
Expression of lactate-related
signatures correlates with
immunosuppressive
microenvironment and
prognostic prediction in ewing
sarcoma

Zhao Zhang1†, Jingxin Pan1†, Debin Cheng1†, Yubo Shi1,
Lei Wang1, Zhenzhou Mi1, Jun Fu1, Huiren Tao2 and
Hongbin Fan1*
1Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an,
China, 2Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, China

Objectives: Ewing sarcoma (EWS) is an aggressive tumor of bone and soft

tissue. Growing evidence indicated lactate as a pivotal mediator of crosstalk

between tumor energy metabolism and microenvironmental regulation.

However, the contribution of lactate-related genes (LRGs) in EWS is still unclear.

Methods: We obtained the transcriptional data of EWS patients from the GEO

database and identified differentially expressed-LRGs (DE-LRGs) between EWS

patient samples and normal tissues. Unsupervised cluster analysis was utilized

to recognize lactatemodulation patterns based on the expression profile of DE-

LRGs. Functional enrichment including GSEA and GSVA analysis was conducted

to identify molecular signaling enriched in different subtypes. ESTIMATE, MCP

and CIBERSORT algorithm was used to explore tumor immune

microenvironment (TIME) between subtypes with different lactate

modulation patterns. Then, lactate prognostic risk signature was built via

univariate, LASSO and multivariate Cox analysis. Finally, we performed qPCR

analysis to validate candidate gene expression.

Result: A total of 35 DE-LRGs were identified and functional enrichment

analysis indicated that these LRGs were involved in mitochondrial function.

Unsupervised cluster analysis divided EWS patients into two lactate modulation

patterns andwe revealed that patients with Cluster 1 patternwere linked to poor

prognosis and high lactate secretion status. Moreover, TIME analysis indicated

that the abundance of multiple immune infiltrating cells were dramatically

elevated in Cluster 1 to Cluster 2, including CAFs, endothelial cells,

Macrophages M2, etc., which might contribute to immunosuppressive

microenvironment. We also noticed that expression of several immune

checkpoint proteins were clearly increased in Cluster 1 to Cluster 2.

Subsequently, seven genes were screened to construct LRGs prognostic

signature and the performance of the resulting signature was validated in

the validation cohort. Furthermore, a nomogram integrating LRGs signature
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and clinical characteristics was developed to predict effectively the 4, 6, and 8-

year prognosis of EWS patients.

Conclusion: Our study revealed the role of LRGs in immunosuppressive

microenvironment and predicting prognosis in EWS and provided a robust

tool to predict the prognosis of EWS patients.
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Introduction

Ewing sarcoma (EWS) is the second leading malignant bone

and soft tissue tumor, often arising in children and adolescents

(Kaatsch et al., 2016). The highly aggressive and locally

destructive feature of EWS accounts for early metastasis and

local recurrence (Jin, 2020). As the clinical application of surgical

procedures combined with chemotherapy and radiotherapy, the

prognosis of EWS patients has improved remarkably (Fan et al.,

2017; Zhu et al., 2021). Unfortunately, metastatic and recurrent

patients are refractory to radiotherapy and chemotherapy, with

the 5-year survival rates below 25% (Koustas et al., 2021). The

emergence of resistance to conventional treatments has turned

out to be a serious obstacle in the clinic. Hence, there is an

emerging need for exploring novel therapeutic targets to improve

the prognosis of EWS patients.

In 1926, Otto Warburg found that tumor cells do not rely on

mitochondrial oxidative phosphorylation for energy supply under

adequate oxygen conditions, rather they use aerobic glycolysis to

produce large amounts of lactic acid tomaintain tumor growth. This

phenomenon is known as theWarburg effect (Warburg et al., 1927).

Lactate, long considered as a waste product of glycolysis, has now

proven to be a critical factor in the reprogramming of tumor

metabolism and is strongly connected to tumorigenesis, immune

microenvironment and therapeutic resistance (Baltazar et al., 2020).

The sarcoma microenvironment is characterized by tumor

interstitial acidification, increased lactate secretion can maintain

microenvironmental acidification which participates directly in

tumor development and metastasis (Taddei et al., 2020). Lactate

has been shown to enter endothelial cells via the monocarboxylate

transporter MCT-1 to activate the NF-κB/IL-8 pathway to facilitate
tumor migration and vasculogenesis (Végran et al., 2011). In

addition, lactate, as an immune-negative modulator, can regulate

the differentiation of a variety of immune cells towards an

immunosuppressive phenotype to promote tumor immune

(Sangsuwan et al., 2020). Tumor cells are able to induce cancer-

associated fibroblasts (CAFs) to generate hepatocyte growth factor

via increased lactate secretion, thereby activating MET-dependent

signaling to trigger drug resistance (Apicella et al., 2018). These

findings indicated that targeting lactate metabolism could be a

prospective treatment strategy for tumors. Previous studies have

identified that lactate dehydrogenase levels are tightly related to

prognosis and treatment response in EWS patients (Fu et al., 2016;

Li et al., 2016). Given the pivotal effect of lactate in tumorigenesis

and immunosuppression, comprehensive analysis of lactate-related

genes (LRGs) to reveal their potential role in EWS is important.

Recently, as high-throughput sequencing has evolved, stratifying

tumor patients by bioinformatics and machine learning approaches

to explore new biomarkers has proven to be reliable and useful

(Zhang et al., 2022a; Zhang et al., 2022b; Sun et al., 2022). In the

current study, we first screened differential expression ofLRGs (DE-

LRGs) between EWS and normal tissues. Then, we identified two

lactate modulation patterns derived from the expression profile of

DE-LRGs and evaluated the prognosis and tumor immune

microenvironment (TIME) of the two different subtypes.

Moreover, a novel prognostic signature constructed by seven

candidate LRGs accurately predicted the prognosis of EWS

patients. These findings identified potential new biomarkers that

can be used for clinical decision making in EWS patients.

Methods and materials

Data collection

The transcriptional and clinical data on Ewing sarcoma

patients were acquired from the GSE17679 dataset in the

GEO database as a training cohort, which included 88 EWS

tissues and 18 normal tissues (Barrett et al., 2013). The word

“lactic” was used as a keyword to extract LRGs from the

Molecular Signatures Database (MSigDB; https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) (Sun et al., 2022)

(Supplementary Table S1). After removing duplicates, a total

of 252 genes were evaluated in this study. In addition, the

transcriptomic and clinical data of 56 EWS patients were

obtained from the International Cancer Genome Consortium

(ICGC) database as an external independent validation cohort

(Hudson et al., 2010). The clinical information in the both

cohorts was shown in Supplementary Table S2.

Identification of differential expression
ofLRGs in the training cohort

The R package “limma” was employed to identify DE-

LRGs between EWS and normal tissues, and adj. p < 0.05 and |
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log2 fold change (FC)| ≥ 1.50 was set as the threshold. Heat

map was applied to present the expression of DE-LRGs in

tumor and normal tissue. Subsequently, Gene Ontology (GO)

term and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway were applied to assess the enrichment of functional

pathways within these DE-LRGs.

Unsupervised clustering analysis

Unsupervised clustering analysis was performed to

determine lactate modulation patterns based on the

expression profile of DE-LRGs through the R package

“ConsensusClusterPlus”, with the following conditions to

ensure stability:maxK = 6, reps = 1000, pItem = 0.8,

pFeature = 1, clusterAlg = hc and distance = pearson. The

cumulative distribution function (CDF), consensus matrix,

and comparative change in area under the CDF curve were

taken to ensure the optimal number of clusters. Kaplan Meier

(KM) curves were utilized to assess overall survival (OS)

between different subtypes. Subsequently, Gene Set

Enrichment Analysis (GSEA) and Gene Set Variation

Analysis (GSVA) were performed to assess the hallmark

gene sets in different subtypes.

Tumor immune microenvironment
analysis of lactate modulation patterns

To further characterize the TIME of the different

subtypes, the ESTIMATE algorithm was employed to

calculate the TIME scores for each sample, and t-test to

compare the differences between subtypes (Yoshihara et al.,

2013). Subsequently, the MCP counter and CIBERSORT

algorithm was used to assess the abundance of different

immune infiltrating cells in different subtypes.

Furthermore, we also evaluated the differences of

expression of immune checkpoints (ICPs) proteins in

different subtypes.

Establishment and validation of LRG
prognostic signature

To appraise the prognostic role of LRGs, univariate Cox

analysis was applied to screen for DE-LRGs, p < 0.05 was

deemed prognosis-related LRGs. The least absolute

shrinkage and selection operator (LASSO) Cox regression

was utilized to prevent overfitting of the prognostic model by

R package “glmnet”, and the minimum lamba value was

adopted as the optimal value. Finally, multivariate Cox

regression was employed to build prognostic signature.

The risk score in each patients was calculated based on

the following formula:Risk score = Σin(Coefi * Xi). Based

on risk scores, patients in the training cohort were classified

into high-risk and low-risk groups, and KM curve and time-

dependent ROC curves were availed to assess the prognostic

performance of the model. Moreover, the validation cohort

was performed to verify the accuracy of the LRGs signature

by the above formula. In addition, combining risk score and

clinical characteristics, Cox regression was applied to

estimate whether risk score was an independent

prognostic element for EWS patients.

Quantitative real-time PCR

The human EWS cell line A673 and RD-ES were obtained

from Procell Life Science Technology Co.,Ltd. and Meisen

Cell Technology Co., Ltd., respectively. The hMSC cells were

purchased from Hengya Biotechnology Co., Ltd. as normal

control. A673 and hMSC were cultured in DMEM medium

containing 10% fetal bovine serum (FBS) and 1% (v/v) P/S.

RD-ES was cultured in RPMI 1640 medium containing 10%

FBS and 1% (v/v) P/S. All cells were incubated at t 37°C, 5%

CO2. Subsequently, the TRIZOL method was used to extract

and purify RNA from cells and cDNA synthesis kit (Takara,

China) were utilized to reverse transcribe the RNA. The TB

Green Premux Ex Taq II (Tli RNaseH Plus) and Bio-Rad

CFX96 real-time PCR system (Bio-Rad, United States) was

employed for qRT-PCR. The internal control was GADPH.

The primer sequences of the candidate genes are shown in

Table 1, and all genes were repeated three times for analysis.

TABLE 1 The primer sequences of the candidate genes.

Gene Sequence (59 -> 39)

PUS1 Forward:GTCTGGGAGGACGGAGAACAT

Reverse:CAGCACGATCTTCCGCTTG

NDUFB9 Forward:GTGGTGCGTCCAGAGAGAC

Reverse:GGCCTTCGCCATATCCTTTTC

NDUFB10 Forward:AGCCCAATCCCATCGTCTACA

Reverse:GCTGCCGCTCTATAAATTCTCT

SLC25A12 Forward:TCAAGGTGCAGACAACTAAGC

Reverse:GGGGTCATATAACGCTCTCCA

COX6A2 Forward:CCTTCAACTCCTATCTCCACTCG

Reverse:GTTGGTAGGGACGGAACTCG

PPM1B Forward:TGGGAATGGTTTACGTTATGGC

Reverse:GCCGTGAGGAATACCTACAACAG

RYR1 Forward:GACAGGGAACACGACCACTATTA

Reverse:ATGACATCCTTGCCCGAGTAGTA

GADPH Forward:GGAGCGAGATCCCTCCAAAAT

Reverse:GGCTGTTGTCATACTTCTCATGG
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Construction and calibration of
nomogram

A nomogram model was developed to predict the probability

of survival of EWS patients by integrating risk scores and clinical

characteristics. The C-index, calibration plots and ROC curves

were adopted to measure the predictive performance of the

constructed nomogram at 4, 6, and 8 -year.

Statistics

All statistical analyses were conducted using R 4.0.5 software,

GraphPad Prism 8 and SPSS 21.0. The t-test was performed to two

groups, and one-way ANOVA was performed to three groups. p <
0.05 was deemed to a statistical difference. *p < 0.05; **p < 0.01;

***p < 0.001.

Result

Identification and functional enrichment
of differential expression ofLRGs

Theworkflow of this study was shown in Figure 1.We identified

a total of 35 DE-LRGs between EWS and normal tissues, of which

six genes were up-regulated and 29 genes were down-regulated in

expression. Heat map presenting the expression levels of DE-LRGs

in EWS and normal tissues (Figure 2A). Then, we assessed the

interaction of these genes in the EWS (Figure 2B). Moreover, KEGG

analysis indicated that these DEGs were mainly enriched in

thermogenesis, oxidative phosphorylation and Parkinson disease.

GO terms indicate that these DEGs were primarily involved in ATP

metabolic process, energy derivation by oxidation of organic

compounds, cellular respiration amongst biological process (BP);

were primarily involved in respiratory chain, respiratory chain

complex and mitochondrial inner membrane amongst cellular

component (CC), were primarily involved in NADH

dehydrogenase (ubiquinone) activity, NADH dehydrogenase

activity and electron transfer activity amongst molecular function

(MF) (Figure 2C).

Identification of lactate modulation
patterns by clustering analysis

To understand the role of lactate modulation patterns in

EWS, we classified EWS patients into different subtypes through

unsupervised clustering analysis using the expression profiles of

DE-LRGs, and k = 2 was identified as the optimal number of

clusters (Figures 3A–C). Sankey diagram illustrated the

relationship between different patterns and clinical features

FIGURE 1
Workflow diagraph of the data analyzing process.
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and survival status (Figure 3D). Moreover, KM curve indicated

that patients with Cluster 1 had a noticeably poor prognosis

compared to Cluster 2 (Figure 3E). GSEA analysis revealed that

the oxidative phosphorylation was significantly enriched in

Cluster 2 amongst hallmark gene sets (Figure 3F). Besides,

GSVA analysis found that multiple classical tumor-related and

immune-related pathways enriched in Cluster 1, including WNT

beta catenin signaling, IL6/JAK/STAT3 signaling, inflammatory

response, hedgehog signaling etc, whereas oxidative

phosphorylation were significantly upregulated in Cluster 2.

These findings indicated that different biological functions

might be intimately linked to the prognosis of lactate

modulation patterns (Figure 3G).

Tumor immune microenvironment
analysis of lactate modulation patterns

Substantial studies prove that lactate has a major impact

on immune regulation in TIME, thus we carried out immune

analysis to uncover the action of TIME in different subtypes.

ESTIMATE algorithm indicated that Cluster 1 had better

immune score (p = 8.4e-5), stromal score (p = 8.1e-7),

ESTIMATE score (p = 9.6e-7) and worse tumor purity (p =

1.1e-6) than Cluster 2 (Figure 4A). MCP algorithm found that

CAFs, Endothelial cells, Myeloid dendritic cells, Monocytic

lineage, B lineage and T cells were significantly elevated in

Cluster 1 to Cluster 2 (Figure 4B). CIBERSORT algorithm

illustrated that the infiltration abundance of T cells gamma

delta and Macrophages M2 were clearly elevated in Cluster

1 than in Cluster 2, whereas T cells CD4 memory resting,

T cells follicular helper and Neutrophils showed the opposite

result (Figure 4C). In addition, we also noted that the

expression of some ICPs was clearly elevated in Cluster

1 over Cluster 2, which suggested that Cluster 1 appeared

to be intimately associated with the immunosuppressive

microenvironment (Figure 4D). Altogether, these results

indicate that different LRGs subtypes might influence the

progression, invasion and prognosis of EWS through

modulating TIME.

FIGURE 2
Identification and functional enrichment of DE-LRGs in EWS (A). Heatmap illustrating the expression of DE-LRGs in each sample (B). Interaction
plot of DE-LRGs in EWS (C). GO terms and KEGG pathway analysis.
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FIGURE 3
Classification of lactate modulation patterns by clustering analysis (A–C). K = 2 was regarded as the optimal number of subtype clusters (D).
Sankey diagram showing the association of different patterns with clinical features (E). KM curve presenting the prognosis of different patterns (F).
GSEA analysis showcasing different patterns of hallmark gene sets (G). GSVA analysis exhibiting the functional enrichment of different patterns.
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FIGURE 4
Tumor immune microenvironment (TIME) evaluation in different lactate regulation patterns (A). TIME scores by ESTIMATE algorithm (B). The
expression levels of 10 immune infiltrating cells by MCP counter (C). Abundance of 22 immune infiltrating cells by CIBORSORT (D). The expression
levels of ICPs in different lactate regulation patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
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Development and validation of the LRGs
prognostic signature

To assess the prognostic value of LRGs in EWS patients,

20 prognostically correlated DE-LRGs were identified by

univariate Cox analysis (Figure 5A). Then, LASSO analysis

was employed to further filter prognostic genes and 14 LRGs

were confirmed by minimal lambo value (Figures 5B,C). Finally,

seven candidate genes (PUS1, COX6A2, NDUFB9, NDUFB10,

SLC25A12, PPM1B and RYR1) were identified by multivariate

Cox analysis to construct a prognostic signature. The following

formula was adopted to calculate the LRGs score for each sample.

LRGs score = 1.095 × PUS1 + 0.827× COX6A2 + 0.883 ×

NDUFB9 + 1.943 ×NDUFB10 – 0.887× SLC25A12 – 1.311 ×

PPM1B – 0.884 × RYR1. Subsequently, patients in the training

cohort were separated into high and low risk groups depending

on the median of the LRGs score. As presented in Figures 6A,B,

the survival time of EWS patients decreased with increasing

LRGs scores. KM curves demonstrated that the high-risk group

had a worse prognosis than the low-risk group (Figure 6C). The

ROC curves suggested that the LRGs prognostic signature had

AUC values of 0.832, 0.952, and 0.984 at 1, 3, and 5 years,

respectively, which indicated that the model exhibited

excellent predictive accuracy (Figure 6D).

Then, patients in the validation cohort were divided into high

and low risk groups for validation of the LRGs score signature

based on the median LRGs score. Consistent with the results of

the training cohort, we observed that patients in the low-risk

group exhibited longer survival and improved general survival

compared to the high-risk group (Figures 6E–G). ROC curves

revealed that the 1, 3, and 5-year AUC values were 0.667, 0.685,

and 0.614, respectively (Figure 6H). By integrating LRGs score

and clinical feathers, multivariate Cox analysis identified LRGs

score as independent prognostic factors for patients with EWS in

the training cohort by integrating LRGs score and clinical

feathers (Figures 7A,B). Moreover, we validated the expression

of these candidate genes between EWS cell lines and hMSC. The

results showed that PUS1 was significantly upregulated in EWS

cell lines, while NDUFB9, NDUFB10, SLC25A12, COX6A2,

RYR1 and PPM1B were significantly downregulated in EWS

cell lines than the hMSC(Figure 7C).

Construction and validation of a
nomogram for predicting prognosis

To assess the utility of LRGs scores in predicting EWS

prognosis, we integrated LRGs scores and clinical feathers to

construct a nomogram model in the training cohort (Figure 8A).

The C-index of the nomogram was 0.846, which suggested that

the constructed nomogram had excellent predictive value.

Calibration curve showed that the predicted outcomes had

high consistency with the actual outcomes (Figures 8B–D).

The ROC curves had AUC values of 0.980, 0.918 and

FIGURE 5
Selection of prognosis-related DE-LRGs to construct prognostic models (A). The forest plot present the DE-LRGs associated with prognosis via
univariate Cox analysis (B ,C). Lasso analysis further screened 14 genes with the optimal lambo value.
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FIGURE 6
Prognostic value of LRGs signature in EWS patients. Distribution plots of the risk score and survival status in the training (A) and validation cohort
(E); Heat map showing the expression of candidate genes for different risk groups in the training (B) and validation cohort (F); The survival analysis in
the training (C) and validation cohort (G); The ROC curve for the training (D) and validation cohort (H).
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0.872 for 4, 6, and 8-year, respectively (Figure 8E). Collectively,

these results showed that constructed nomogram had robust

predictive accuracy for the prognosis of EWS patients.

Discussion

Glucose metabolism shifts from oxidative phosphorylation to

aerobic glycolysis in order to generate large amounts of lactate to fuel

tumor growth is an essential feature of tumor metabolic

reprogramming (Lu et al., 2015). Lactate is a pivotal mediator of

crosstalk between tumor metabolism and microenvironment which

is tightly linked to angiogenesis, immune escape and tumor

metastasis (Baltazar et al., 2020). Previous studies have proven

that increased serum lactate dehydrogenase in EWS patients was

strongly associated with poor prognosis (Li et al., 2016). Yeung et al.

(2019) found that targeting lactate dehydrogenase could modulate

the transcription of EWS-FLI1, an oncogenic driver of EWS, to

inhibit the tumor proliferation and induce cell apoptosis. In

addition, lactate dehydrogenase activity was shown to be a

marker for the efficacy of chemotherapy and radiotherapy in

EWS patients (Fu et al., 2016; Shapiro et al., 2018). These results

point to an essential contribution of lactate metabolism in EWS.

Nonetheless, the immunological and prognostic role of LRGs in

EWS patients remains unclear.

In the present study, we identified 35 DE-LRGs by comparing

transcriptome data from EWS and normal tissues, most of which

were significantly downregulated in EWS patients. GO and

KEGG analysis showed that these DE-LRGs were enriched in

oxidative phosphorylation, electron transfer activity,

mitochondrial inner membrane, and cellular respiration

pathways, which were closely related to aerobic respiration.

Cancer cells are known to transform glucose into lactate

through the Warburg Effect presence of oxygen, thereby

supplying energy for tumor growth and proliferation (Lu

et al., 2015). We speculated that the downregulation of the

expression of LRGs in EWS could contribute to mitochondrial

dysfunction and inhibit mitochondrial respiration in tumor cells,

which would in turn facilitate the shift from oxidative

phosphorylation to aerobic glycolysis resulting in increased

lactate secretion. These findings provided new insights into

the development and progression of EWS.

FIGURE 7
The effect of independent factors on LRGs scores and qPCR analysis (A,B). Univariate and multivariate Cox analyses via integrating LRGs scores and
clinical characteristics in the training cohort (C). qPCR analysis to verify the expression level of candidate genes in cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 8
Construction and evaluation a novel nomogram for EWS patients (A). Constructed nomogram to predict the 4, 6 and 8-year survival rate for
EWS patients (B–D). Calibration curve to verify the accuracy of the nomogram (E). ROC curve of the nomogram.
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Stratification of tumor patients to personalize therapy can

significantly improve patient prognosis (Martinez-Useros et al.,

2021). Our study identified two lactate modulation patterns by

unsupervised clustering analysis of the expression profiles of DE-

LRGs. KM curve revealed that patients with Cluster 1 had a

substantially worse prognosis than those with Cluster 2. Tumor

metabolic reprogramming, an essential feature of tumor

progression, would result in decreased oxidative

phosphorylation and increased lactate generation to match the

energy demand of rapid tumor growth. GSEA analysis revealed

that oxidative phosphorylation was upregulated in Cluster 2,

indicating that Cluster 2 might be associated with low lactate

secretion pattern, while Cluster 1 might be associated with high

lactate secretion pattern. Mizushima et al. (2020) already

demonstrated that the metabolism of high oncogenic

osteosarcoma cell lines were dependent on lactate production

from aerobic glycolysis and inhibition of oxidative

phosphorylation as compared to low oncogenic ones. Further

analysis identified Cluster 1 to be linked to immune regulation,

hedgehog signaling, notch signaling and etc, while Cluster 2 was

linked to oxidative phosphorylation, which further validated our

results. Marino et al. (2014) demonstrated that elevated lactate

dehydrogenase was an independent poor prognostic factor in

patients with EWS. Tural et al. (2012) similarly found that poor

prognosis in patients with extraskeletal EWS was tightly coupled

with elevated lactate dehydrogenase. Therefore, we think that the

adverse prognosis of EWS patients in Cluster 1 might be linked to

high lactate secretion pattern.

The tumor microenvironment has a variety of components,

among which lactate serves as a critical mediator of tumor

metabolism and can drive tumor progression by regulating

TIME (Baltazar et al., 2020). We evaluated TIME of both

lactate patterns and the results demonstrated that the immune

score and stromal score were clearly increased in Cluster 1 than

in Cluster 2. Our finding is consistent with the fact that immune

cells and/or stromal cells have been shown to be an important

source of lactate secretion in TIME. Immune infiltrating cell

analysis revealed a significant rise in the infiltration abundance of

a variety of immune cells in Cluster 1, including CAFs,

endothelial cells, Macrophages M2, and others. The elevated

levels of lactate in the TIME can regulate the immune response,

angiogenesis and cell invasion to promote tumor growth

(Romero-Garcia et al., 2016). Bhagat et al. (2019) found that

tumor cell-secreted lactate could promote the formation of CAFs

by regulating epigenomic reprogramming, resulting in enhanced

the invasiveness of tumor. Sonveaux et al. (2012) showed that

lactate could activate HIF-1 signaling in endothelial cells to

induce tumor angiogenesis. Vadevoo et al. (2021) identified

that lactate could drive macrophage M2 polarization through

the odor receptor Olfr78 to promote immune escape and tumor

progression. Besides, hypoxic tumor environment could cause a

decrease in miR-34a to increase tumor lactate levels which trigger

the dysfunction of immune cell (Ping et al., 2018). Extensive

researches have demonstrated that lactate is a critical factor in

tumor immune escape which could promote tumorigenesis and

progression by interfering with stromal/immune cells to create

an immunosuppressive microenvironment (Romero-Garcia

et al., 2016). Furthermore, we found that several ICPs were

expressed higher in Cluster1 than Cluster2, such as

CD274 and CTLA4, which are currently broadly available in

the clinic. Chen et al. (2021) found that lactate could alter lytic

granule cytosolic interaction to induce CD8+ T cell dysfunction,

leading to a sustained increase in CD274 expression. Recently, a

multicenter retrospective cohort study found that combined anti-

PD-1 and anti-CTLA-4 blockade markedly improved survival

time in BRAF-mutated melanoma patients with increased lactic

dehydrogenase, which suggested that increased lactate secretion

could significantly increase the expression of ICPs contributing

to immune escape in the TIME (Knispel et al., 2021).

Neutralization the lactate levels in the EWS

microenvironment might suppress immune checkpoints to

boost anti-tumor immunity and thus effectively improve the

prognosis of EWS patients. Collectively, these findings revealed

that lactate levels were closely linked to the immunosuppressive

microenvironment of EWS, presenting a promising targeting

strategy for the treatment of EWS patients.

To further explore the prognostic role of these LRGs in EWS,

we used univariate, LASSO and multivariate Cox analyses to

screen candidate genes. Ultimately, 7 LRGs were identified to

construct prognostic models, with PUS1, NDUFB9,

NDUFB10 and COX6A2 as risk factor and SLC25A12,

RYR1 and PPM1B as a protective factor for the prognostic of

EWS patients. PUS1 encodes a pseudouridine synthase which

serves an essential function in the structural modification of

tRNA and mRNA. Numerous researches revealed that aberrant

expression of PUS1 was closely linked to lactic acidosis and

mitochondrial myopathy (Knispel et al., 2021). Li et al. (2021)

suggested that elevated levels of PUS1 were intimately connected

with poor prognosis of hepatocellular. NDUFB9 and

NDUFB10 were associated with mitochondrial respiratory

chain complex I assembly. Li et al. (2021) found that deletion

of NDUFB9 promoted proliferation and invasion of metastatic

breast cancer cells via Akt/mTOR/p70S6K axis. Hebert-

Chatelain et al. (2012) revealed that activation of Src kinase

could inhibit NDUFB10 phosphorylation and decrease

mitochondrial respiration to increase aerobic glycolysis.

COX6A2 is implicated in the formation of the cytochrome c

oxidase (COX) subunit, which are the terminal enzymes of the

mitochondrial respiratory chain regulating electron transfer.

Inoue et al. (2019) found that mutations in COX6A2 could

lead to reduced activity of mitochondrial respiratory chain

complexes IV which resulted in defective mitochondrial

respiratory chains. SLC25A12 can encode a calcium-binding

mitochondrial carrier protein, which is responsible for the

conversion of aspartate to glutamate in the inner

mitochondrial membrane. SLC25A12 deletion could affect
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mitochondrial respiration and NAD+/NADH ratio to increase

lactate secretion in favor of tumor growth and metastasis (Alkan

et al., 2020; Pérez-Liébana et al., 2022). RYR1 is a lanosteric

receptor in skeletal muscle which mediates normal muscle

contraction through the release of Ca2+. Yu et al. (2019)

showed that the mutation of RYR1 was strongly connected

with a favorable prognosis of immunotherapy for lung cancer.

Previous studies demonstrated a significant increase in oxidative

stress levels in patients with bone metastatic cancer, which

decreased Ca2+-induced muscle contraction contributing to

muscle weakness (Waning et al., 2015). PPM1B, a member of

the PPM family of Ser/Thr protein phosphatases, acts as a

negative regulator of the cellular stress response. Miller et al.

(2018) found that depletion of PPM1B could activate the p38-

RB1-E2F1 pathway to increase chemotherapy sensitivity to

trigger tumor cell death. Yang et al. (2016) revealed that

overexpression of PPM1B dramatically inhibited the

proliferation and invasion of bladder cancer, which might be

a new therapeutic target for bladder cancer. In our study, we

demonstrated that the LRGs prognostic model had excellent

predictive performance in both the training and validation

cohort through KM and ROC curve analyses. Patients with

high LRGs score were associated with with poor prognosis. In

addition, our results also revealed that the LRGs prognostic

model could be used as an independent predictor of prognosis

in EWS patients. Lastly, we integrated the LRGs score and clinical

characteristics to construct a novel nomogram which could

accurately predict the prognosis of EWS patients at 4, 6 and

8 years, providing a new method to clinical decisions in EWS

patients.

This study present the first comprehensive analysis of the role

of lactate-related genes in EWS with many strengths, but there

are some limitations. First, the specific mechanisms of lactate

regulation of EWS progression remain unclear, an investigation

of candidate genes is needed to unravel these processes at a later

stage. Second, our study is a retrospective analysis based on

publicly available databases lacking pathological information

related to prognosis, which maybe biased. A large-scale multi-

center prospective studies are required to further corroborate the

clinical value of the above findings.

Conclusion

In conclusion, we identified for the first time DE-LRGs

involved in the development of EWS and investigated the role

of lactate modulation patterns in EWS. The high lactate patterns

could shape the immunosuppressive microenvironment

contributing to the poor prognosis of EWS patients.

Meanwhile, a novel LRGs prognostic signature was developed

and validated to accurately predict the prognosis of EWS

patients. Together, these findings shed light on the role of

LRGs in the progression and prognosis of EWS and provide

new insights for targeted therapy as well as prognosis prediction

of EWS patients.
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