide, with a 0.4 m aisle in the middle of each plot.

Maize brace roots traits were measured during reproductive

growth. Brace roots in good condition, without cracking or

wilting, were chosen to facilitate subsequent correlation

analysis in order to obtain more accurate data. In each row,

two the outermost brace roots close to the ground with mid-
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growing were selected for measurement. Measure the BRD using

an electronic vernier caliper in the middle of the base of the brace

roots (Centimeter). BRA was measured between the point of

occurrence of the brace root and the main stem (degree)

(Figure 1).

Phenotype statistical analysis

Amixed linear model was used to calculate the best unbiased

linear predictive value (BLUP) for the maize brace root traits, and

the average value was added to the estimate to obtain the final

BLUP value: yijk � μ + el + rk(l) + fi + (fe)il + εlik, where μ

represents the grand mean of brace root traits, and fi is the

genetic effect of the ith line, el represents environmental effect of

the lth environment, (fe)il is the interaction effect between

genetic and environmental effects, rk(l) is the repeated

influence within the environment, and εlik is the residual

error. The “PROC MIXED” program in SAS software (Release

9.1.3; SAS Institute, Cary, NC, United States) was used to analyze

the phenotypic variation of maize brace root traits. Broad-sense

heritability is, respectively, calculated at individual environment

and multiple environments as follows: h2 � σ2g
σ2g+σ2e /nreps and

h2 � σ2g
σ2g+σ2ge/nEnvs+σ2e /n(Envs × reps), where σ2g represents genetic

variance, σ2e represents a residual error, σ2ge represents the

interaction of genotype and environment, and n represents

the number of environments and replications.

Genome-wide association study

For the GWAS, the genotyping dataset was a whole genetic

map assembled from the 50 K SNP array and RNA-seq, which

comprised 543,641 SNP markers (minor allele frequency > 5%)

(Maloof, 2007). The BLUP values of BRA and BRD in three

individual environments and all environments were used to

perform association analysis. For this study two association

models were implemented namely Mixed Linear Model

(MLM) and Bayesian information criterion and Linkage-

disequilibrium Iteratively Nested Keyway (BLINK). K and Q

matrices were considered in MLM using TASSEL V5.0 software

package to avoid spurious associations (Bradbury et al., 2007).

We then used the uniform Bonferroni-corrected threshold at α =

1 for MLM reported in previous studies as a significance cutoff

(Li et al., 2013; Yang et al., 2014; Mao et al., 2015). BLINK model

eliminates the assumption to improve statistical power by using

the linkage disequilibrium (LD) method. Markers are sorted with

the most significantly associated maker on the top as reference.

The remaining markers are removed if they are in LD with the

most associated marker. Among the remaining makers, the most

significantly associated maker is selected as the reference. The

process is repeated until no markers can be removed. p-value was

the probability of observing at least the same sample as the actual

observed sample when the null hypothesis was true in the

FIGURE 1
Measurement location of BRA and BRD in the field.

FIGURE 2
Boxplot of BRA and BRD of the three environments. (A) BRA, (B) BRD. ANOVA was used to examine phenotypic differences between different
environments. a and b indicate statically significant differences at p ≤ 0.05. 16LN, Liaoning Province in 2016; 16JL, Jilin Province in 2016; 17LN,
Liaoning Province in 2017.
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hypothesis test. The p-value for this study was calculated by 1/n

(n = 543,641) with a p-value of 1.84 × 10−6 as the final significance

cutoff in the association analysis. Use the ANOVA function in

the R package to estimate the contribution of the SNPs to the

phenotypic variance. After adjusting for the population structure

effects, the R2 of each significant SNP was calculated using two

linear models: Y � Xiαi + Pβ + ε, which was used to estimate the

total variance of all significant SNPs, and Y � Xα + Pβ + ε, which

was used to estimate the variance of individual significant SNPs.

In these models, Y and X represent phenotype and SNP

genotype vectors, respectively, P is the matrix of the three

subgroups (NSS, SS, TST), and α, β and ε are SNP, subgroup

and random residual random effects, respectively. α and β are

unknown vector containing fixed effects, and ε vectors are

random effects assumed to be normally distributed.

Annotation of candidate genes

Find the physical locations of the SNPs in the

B73 RefGen_v2 genome (www.maizesequence.org). Identify

genes within 50-kb (R2 < 0.2) upstream and downstream of

significantly associated SNPs loci (Cui et al., 2020; Jiang et al.,

2020) and functionally annotate homologous genes in rice and

Arabidopsis thaliana.

Expression heat-map of candidate genes

Download the expression levels of candidate genes in

different tissues of maize B73 from the MaizeGDB qTeller

database (https://qteller.maizegdb.org/). The value used to

make the heat-map was log10 (n + 1), where n represents the

TPM value.

Results

Brace root diversity and heritability

The phenotypic data and the BLUP values of 508 maize

inbred lines were shown in Supplementary Table S1. BRA and

BRD exhibited slightly left-skewed normal distributions

(Supplementary Figure S1). In addition, BRA and BRD

extensive phenotypic variation in different environments in

the association panel (Figure 2). The distribution range of

BRA was from 19.24° to 84.15°, and BRD was from 0.25 to

0.65 cm (Supplementary Figure S1). Variance analysis indicated

that genotype variance had a significant effect (p < 0.01) in a

single environment and across all environments. Furthermore,

environment variance and genotype × environment (G × E)

interaction variance were highly significant (p < 0.01) across

environments. The broad-sense heritability was 71% ± 0.19 and

52% ± 0.14, respectively, indicating that the phenotypic variation

of BRA and BRD was mainly derived from genetic factors

(Table 1; Supplementary Table S2).

The association panel used in this study can be divided into four

subpopulations: SS, NSS, TST, and MIXED (Yang et al., 2011). The

SS and NSS subpopulations are from the temperate zone, the TST

subpopulation is from the tropics or subtropics, and the MIXED

subpopulation contains the remaining non-classified inbred lines

(Yang et al., 2011). Therefore, the phenotypic variation of BRA and

BRD between different subgroups was compared to investigate the

effect of population structure (Figure 3). Among them, the medians

of BRA and BRD in NSS and SS subgroups were significantly higher

than that in other subgroups, and the BRA phenotype variation

range in NSS and SS subgroups was smaller than that in other

subgroups. In summary, the BRA and BRD traits exhibit wide

variation according to genetic backgrounds, population structure

and environment, and were suitable for GWAS analysis.

Correlations of bracing root angle and
bracing root diameter phenotypes with
other plant developmental processes

As an integral part of the root system, brace roots might be

related to the growth and development of other agronomic traits.

To further clarify the relationships between BRA and BRD with

other agronomic traits, we performed a correlation analysis.

Correlation studies were conducted on 17 reported agronomic

traits using the same 508 maize inbred lines (Yang et al., 2014).

Based on Pearson’s correlation coefficients, a positive correlation

exists between BRA and tassel maximum axis length and kernel

number per row at 1% significant level, and plant height and ear

length at 5% significant level. A positive correlation exists

between BRD and plant height, ear length and kernel number

per row at 1% significant level, and tassel maximum axis length at

5% significant level. These results indicated that BRA and BRD

can affect plant morphology and yield (Figure 4).

The 508 maize inbred lines was clustered into three

subpopulation and an admixed lines (Yang et al., 2014). We

revealed the effect of population structure on 17 agronomic traits.

As shown in Figure 4A, a significant correlation existed between BRD

and tassel maximum axis length, ear length in all four subpopulations.

There were 3,5,5,3 traits existing significant correlation with BRD in

MIXED, NSS, SS and TST subpopulation respectively (Figures 4B–E).

In comparison, there were only 2,2,3,4 traits with BRA, indicating

population structure had an important impact on agronomic traits,

and BRD was more closely related to yield.

In addition, the correlations between BRA, BRD and brace

root tier number (TN), radius of the brace root (RBR, r = C/2π,
where C is the outer circumference of the circle described by

brace roots striking into the soil) and brace root number (RN)

(Zhang et al., 2018a) were also analyzed. As shown in Figure 5, all

five brace root traits also followed normal distributions. BRA was
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positively correlated with RBR (r = 0.265, p < 0.01), whereas was

negatively correlated with RN (r = −0.195, p < 0.05). BRD was

positively correlated with RBR (r = 0.35, p < 0.01), TN (r = 0.231,

p < 0.01) and RN (r = 0.233, p < 0.01). Furthermore, BRA was

positively correlated with BRD (r = 0.27, p < 0.01).

Genome-wide association analysis

To reduce the impact of environmental change, phenotypic

BLUP values in all environments and three individual environments

(16LN, 16JL, and 17LN) were used for association studies. The

GWAS results of BRA and BRD with MLM and BLINK model are

displayed in Figure 6; Table 2 (Supplementary Figures S2–S4). For

BRA, we detected a total of six independently significant SNPs by

two models. BLINK captured all six SNPs, but MLM did only five.

For BRD, BLINK captured 9 significant SNPs, including all 5 SNPs

identified by MLM. But no significant SNP was found by both

methods for 17LN.

MLM and BLINK are two different statistical methods for

GWAS. MLM includes the kinship matrix (K) as an additional

random effect component (Kumar et al., 2022), whereas BLINK

uses a multiple loci test method instead of a single loci test

method, by combining a fixed effect model (FEM), Bayesian

information criteria, and linkage disequilibrium information

(Huang et al., 2017). Due to the less false-negative rate, more

significant SNPs had been revealed by BLINK model in the

present study. There are 10 significant SNPs identified by

both BLINK and MLM, five for BRA and the rest for BRD.

Among them, the allele effects of chr5.S_2275215 was the most

significant for BRD phenotypic variation, with a p-value of 2.87E-

07 (Figure 7). According to MLM method, the five SNPs of BRA

explained 2.40%–10.90% of phenotypic variation; and the five

SNPs of BRD explaining 13.95%–14.70% of phenotypic variation

(Table 2; Supplementary Table S3).

Expression pattern of candidate gene in
different maize tissues

Ten SNPs that were significantly associated with BRA and

BRD were revealed by both MLM and BLINK. A total of

TABLE 1 Phenotypic variation distribution, analysis of variance, and broad-sense heritability of BRA and BRD.

Traitsa Means ± SD Range Variance componentb,c h2 ± SDd

Genotype (G) Environment (E) G × E

BRA 52.93 ± 8.10 19.24–84.15 37.59* 10.96* 26.46* 0.71 ± 0.19

BRD 0.46 ± 0.05 0.25–0.65 29.15* 16.38* 13.56* 0.52 ± 0.14

aTraits, the best linear unbiased prediction; BRA, brace root angle; BRD, brace root diameter.
bG and E indicate genotype and environment, respectively, and G × E indicate interaction of G and E.
c*represents significant differences at the 0.01 level.
dFamily mean-based broad-sense heritability.

FIGURE 3
Violin plot of BRA and BRD of the four major subgroups. (A) BRA, (B) BRD. SS, the stiff stalk subgroup;NSS, the non-stiff stalk subgroup; TST, the
tropical-subtropical subgroup;MIXED, admixed subgroups. ANOVA was used to examine phenotypic differences between different subgroups. a, b
and c indicate statically significant differences at p ≤ 0.05.
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27 candidate genes were identified within 50-kb upstream and

downstream of each SNP, of which 25 genes were functionally

annotated. According to the functional annotation, the

candidate gene GRMZM2G038073 identified by 16-JL-BRD

encoded the NAC (No Apical Meristem) domain

transcriptional regulator superfamily protein. In addition,

three candidate genes GRMZM2G479243, GRMZM2G174736

and GRMZM2G445169 identified by BRD and 16-LN-BRD are

involved in cell wall functions (Supplementary Table S3). To

further determine the expression levels of candidate genes

within the loci-linked interval of significant SNPs in each

tissue, the expression patterns of published RNA-seq datasets

from 13 different organs/tissues, including brace root, were

analyzed (Figure 8). There was no tissue-specific expression in

any 27 genes. The gene GRMZM2G040131 encoding methyl-

binding protein had relatively high expression levels in various

tissues. The three genes involved in cell wall functions showed

expression from moderate to high level. But the gene

GRMZM2G038073 encoded the NAC transcriptional factor

had a lower expression.

Discussion

Genetic basis of bracing root angle and
bracing root diameter

Since maize is one of the most important crops for global

food security, several efforts have been undertaken addressing the

efficient utilization of germplasm collections for breeding

FIGURE 4
Correlation between BRA, BRD and 17 agronomic traits. (A) 508 maize association populations, (B) MIXED, (C) NSS, (D) SS, (E) TST. BRA, brace
root angle; BRD, brace root diameter; PH, plant height; EH, ear height; ELW, ear leaf width; ELL, ear leaf length; TMAL, tassel maximum axis length;
TBN, tassel branch number; LNAE, leaf number above ear; EL, ear length; ED, ear diameter; CD,cob diameter; KNPR, kernel number per row; GW,
100-grain weight;CW, cobweight; KW, kernel width;DTA, days to anthesis;DTS, days to silking;DTH, days to heading. * represents a significant
differences at the 0.05 level; *** represents significant differences at the 0.01 level.
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purposes (Maldonado et al., 2019). In the present study, a

genetically diverse association panel consisting of different

maize inbred lines, were used for GWAS analysis of root

traits of importance in the maize crop. BRD and BRA

exhibited wide variation according to genetic backgrounds,

and were moderately to highly heritable traits. Genetic and

environmental effects are significant as is the interaction of

genetic and environmental effects for BRA and BRD traits

and is suitable for further GWAS analysis. Furthermore, the

phenotypic variation among different environments is consistent

with the variance analysis results, indicating that different

environments can influence the phenotypic changes of BRA

and BRD. Thus, the improvement of maize BRA and BRD

can be through breeding programs in specific environments

binding to the identified environment-specific significant SNPs.

GWAS is straightforward for data generation, management,

and analysis (Purcell et al., 2007; Xiao et al., 2007; Pruim et al.,

2010; Chang et al., 2015). It can also discover new biological

mechanisms using reliable genotyping techniques (Hirschhorn,

2009; Visscher et al., 2017). However, it also has certain

limitations. For example, all genetic determinants of complex

traits cannot be fully identified by GWAS (Altshuler et al., 2008),

and heritability for complex traits is difficult to accurately

estimate (Visscher et al., 2008; Zuk et al., 2012). In addition,

GWAS does not necessarily pinpoint causal variants and target

genes (Altshuler et al., 2008), and often requires additional steps

for identification, such as the development of new methods and

fine-mapping (Mägi et al., 2017; Ng et al., 2017). Furthermore,

population stratification is a difficult problem in genetic

association studies that, if not considered, can lead to spurious

associations (McClellan and King, 2010).

Maize originated and domesticated in the tropics and was

subsequently grown and improved in subtropical and

temperate regions. Therefore, population structure may

have imposed effects on maize morphology due to different

kinship of inbred lines in associated populations (Camus-

Kulandaivelu et al., 2006). By comparing the phenotypic

variation of BRA and BRD in different maize

subpopulations, it was found that temperate regions have

wider BRA and thicker BRD than tropical regions

(Figure 3). It has been reported that rapid water

evaporative in the tropics makes brace roots susceptible to

drought stress, resulting in decreased expression of the

ZmRHCP1 gene, thereby reducing brace root yield (Vadez

et al., 2012; Li et al., 2017). Temperate maize may have more

brace roots and fewer crown roots, which may improve root-

lodging resistance and water and nitrogen uptake (Zhang

et al., 2018b). Therefore, there was difference in BRA and

BRD between subgroups that may be affected by

consanguinity.

Coordination of bracing root angle and
bracing root diameter with other
processes of plant development

Correlations among brace root traits have been reported in

previous studies. Zhang et al. indicated that BRA was

FIGURE 5
Correlations between BRA, BRD and three other brace root traits. The diagonal plot represents the frequency of the phenotypic distribution
between the brace root angle, the brace root diameter, and the other three brace root traits. The value above the diagonal is Pearson’s correlation
coefficient between the two traits. Below the diagonal is a scatter plot of two traits. * represents significant difference at the 0.05 level; ** represents
significant differences at the 0.01 level. BRA, brace root angle, BRD, brace root diameter, TN, tier number of the brace root, RBR, radius of the
brace root, RN, number of the brace root.
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FIGURE 6
Manhattan plots of BRA and BRD by MLM. Manhattan plots for BRA-BLUP, 16LN-BRA, 16JL-BRA, 17LN-BRA, BRD-BLUP, 16LN-BRD, 16JL-BRD
and 17LN-BRD are shown in (A), (B), (C), (D), (E), (F), (G) and (H), respectively. The black lines show genome-wide significance at stringent thresholds
of 1.84 × 10−6.

TABLE 2 Positions of SNPs significantly correlated with BRA and BRD were Co located by MLM and BLINK.

Traits SNP Chr Positions (bp) Allelea p-value R2 (%)b

BRA chr3.S_218194187 3 218194187 A/G 4.91492E-07 2.40

chr10.S_4090245 10 4090245 G/A 5.36755E-07 10.90

chr8.S_107094508 8 107094508 T/C 2.99367E-07 3.50

chr5.S_3504616 5 3504616 C/T 1.93558E-07 5.70

chr6.S_112435160 6 112435160 A/C 5.45E-07 0.45

BRD chr9.S_140361053 9 140361053 G/T 4.24628E-07 14.70

chr10.S_95437751 10 95437751 A/C 1.71503E-06 13.95

chr5.S_2275215 5 2275215 G/A 2.87E-07 2.40

chr4.S_237033434 4 237033434 G/T 1.86264E-07 4.90

chr5.S_180407216 5 180407216 G/C 2.29814E-07 8.35

aMajor/minor alleles, underlined bases indicate favorable alleles.
bPercentage of phenotypic variation explained by the cumulative effect of a single significant SNP.
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FIGURE 7
The boxplot of phenotypic differences between the major and minor alleles of significant SNPs associated with BRA and BRD. The p-values
(Student’s t-test) of the allelic effects of BRA and BRD are exhibited above each small plot. (A) BRA-BLUP, (B) BRA-BLUP, (C) 16LN-BRA, (D) 16JL-BRA,
(E) 17LN-BRA, (F) BRD-BLUP, (G) BRD-BLUP, (H) 16LN-BRD, (I) 16JL-BRD, (J) 16JL-BRD.

FIGURE 8
Expression patterns of candidate genes identified by MLM. Each expression in the graph is the log10 (n + 1) transformed value of TPM counts for
brace root and other tissues, as indicated at the bottomof each column. Rows and columns are distributed according to similarity (cluster analysis on
top and left). Orange, white and blue represent higher, moderate and lower genes expressed in each tissue, respectively.
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positively correlated with brace root deployment width and

negatively correlated with the number of whorls (Zhang et al.,

2018b). In addition, BRD was positively correlated with the

number of the brace root and the tier number of the brace root

(Liu et al., 2012; Gu et al., 2017). The above results are

consistent with ours. All these traits can affect root lodging

resistance.

Plant height, reduced during the Green Revolution, has

been associated with crop yield by affecting lodging tolerance

in cereals. BRD is an important phenotype for resistance to

root lodging. Our results showed that BRD was highly

significantly positively correlated with plant height.

However, Sharma and Carena (2016) reported that there

was no correlation between plant height and root lodging

during natural root lodging events. Notable, Hostetler et al.

(2021) described the low positive correlations between brace

root phenotypes and plant height, and analyzed their

opposing effects on lodging susceptibility. The taller plants

are susceptible to lodging, but stronger brace roots provide

them with more lodging-resistance. These results indicate the

complex relationship among plant height, brace root traits,

and lodging-resistance. In addition, population structure is

also an important factor affecting the correlation between

different phenotypic traits.

Candidate genes and pathways involved in
brace root morphogenesis

The NAC family is a plant-specific transcription factor that

plays an important role in plant development, various abiotic

stress responses, and disease resistance (Yuan et al., 2019).

AtNAC2 (ANAC092) and AtNAC1 (ANAC021) have been

shown to promote the formation of lateral roots by gene

overexpression in Arabidopsis (Xie, 2000; He et al., 2010). In

monocot barley, there are threeHvNAC genes upregulated highly

in the root of three leaf stage, which belong to subfamily NAC-d,

as do both AtNAC2 and AtNAC1(Christiansen et al., 2011). In

maize, there are 157 NAC family members divided into two large

groups including 18 subgroups (Lu et al., 2015). In this study, we

identified a candidate gene GRMZM2G038073

(Zm00001d017084), which was annotated as NAC (No Apical

Meristem) domain transcriptional regulator superfamily protein.

Mao et al. (2015) identified a NAC gene (ZmNAC111) associated

with natural variation in maize drought tolerance using GWAS.

ZmNAC111 overexpression in maize seedling improved drought

tolerance and water-use efficiency. But ZmNAC111 showed a

lower expression in root due to an insertion of 82-bp miniature

inverted-repeat transposable element (MITE) in the promoter.

Interestingly, according to hot map of gene expression,

GRMZM2G038073 showed a lower expression in brace root,

too. And then, we blasted the upstream sequences of

GRMZM2G038073 using the 82-bp MITE as a query and

found a highly homologous DNA sequence located 3574-bp

upstream of the start codon. Thus, we speculated that

GRMZM2G038073 may involve in root development and

water absorption.

Plant cells are surrounded by a rigid wall, which provides

mechanical protection, cellular stability, and cell-to-cell

communication (Nicolas et al., 2001). The cell wall is

composed of carbohydrates and structural proteins.

GRMZM2G174736, a candidate gene of BRD, encodes the

structural proteins hydroxyproline-rich-glycoproteins

(HRGPs), which are also called extensions and take part in

cell wall assembly (Saha et al., 2013; Chen et al., 2015; Borassi

et al., 2021). It is known that the expression of HRGPs in a tissue-

specific or development-specific manner (Keller and Lamb, 1989;

Ye and Varner, 1990) and involve in root development (Ji et al.,

1998, 1; Chen et al., 2015; Pinski et al., 2021). Opposite to

extensions, expansins, encoded by GRMZM2G445169, are cell

wall loosening protein to be responsible for organ growth in

plants (Cosgrove, 2000; Choi et al., 2008; Pena et al., 2015).

Kwasniewski and Szarejko (2006) demonstrated that the

expansin EXPB1 was involved in root hair initiation, and Yu

et al. (2011) reported that root hair-specific expansin

EXPA17 was necessary in root hair elongation in rice.

GRMZM2G479243 encodes Arabidopsis FEI homologous-

protein, which belongs to leucine-rich repeat (LRR) protein

kinase family. The fei1 fei2 double mutant in Arabidopsis

caused a swollen-root phenotype, reduced cellulose production

in roots and hypersensitivity to inhibition of cellulose

biosynthesis (Xu et al., 2008). The cell walls are dynamic

structures that respond to developmental and environmental

changes (Debarati et al., 2016). All three genes,

GRMZM2G174736, GRMZM2G445169 and

GRMZM2G479243, are supposed to take part in brace roots

development via regulating cell wall function.

Conclusion

In this study, we revealed the genetic basis of brace root

diameter and brace root angle under the maize natural variant

population, which exhibited wide variation according to genetic

backgrounds, and were moderately to highly heritable,

respectively. Their phenotypic variation was significantly

higher in the non-stiff stalk subgroup and stiff stalk

subgroups than in the tropical-subtropical subgroups. The

brace root angle and brace root diameter existed significant

correlation with different agronomic traits in different

subgroups, and brace root diameter had more agronomic

correlation, indicating population structure had an important

impact on agronomic traits. The genome-wide association study

revealed associations with 27 candidate genes. According to the

published RNA-seq datasets from 13 different organs/tissues, there

is no tissue-specific expression in any 27 genes. The gene
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GRMZM2G040131 encoding methyl-binding protein had relatively

high expression levels in various tissues. The three genes involved in

cell wall functions showed expression from moderate to high level.

But the gene GRMZM2G038073 encoded the NAC transcriptional

factor had a lower expression. This will provide a theoretical basis

for the improvement of maize brace roots.
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